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Focus of Paper

+ The focus of this paper will be on a visualization
project based on adjacency data (Fiske data)

+ The paper 1llustrates the power of visualization

+ Visualization generates insights and impact



Motivation

+ Typically, data are provided in multidimensional
format

» A large table where the rows represent countries and the
columns represent socio-economic variables

+ Alternatively, data may be provided in adjacency
format

» Consumers who buy item a are likely to buy or consider
buying items b, ¢, and d also

» Students who apply to college a are likely to apply to
colleges b, ¢, and d also



Motivation -- continued

+ More on adjacency

» If the purchase of item i results in the recommendation
of item j, then item j 1s adjacent to item i

» Adjacency data for n alternatives can be summarized in

an n x n adjacency matrix, A = (a;;), where
{] if item j is adjacent to item i, and
q. =

0 otherwise

» Adjacency is not necessarily symmetric



Motivation -- continued

Adjacency indicates a notion of similarity

Given adjacency data w.r.t. n items or alternatives,
can we display the items 1n a two-dimensional
map?

Traditional tools such as multidimensional scaling
and Sammon maps work well with data in
multidimensional format

Can these tools work well with adjacency data?
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Sammon Map of World Poverty Data Set (World Bank, 1992)



Obtaining Distances from
Adjacency Data

+ How can we use linkage information to determine
distances ?

items adjacent to a

items adjacent to b

A//l items adjacent to ¢

e items adjacent to d



Obtaining Distances from Adjacency
Data -- continued

Start with the n x n 0-1 asymmetric adjacency
matrix

Convert the adjacency matrix to a directed graph

» Create a node for each item (n nodes)
» Create a directed arc from node i tonode j it a; = 1

Compute distance measures

» Each arc has a length of 1
» Compute the all-pairs shortest path distance matrix D
» The distance from node i to node j 1s d;;



Obtaining Distances from Adjacency
Data -- continued

4. Modity the distance matrix D, to obtain a final
distance matrix X

» Symmetry
» Disconnected components

¥ Example 1 6
1 2 3 4 5 6
1lo 1 1 0 0 o0
211 0 0 1 0 o0
A= 30 0 0 1 1 0
410 1 0 0 0 1 \
510 o 1 0 0 1 0 S
6lo0 0o 1 1 0 0




Example 1 -- continued

+ Find shortest paths between all pairs of nodes to
obtain D

+ Average d;; and d;; to arrive at a symmetric
distance matrix X

1 2 3 4 5 6 1 2 3 4 5
1/o 1 1 2 2 3 1/o1 2 2 3 3
211 0 2 1 3 2 2110 2 1 3 2
D=313 2 0 1 1 2 X=312 2 0 15 1 15
412 1 2 0 3 1 412 1 15 0 25 1
514 3 1 2 0 1 513 3 1 25 0 15
6|3 2 1 1 2 0 6|3 215 1 15 0
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Example 2

A and B are strongly connected components

The graph below 1s weakly connected

T'here are paths from A to B, but none from B to A

MDS and Sammon maps require that distances be
finite (?)

A B 10



Ensuring Finite and Symmetric
Distances

+ Basic idea: simply replace all infinite distances
with a large finite value, say R

+ If R 1s too large

» The points within each strongly connected component
will be pushed together in the map

» Within-component relationships will be difficult to see

+ If R 1s too small

» Distinct components (e.g2., A and B) may blend together
in the map
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Ensuring Finite and Symmetric
Distances -- continued

R must be chosen carefully (see Technical Report)
This leads to a finite distance matrix D
Next, we obtain the final distance matrix X where

X, =X, = (dl.j +dﬂ.)/2

X becomes input to a Sammon map or MDS
procedure
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Application: College Selection

+ Data source: The Fiske Guide to Colleges, 2000
edition

» Contains information on 300 colleges

» Approx. 750 pages

» Loaded with statistics and ratings

» For each school, its biggest overlaps are listed

+ Overlaps: “the colleges and universities to which
1ts applicants are also applying in greatest numbers
and which thus represent 1ts major competitors”
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Overlaps and the Adjacency Matrix

Penn’s overlaps are Harvard, Princeton, Yale,

Cornell, and Brown

Harvard’s overlaps are Princeton, Yale,
Stanford, M.I.T., and Brown

Note the lack of symmetry

» Harvard is adjacent to Penn, but not vice versa
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Proof of Concept

+ Start with 300 colleges and the associated
adjacency matrix

+ [From the directed graph, several strongly
connected components emerge

+ We focus on the four largest to test the concept
(100 schools)

» Component A has 74 schools

» Component B has 11 southern colleges

» Component C has 8 mainly Ivy League colleges
» Component D has 7 California universities
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Sammon Map with Each School Labeled by its Designation
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Sammon Map with Each School Labeled by its Cost
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Sammon Map with Each School Labeled by its Academic Quality
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Benefits of Visualization

+ Adjacency (overlap) data provides “local”
information only

» E.g., which schools are Maryland’s overlaps ?

+ With visualization, “global” information 1s more
easily conveyed

» E.g., which schools are similar to Maryland ?
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Benefits of Visualization -- continued

+ Within group (strongly connected component)
and between group relationships are displayed at
same time

+ A variety of what-1f questions can be asked and
answered using maps

+ Based on this concept, a web-based DSS for
college selection 1s easy to envision
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Conclusions

The approach represents a nice application of
shortest paths to data visualization

The resulting maps convey more information than
1s immediately available in The Fiske Guide

Visualization encourages what-1f analysis of the
data

Can be applied 1n other settings (e.g., web-based
recommender systems)

24



