The Minimum Labeling Spanning Tree Problem: Heuristic and Metaheuristic Approaches

Bruce Golden
Yupei Xiong
Edward Wasil

OR Workshop in Honor of Paolo Carraresi
Università di Pisa, March 3, 2004
Introduction

- The Minimum Labeling Spanning Tree (MLST) Problem

 - Communications network design

 - Edges may be of different types or media (e.g., fiber optics, cable, microwave, telephone lines, etc.)

 - Each edge type is denoted by a unique letter or color

 - Construct a spanning tree that minimizes the number of colors
Introduction

- A Small Example

Input

Solution
Where did we start?

- The MLST Problem is NP-hard
- Several heuristics had been proposed
- One of these, MVCA (version 2), was very fast and effective
- Worst-case bounds for MVCA had been obtained
Literature Review

- An optimal algorithm (using backtrack search) had been proposed.

- On small problems, MVCA consistently obtained nearly optimal solutions.

- See [Chang & Leu, 1997], [Krumke & Wirth, 1998], [Wan, Chen & Xu, 2002], and [Bruggemann, Monnot & Woeginger, 2003].
Description of MVCA

0. Input: $G (V, E, L)$.
1. Let $C \leftarrow \{\}$ be the set of used labels.
2. repeat
3. Let H be the subgraph of G restricted to edges with labels from C.
4. for all $i \in L - C$ do
5. Determine the number of connected components when inserting all edges with label i in H.
6. end for
7. Choose label i with the smallest resulting number of components and do: $C \leftarrow C \cup \{i\}$.
8. Until H is connected and spans V.
How MVCA Works

Input

Intermediate Solution

Solution
Worst-Case Results

 \[
 \frac{\text{MVCA}}{\text{OPT}} \leq 1 + 2 \ln n
 \]

 \[
 \frac{\text{MVCA}}{\text{OPT}} \leq 1 + \ln(n-1)
 \]

 \[
 \frac{\text{MVCA}}{\text{OPT}} \leq H_b = \sum_{i=1}^{b} \frac{1}{i} < 1 + \ln b
 \]
 where \(b = \text{max label frequency} \), and
 \(H_b = b^{th} \) harmonic number
A Perverse-Case Example

- **MVCA**
 - It might add colors associated with 3 polygons first
 - Then, it must add colors associated with 4 rays

- **Optimal Solution**
 - Add colors associated with 4 rays first
 - Then, add color associated with 1 polygon
Given an integer $k \geq 3$, build a graph $G = (V, E)$ with k^2 nodes and $2k - 1$ labels, where the edges form $k - 1$ concentric polygons and k rays (as below for $k = 3$)

\[
\frac{\text{MVCA}}{\text{OPT}} = \frac{7}{5}
\]

In the previous example, we had $k = 4$ and
Some Observations

- In general, the result \(\frac{\text{MVCA}}{\text{OPT}} = \frac{2k-1}{k+1} \), which approaches 2 for large \(k \), is possible.

- The labels associated with the rays in the perverse-case example are cut labels.

- Definition: A label \(c \) is called a cut label if the removal of all edges with label \(c \) disconnects graph \(G \).

- These labels must be in any solution.

- Next, we show that the Xiong, Golden, Wasil worst-case bound is tight.
A Worst-Case Example
A Worst-Case Example - continued
A Worst-Case Example - continued
A Worst-Case Example - continued

Suppose we implement MVCA by adding cut labels first? Is the bound still tight?
More Observations

- For the worst-case example with $b = 3$ and $n = 19$,
 \[
 \frac{\text{MVCA}}{\text{OPT}} = \frac{11}{6} = 1 + \frac{1}{2} + \frac{1}{3} = H_3
 \]

- Unlike the MST, where we focus on the edges, here it makes sense to focus on the labels or colors

- Next, we present a genetic algorithm (GA) for the MLST problem
Genetic Algorithm: Overview

- Randomly choose \(p \) solutions to serve as the initial population
- Suppose \(s[0], s[1], \ldots, s[p-1] \) are the individuals (solutions) in generation 0
- Build generation \(k \) from generation \(k-1 \) as below

 For each \(j \) between 0 and \(p-1 \), do:

 \[
 t[j] = \text{crossover} \{ s[j], s[(j+k) \mod p] \}
 \]

 \[
 t[j] = \text{mutation} \{ t[j] \}
 \]

 \[
 s[j] = \text{the better solution of } s[j] \text{ and } t[j]
 \]

 End For

- Run until generation \(p-1 \) and output the best solution from the final generation
Crossover Schematic (p = 4)

Generation 0

Generation 1

Generation 2

Generation 3
Crossover

- Given two solutions \(s[1] \) and \(s[2] \), find the child \(T = \text{crossover} \{ s[1], s[2] \} \)

- Define each solution by its labels or colors

- **Description of Crossover**

 a. Let \(S = s[1] \cup s[2] \) and \(T \) be the empty set

 b. Sort \(S \) in decreasing order of the frequency of its labels

 c. Add labels of \(S \) to \(T \), until \(T \) represents a connected subgraph \(H \) of \(G \) that spans \(V \)

 d. Output \(T \)
An Example of Crossover

\[s \left[1 \right] = \{ a, b, d \} \]

\[s \left[2 \right] = \{ a, c, d \} \]

\[T = \{ \} \]

\[S = \{ a, b, c, d \} \]

Ordering: a, b, c, d
An Example of Crossover

\[T = \{ \text{a} \} \]

\[T = \{ \text{a}, \text{b} \} \]

\[T = \{ \text{a}, \text{b}, \text{c} \} \]
Mutation

- Given a solution S, find a mutation T
- Description of Mutation

 a. Randomly select a label c not in S and let $S = S \cup \{ c \}$

 b. Sort S in decreasing order of the frequency of its labels

 c. From the last label on the above list to the first, try to remove one label from S while preserving a connected subgraph H of G that spans V

 d. Continue until no longer possible

 e. Call this solution T and output T
An Example of Mutation

\[S = \{ \text{a, b, c} \} \]

\[S = \{ \text{a, b, c, d} \} \]

Ordering: \text{a, b, c, d}
An Example of Mutation

Remove \{ d \}

\[S = \{ a, b, c \} \]

Remove \{ a \}

\[S = \{ b, c \} \]

\[T = \{ b, c \} \]
Computational Results

- 81 combinations: \(n = 20 \) to \(200 \) / \(l = 20 \) to \(250 \) / density = \(.2, .5, .8 \) / \(p = 20 \)

- 20 sample graphs for each combination

- The average number of labels is compared

- GA beats MVCA in 53 of 81 cases (16 ties, 12 worse)

- No instance required more than 2 seconds CPU time on a Pentium 4 PC with 1.80 GHz and 256 MB RAM
Conclusions & Future Work

- The GA is fast, conceptually simple, and powerful
- It contains a single parameter
- We think GAs can be applied successfully to a host of other NP-hard problems
- Future work
 - More extensive computational testing
 - Add edge costs
 - Examine other variants