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Introduction
� The Minimum Labeling Spanning Tree 

(MLST) Problem

�Communications network design

�Edges may be of different types or media (e.g., fiber optics, 
cable, microwave, telephone lines, etc.)

�Each edge type is denoted by a unique letter or color

�Construct a spanning tree that minimizes the number of 
colors
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Introduction
�A Small Example
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Literature Review
�Where did we start?

� The MLST Problem is NP-hard

� Several heuristics had been proposed

� One of these, MVCA (version 2), was very fast and 
effective

� Worst-case bounds for MVCA had been obtained
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Literature Review

� An optimal algorithm (using backtrack search) had  
been proposed

� On small problems, MVCA consistently obtained 
nearly optimal solutions

� See [Chang & Leu, 1997], [Krumke & Wirth,  
1998], [Wan, Chen & Xu, 2002], and 
[Bruggemann, Monnot & Woeginger, 2003]



6

Description of MVCA
0.  Input: G (V, E, L).

1. Let C { } be the set of used labels.

2. repeat

3. Let H be the subgraph of G restricted to edges with labels from C.

4. for all i � L – C do

5. Determine the number of connected components when inserting 

all edges with label i in H.

6. end for

7. Choose label i with the smallest resulting number of components and 

do:    C C �{i}.

8. Until H is connected and spans V.
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How MVCA Works
Solution
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Worst-Case Results

1. Krumke, Wirth (1998):

2. Wan, Chen, Xu (2002):

3. Xiong, Golden, Wasil (2004):

where b = max label frequency, and

Hb= bth harmonic number
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A Perverse-Case Example
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� MVCA
� It might add colors     

associated with 3 polygons  
first

� Then, it must add colors       
associated with 4 rays

� Optimal Solution
� Add colors associated with 

4 rays first
�Then, add color associated 

with 1 polygon
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A Perverse Family of Graphs
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�Given an integer k �3, build a graph G = (V, E) with k2   

nodes and 2k – 1 labels, where the edges form k –1 
concentric polygons and k rays (as below for k = 3)

�In the previous example, we had k = 4 and 
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Some Observations
� In general, the result                      , which approaches 2 for 

large k, is possible

� The labels associated with the rays in the perverse-case 
example are cut labels

� Definition: A label c is called a cut label if the removal of 
all edges with label c disconnects graph G

� These labels must be in any solution

� Next, we show that the Xiong, Golden, Wasil worst-case 
bound is tight
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A Worst-Case Example
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A Worst-Case Example -
continued
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A Worst-Case Example -
continued
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A Worst-Case Example -
continued
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�Suppose we implement MVCA by adding cut labels first?    
Is the bound still tight?    
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More Observations
� For the worst-case example with b = 3 and n = 19,       

� Unlike the MST, where we focus on the edges, here it 
makes sense to focus on the labels or colors

� Next, we present a genetic algorithm (GA) for the MLST 
problem
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Genetic Algorithm: Overview
� Randomly choose p solutions to serve as the initial population

� Suppose s [0], s [1], … , s [p – 1] are the individuals (solutions) in 
generation 0 

� Build generation k from generation k – 1 as below

For each j between 0 and p – 1, do:

t [ j ] = crossover { s [ j ], s [ (j + k) mod p ] }

t [ j ] = mutation { t [ j ] }

s [ j ] = the better solution of s [ j ] and t [ j ]

End For

� Run until generation p – 1 and output the best solution from the final 
generation
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Crossover Schematic (p = 4)
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Crossover
� Given two solutions s [ 1 ] and s [ 2 ], find the child T = 

crossover { s [ 1 ], s [ 2 ] }

� Define each solution by its labels or colors

� Description of Crossover

a.  Let S = s [ 1 ] � s [ 2 ] and T be the empty set

b.  Sort S in decreasing order of the frequency of its 
labels

c.  Add labels of S to T, until T represents a connected  
subgraph H of G that spans V

d. Output T
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An Example of Crossover
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An Example of Crossover
T = { a }
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Mutation
� Given a solution S, find a mutation T

� Description of Mutation

a.  Randomly select a label c not in S and let 
S =  S � { c }

b.  Sort S in decreasing order of the frequency of its 
labels

c.  From the last label on the above list to the first, try to 
remove one label from S while preserving a 
connected subgraph H of G that spans V

d. Continue until no longer possible

e.  Call this solution T and output T
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An Example of Mutation
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An Example of Mutation
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Computational Results
� 81 combinations: n = 20 to 200 / l = 20 to 250 / density = .2, 

.5, .8 / p = 20

� 20 sample graphs for each combination

� The average number of labels is compared

� GA beats MVCA in 53 of 81 cases (16 ties, 12 worse)

� No instance required more than 2 seconds CPU time on a 
Pentium 4 PC with 1.80 GHz and 256 MB RAM
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Conclusions & Future Work
� The GA is fast, conceptually simple, and powerful

� It contains a single parameter

� We think GAs can be applied successfully to a host of other 
NP – hard problems

� Future work

� More extensive computational testing

� Add edge costs

� Examine other variants


