The Generalized Traveling Salesman Problem: A New Genetic Algorithm Approach

by

John Silberholz, University of Maryland Bruce Golden, University of Maryland

Presented at INFORMS 2007 Coral Gables, January 2007

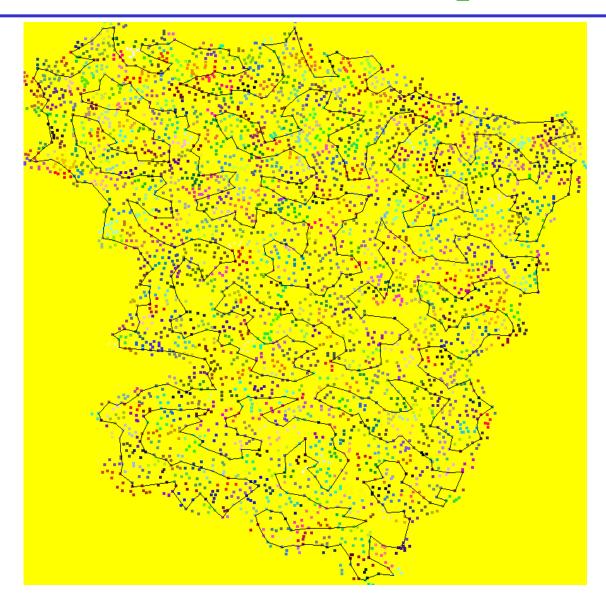
Outline of Lecture

- The generalized traveling salesman problem (GTSP)
 - **Formulation**
 - > Previously published heuristics
- The mrOX genetic algorithm
 - > Rotational component
 - ➤ Population isolation mechanism
- Computational Results
- Conclusions

The GTSP - Formulation

- Traveling salesman problem visits every city in tour
- Instead of visiting every node, generalized traveling salesman problem (GTSP) breaks nodes into clusters and a tour visits exactly one node in each cluster
 - The Pother formulations visit ≥ 1 nodes (allowing shorter pathways in datasets that don't conform to Δ inequality)
- Many applications
 - > Airplane and vehicle routing
 - >Rural mail delivery
 - ➤ Warehouse order picking
 - Computer file sequencing

The GTSP – Example



Different colors indicate different clusters

The mrOX Genetic Algorithm

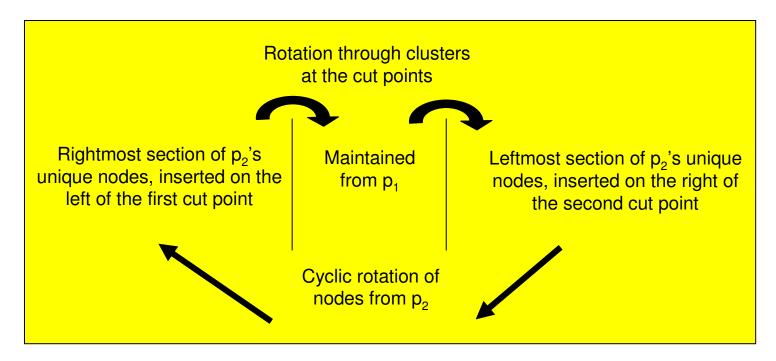
- Heuristics needed to make solutions to datasets like the previous one possible with standard computational resources
- The mrOX GA was developed to produce better solution qualities than previously published heuristics
- Heuristic must still produce reasonable runtimes to be effective

The mrOX GA implementation

- Path representation
- Standard genetic algorithm
 - >50 chromosomes in population
 - ≥30 new chromosomes each generation through crossover
 - >20 replicated chromosomes each generation
 - Local improvement through 2-opt and swap
 - > Isolated population model

Crossover

A novel crossover (modified rotational ordered crossover, or mrOX) was developed and implemented, using the idea of rotation through adjacent nodes and rotation through node clusters



12-city dataset for this example found in paper

Node	1	2	3	4	5	6	7	8	9	10	11	12
Cluster	1		2		3		4		5		6	

Consider crossover between two parents –

 $p_1 = \{ 12 \ 1 \ | 3 \ 10 \ | 6 \ 8 \}$

 $p_2 = \{ 2 \ 4 \ | 6 \ 8 \ | 10 \ 12 \}$

Retain part between cutpoints from p₁

 $O = \{ x x | 3 10 | x x \}$

- A reminder parents are
 - $p_1 = \{ 12 \ 1 \ | 3 \ 10 \ | 6 \ 8 \}$
 - $p_2 = \{ 2 \ 4 \ | 6 \ 8 \ | 10 \ 12 \}$
- Retained nodes 3 and 10 are from clusters 2 and 5
- Thus, nodes from other clusters are taken in order from p_2
 - **2**, 6, 8, 12 (clusters 1, 2, 4, and 6)
- From rotational aspect, nodes will be entered in orders:
 - **(**2, 6, 8, 12), (6, 8, 12, 2), (8, 12, 2, 6), (12, 2, 6, 8)
- If we allow reversals, we'll also consider orderings:
 - **1** (12, 8, 6, 2), (8, 6, 2, 12), (6, 2, 12, 8), (2, 12, 8, 6)

- Last modification involves rotation through clusters adjoining cutpoint
 - Thus, if we insert (2, 6, 8, 12), we need to consider –

```
{ 8 12 | 3 10 | 2 6 }
{ 8 12 | 3 10 | 1 6 }
{ 8 11 | 3 10 | 2 6 }
{ 8 11 | 3 10 | 1 6 }
```

This increases survival rate of new tour orientation

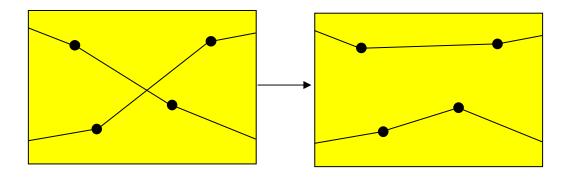
■ The final result of this example crossover, with associated costs –

Rotational Crossover								Reverse Rotational Crossover							
pos1	pos2	pos3	pos4	pos5	pos6	cost	pos1	pos2	pos3	pos4	pos5	pos6	cost		
6	8	3	10	12	2	317	2	12	3	10	8	6	379		
6	8	3	10	11	2	293	2	12	3	10	7	6	362		
6	7	3	10	12	2	306	2	11	3	10	8	6	296		
6	7	3	10	11	2	282	2	11	3	10	7	6	279		
8	12	3	10	2	6	346	12	8	3	10	6	2	408		
8	12	3	10	1	6	276	12	8	3	10	5	2	362		
8	11	3	10	2	6	315	12	7	3	10	6	2	308		
8	11	3	10	1	6	245	12	7	3	10	5	2	262		
12	2	3	10	6	8	326	8	6	3	10	2	12	266		
12	2	3	10	5	8	318	8	6	3	10	1	12	215		
12	1	3	10	6	8	297	8	5	3	10	2	12	331		
12	1	3	10	5	8	289	8	5	3	10	1	12	280		
2	6	3	10	8	12	350	6	2	3	10	12	8	286		
2	6	3	10	7	12	244	6	2	3	10	11	8	314		
2	5	3	10	8	12	377	6	1	3	10	12	8	238		
2	5	3	10	7	12	271	6	1	3	10	11	8	266		

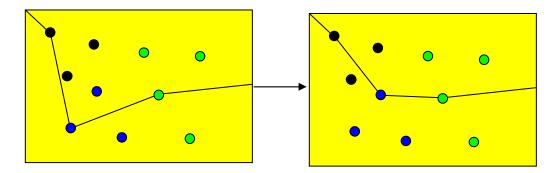
■ { 8 6 3 10 1 12 } is final child

Local Optimization

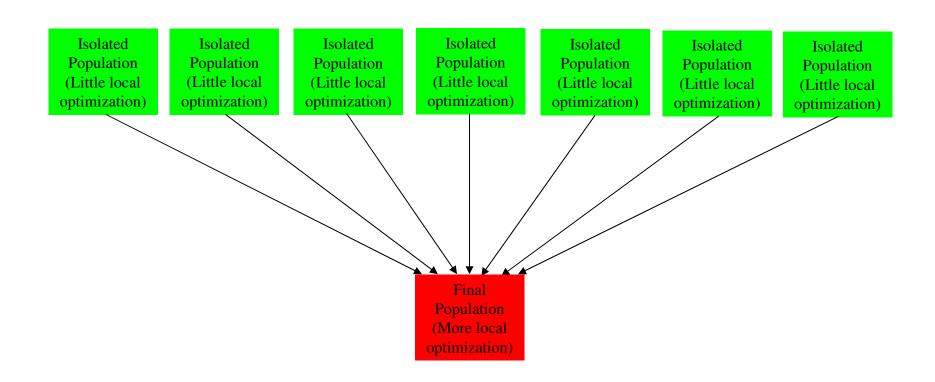
• One method was the 2-opt:



• Another method was the swap:



Isolated population method



- Combination done with greedy algorithm
- Combination after 10 static generations
- Termination after 150 static generations

- Computational experiments run on TSPLib datasets with Fishetti et al.'s clusterization method
- Heuristic programmed in Java and run on a computer with a 3.0 GHz processor and 1 GB RAM
- Compared to Snyder and Daskin's GA model for same problem
 - Easy to code
 - Also a GA
 - Best results to date
- S+D's GA was coded so comparisons could be made and larger datasets could be tested

mrOX GA compared with other published heuristics

Heuristic	Average pct. above optimal	Average runtime (sec.)			
mrOX GA	0.03	2.69			
S+D GA	0.11	1.77			
GI ³	0.98	83.09			
NN	1.48	171.56			
FST-Lagr	0.46	16.44			
FST-Root	0.11	964.79			
B&C	0.00	3356.47			

- On larger datasets (from 493 to 1084 nodes), comparison could only be made with S+D's GA
- No optimum values available
- Computational tests featured 150-gen. mrOX GA, 50-gen. mrOX GA, and S+D GA in 13 large datasets
 - Best solution quality: 11 for 150-gen., 2 for 50-gen., 0 for S+D GA
 - Best runtime: 9 for 50-gen., 4 for S+D GA, 0 for 150-gen.
- For 150-gen. model, S+D GA has runtime advantage and mrOX GA has solution quality advantage
- With 50-gen. model, mrOX GA shows a 47.52% decrease in runtime and a 0.56% decrease in solution quality, making it comparably superior

- Isolated population method tested with different numbers of isolated populations
- 7-population model has 0.04% better solution quality than 1-population model, with a 3.2% longer runtime
- 20-population model has 0.006% better solution quality than 7-population model, with a 10.35% longer runtime
- Diminishing returns clearly seen; a small number of isolated populations seems appropriate

- mrOX crossover tested against the OX crossover
- A 0.18% increase in solution quality was measured
- A 2.59% faster runtime was also measured
- mrOX appears to be superior to the OX crossover, and should be used in its place

Conclusions

We have developed an effective heuristic to approach the GTSP

The mrOX can be applied to other transportation problems

The isolated population mechanism with varying location optimization levels can be applied to many GAs in a variety of areas