Capacity Management in a Cardiac Surgery Line

by

Carter Price, University of Maryland
Timothy Babineau, University of Maryland Medical Center
Bruce Golden, University of Maryland
Bartley Griffith, University of Maryland Medical Center
Michael Harrington, University of Maryland Medical Center
Edward Wasil, American University

Presented at INFORMS Conference
November 2007
Problem Statement

- The Cardiac Surgery service line at the UMMC has 12 beds devoted to the intensive care unit (ICU).
- The Cardiac Surgery service line ICU is operating near capacity and serves as a bottleneck for the flow of patients.
- Cardiac Surgery is a high dollar service line. Disruptions in the flow result in a significant reduction in revenue.
The staffing patterns are made more than a week in advance.

The staffing is then adjusted based on perceived need.

These decisions are made on a same day basis as information becomes available.

Key Question: Can information on the number of discharges be predicted a few days in advance?
Solution Approach

- The lengths of stay (LoS) for individual patients were predicted.
- Using these predictions, a posterior distribution was constructed for each patient (given the patient has stayed in the hospital a certain length of time, how much longer do we expect the patient to stay).
- The individual LoS predictions were aggregated for the ICU.
- These predictions were tested using simulation and in a hospital setting.
Data Set

- The data set contained detailed information about the length of stay for every cardiac surgery patient from FY05 and FY06.
- There were 1,675 cardiac patients in this time frame.
- The data set included current protocol (CPT) codes, LoS, age, sex, and race.
- Because there were a few hundred different CPT codes present they were initially narrowed into 20 different groups.
LoS Prediction

- We tested four methods for predicting patient LoS: Neural Networks, Model Tree, CHAID tree, and Median Regression.
- WEKA was used for the Neural Net, Model Tree and Median Regression.
- AnswerTree was used for the CHAID tree.
- Each of these methods was trained on 66% of the data and tested on the remaining 34%.
- The tests were repeated 10 times with different test sets.
Prediction Results

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Neural Networks</th>
<th>Least Median Squared</th>
<th>Group Mean</th>
<th>Model Tree</th>
<th>CHAID</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAD</td>
<td>4.3107</td>
<td>3.8660</td>
<td>4.2638</td>
<td>4.4185</td>
<td>4.5982</td>
</tr>
<tr>
<td>Test MAD</td>
<td>4.0925</td>
<td>3.7431</td>
<td>4.1232</td>
<td>4.1779</td>
<td>4.2576</td>
</tr>
<tr>
<td>Test RMSE</td>
<td>8.3763</td>
<td>9.8771</td>
<td>8.4512</td>
<td>8.5400</td>
<td>8.8847</td>
</tr>
<tr>
<td>Parameters</td>
<td>406</td>
<td>25</td>
<td>21</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>
CHAID Divisions

Total
N = 1,675
Mean = 4.6901
St. Dev. = 9.5452

No Surgery
N = 127
Mean = 0.3858
St. Dev. = 0.9681

Bypass
N = 679
Mean = 4.2515
St. Dev. = 7.1125

Major
N = 117
Mean = 16.9145
St. Dev. = 21.9775

Minor
N = 530
Mean = 3.3792
St. Dev. = 7.2840

Valve Replacement
N = 222
Mean = 5.2117
St. Dev. = 7.6876
No parametric distribution provided a good fit for any of the LoS groups.

Kaplan-Meier estimators were used to construct the posterior distribution.

These estimators were smoothed.
Aggregating Predictions

- The individual LoS predictions were aggregated using a multinomomial distribution.

- The expected census was determined by summing the probabilities each patient would stay at least one more day.

- The variance of the census was calculated by summing the probability each patient would stay times the probability the patient would be discharged.
Testing

- We tested the census predictions using simulation and then on a daily basis at the hospital for four weeks in June and July of 2007.

- 1, 2, and 3 day predictions were made.

- The population for the simulation was length biased because a patient with a long LoS was more likely to be observed.

- The simulation was run 10,000 times.
Simulation Results

<table>
<thead>
<tr>
<th></th>
<th>1 Day</th>
<th>2 Days</th>
<th>3 Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Absolute Error</td>
<td>1.3173</td>
<td>1.3735</td>
<td>1.3213</td>
</tr>
<tr>
<td>Bias</td>
<td>0.0962</td>
<td>0.1374</td>
<td>0.2579</td>
</tr>
<tr>
<td>% Overestimated</td>
<td>25.25%</td>
<td>30.20%</td>
<td>36.93%</td>
</tr>
<tr>
<td>% Accurate</td>
<td>48.12%</td>
<td>47.33%</td>
<td>42.38%</td>
</tr>
<tr>
<td>% Underestimated</td>
<td>26.63%</td>
<td>22.48%</td>
<td>20.69%</td>
</tr>
</tbody>
</table>
Actual Results

<table>
<thead>
<tr>
<th></th>
<th>1 Day</th>
<th>2 Days</th>
<th>3 Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Absolute Error</td>
<td>1.15</td>
<td>1.80</td>
<td>2.50</td>
</tr>
<tr>
<td>Bias</td>
<td>-0.17</td>
<td>-0.49</td>
<td>-0.87</td>
</tr>
<tr>
<td>% Overestimated</td>
<td>17%</td>
<td>20%</td>
<td>0%</td>
</tr>
<tr>
<td>% Accurate</td>
<td>33%</td>
<td>30%</td>
<td>25%</td>
</tr>
<tr>
<td>% Underestimated</td>
<td>50%</td>
<td>50%</td>
<td>75%</td>
</tr>
</tbody>
</table>
Implications of the Errors

- The discharge predictions tended to be too low.
- More patients than predicted were discharged on days with a high scheduled volume.
- Robotic surgery is much more common now and those patients generally have a shorter LoS. This means that the posterior distributions for groups 3 and 4 have too much positive skew.
Conclusions

- The model was able to accurately determine when cases would be cancelled because there were more cases scheduled than available capacity.

- The initial results imply that the current model is not accurate enough to determine the required staffing levels.
Further Work

- The expected case volume should be included to improve the predictions.
- The effects of technological improvements on LoS should be determined.
- More advanced distribution fittings such as a gamma mixture model should be tested.
- Work is being done to predict capacity in other service lines.