
Balanced Billing Cycles and Vehicle Routing

of Meter Readers

by

Chris Groër, Bruce Golden, Edward Wasil

University of Maryland, College Park

University of Maryland, College Park

American University, Washington D.C.

Graph Theory, Algorithms, and Applications
Erice, Italy, September 11, 2008

2

Preface: My Dissertation Research

� Involved large-scale vehicle routing

� Partially supported by the American Newspaper
Publishers Association (from January 1974 to
June 1975)
�Develop a computer code for specifying vehicle routes for bulk

newspaper deliveries

�Determine if these computerized approaches look promising

� We worked with the Worcester Telegram (WT)
�Evening circulation of 92,000, approximately 600 drop points

�We located the depot and drop points on a large map with pins

�We used Euclidean distances and generated routes quickly

3

Transition from Ph.D. Student to Consultant

� Next, we compared our routes to existing WT routes

� WT re-examined their routes and altered several

� The experiment was reasonably successful and fun

� Larry Bodin and I started at the University of
Maryland in 1976

� Arjang Assad and Mike Ball arrived in 1978

� In 1978 and 1979, the four of us worked for
Scientific Time Sharing Corp. (STSC) on two
projects involving vehicle routing

� We worked with Donald Soults at STSC

� The projects were exciting, but STSC got most of the
money

4

Founding and Running a Consulting Company

� Assad, Ball, Bodin and Golden founded RouteSmart in
1980

� In the 1980s, we consulted with large companies on
vehicle routing

� Starting in 1989, we designed and sold vehicle routing
software

� In 1998, we sold the business to a large NY civil
engineering company

� We remained connected to RouteSmart until early 2004

� RouteSmart Technologies, Inc. is currently run by Larry
Levy – my newspaper boy in 1978 & 1979

� RouteSmart has major installations in the newspaper,
utility, waste/sanitation, and postal/local delivery industries

5

� This problem was described to us by RouteSmart
Technologies– it applies to all utility companies

� Over time, a utility company’s meter-reading routes
become inefficient, imbalanced, and fractured

� Utilities wish to remedy this situation by shifting
customers to different billing days and routes subject
to certain constraints

� We began with a real-world data set of 17,775
customers

The Billing Cycle Vehicle Routing Problem

6

� Each customer is assigned to one of 20 billing days

� Three meter readers are working each day

� The number of customers visited each day varies
between 400 and 1300

� Daily route length varies widely also

� A utility company in this situation has several goals
and constraints

Imbalanced Routes

7

� Create more efficient routes for each day of the
billing cycle

� Balance the workload across the billing cycle, in
terms of customers serviced and total route length

� Regulatory and customer service considerations
prevent the utility company from shifting a
customer’s billing day by more than a few days from
one month to the next

� These were put in place to eliminate variation in
customers’ bills due to utility company policies

Goals and Constraints

8

�Let’s start with a smaller and easier problem

� Simplifying assumptions

�1000 customers and a 10 day billing cycle

�We suppress the street network and treat this as a node
routing problem in Euclidean space

�One meter reader working per day

�Each billing day corresponds to one route

A Simplified Problem as a First Step

9

Approaches to the Problem

�We see two approaches to this problem

�Iterative and targeted

� Iterative approach

�We take the existing configuration and improve it as

much as we can from one period to the next

�Targeted approach

�We create an idealized set of efficient, balanced routes

for each day

�Next, we attempt to transition to these routes over a

small number of intermediate periods

10

Outline of a Heuristic Algorithm

� We selected a three-step targeted approach

1. Ignore all of the customers’ current billing days and
construct a balanced and efficient set of target routes

� One target route per billing day

� Each target route contains a set of customers with
different original billing days

2. Assign a single billing day to each target route,
attempting to minimize the number of customers that
must endure a large billing day change

3. Construct routes for transitional periods that allow us to
move from the initial configuration to the target routes
while obeying the billing day shift constraints

11

� For the set of 1000 customers, create a set of 10
balanced routes

� First, generate an initial solution with the desired
number of routes (10 in our case)

� We use improvement operators that affect at most
two routes at a time

� For inter-route moves, consider the differences in
route lengths and number of customers in each route

� We reward moves that decrease both of these
differences and penalize moves that increase both

Step 1: Construct Balanced Routes

12

Step 1: Construct Balanced Routes

� We construct balanced routes as follows

1. Generate an initial solution using Clarke-Wright

algorithm

2. Improve using a record-to-record travel algorithm and

traditional savings until we reach a solution with the

desired number of routes

� Uses relocate, swap, and two-opt moves within and

between routes

3. Run the same record-to-record travel algorithm, but now

penalizing and rewarding certain inter-route moves

13

Step 1: Construct Balanced Routes

� An example
�10 vehicles and 1000 customers

�Some balance enforced by N(R) # 110

� What happens as we vary the balance
parameter α

(81, 110, 10.8)(161, 366, 69)25610.5

(90, 110, 7.4)(205, 307, 33.5)26320.99

(37, 110, 22.6)(76, 374, 82)25840

(Min, Max, SDev)

in Route

(Min, Max, SDev)

Route Length
Total Route Lengthα

14

� Following Step 1, each route corresponds to a
single, final billing day

�Each of these routes contains a mix of
customers with different original billing days

�We define ||a, b||D to be the billing distance
between days a and b, i.e., the number of days
separating a and b, allowing for wraparounds
in a D-day cycle

� For example, ||9, 1||10 = 2

Step 2: Assign Billing Days to the Routes

15

�Given a max billing day shift of M days, the
cost of assigning billing day j to customer i
with original billing day d(i) is defined as

�This cost function rewards billing day
assignments that enable us to immediately
assign a customer to the final billing day

Step 2: Assign Billing Days to the Routes

0 if ||d(i), j||D #M

||d(i), j||D otherwise
{cij =

16

Step 2: Assign Billing Days to the Routes

� The cost of assigning billing day j to an entire target route R is the
sum ΣiεR cij of these billing shift costs for each customer in the route

� We then determine final billing days for each target route by
solving an Assignment Problem using this cost function

� The table below shows the Assignment Problem solution as we
change the maximum allowed shift size M

35M = 2

35M = 1

26M = 3

(1, 13)

(3, 19)

(4, 37)

(1, 1)

(4, 36)

(7, 41)

(9, 24)

Original Billing

Day Mixture

Target Route 2Target Route 1

17

� We now have an initial set of billing days and routes
and a set of final target routes with each route
assigned a single, final billing day

� The next task is to create routes for the transition
periods, while observing the billing day shift
constraint

� First, include all customers that can be moved to
their final billing day in a single shift

� We refer to these routes as skeleton routes, each of
which contains a subset of the customers included in
the associated target route

Step 3: Transition Customers to their Final Billing Days

18

Step 3: Transition Customers to their Final Billing Days

� In our 1000-node example, the skeleton routes contain

825 of the 1000 nodes

� The remaining 175 customers will be transitioned to

their final billing days via a sequence of intermediate

billing days

� We solve a series of Generalized Assignment

Problems in which we consider a single shift at a time

for each customer

� This is similar to a Transportation Problem

� The supply nodes are the customers not yet assigned to their

final billing day

� The demand nodes represent the skeleton routes

19

Step 3: Transition Customers to their Final Billing Days

� For each unassigned customer i and each skeleton

route j, we define cij to be the cost of inserting i into

route j

� Note that for each skeleton route j, the value ΣiεR cij xij

is an upper bound on the increase to the total length of

route j

� We try to use this upper bound as a constraint in the

formulation by repeatedly solving an IP with a tighter

and tighter bound

� We also introduce constraints to bound the number of

customers inserted into any skeleton route

20

Step 3: Transition Customers to their Final Billing Days

� Let Lj be the current length of skeleton route j and let

Nj be the number of customers on this route

� Let Tmin and Tmax denote the minimum and maximum

number of customers allowed on a route

� Let f(i) denote the final billing day of customer i

� Let xij = 1 if customer i is inserted into route j

� We set the bound B to a large value, such as twice the

maximum allowed route length

21

Step 3: Solving the Integer Program

i
Tmin # Nj + Σxij # Tmax œj

xij = 0, if ||d(i), j||D > M

Lj + Σcij xij # B œj

min Σcij xiji, j

Σxij = 1 œi
j

xij = 0, if ||j,f(i)||D > ||d(i),f(i)|| D

xij ε {0, 1}

22

Step 3: Transition Customers to their Final Billing Days

� Upon finding the smallest value of B for which a

solution exists, the xij variables indicate how to

construct the routes for each intermediate period from

the skeleton routes

� Upon making these insertions, more customers are

now assigned to their final billing days

� Resolve the problem for the customers who are still

not assigned to their final billing day

� The algorithm terminates when all customers are

assigned to their final billing day

23

Some Observations

� The final constraint on page 18 requires that we

always move a customer closer to its final billing

day

� The maximum initial billing distance is [D/2]

� Therefore, the constraint guarantees that we will

need at most [D/2]-1 intermediate periods

24

A Fully Worked-out Example (M = 2)

98227463rd transitional per.

89528032nd transitional per.

82533711st transitional per.

10002632Target routes

593168Original routes

customers assigned to correct

final billing day

Total

length

25

Original Routes

� Total length = 3168

26

Intermediate Routes

� Total length = 2803

27

Target Routes

� Total length = 2632

28

Conclusions

� Our algorithm combines VRP metaheuristics with

IP to create high-quality solutions

� One of the interesting complications is that we are

forced to start with an initial configuration that can

be very poor

� Future work: Perform more extensive

computational experiments

