The Min-Max Multi-Depot Vehicle Routing Problem: Three-Stage Heuristic and Computational Results

X. Wang, B. Golden, and E. Wasil
INFORMS
Minneapolis
October, 2013
Introduction

• In the Multi-Depot VRP, the objective is to minimize the total distance traveled by all vehicles

• In the Min-Max MDVRP, the objective is to minimize the maximum distance traveled by a vehicle
Introduction

- Min-Max Multi-Depot Vehicle Routing Problem
Introduction

- Min-max objective function
Introduction
Why is the min-max objective important?

• Applications
 ▫ Disaster relief efforts
 • Serve all victims as soon as possible
 ▫ Computer networks
 • Minimize maximum latency between a server and a client
 ▫ Workload balance
 • Balance amount of work among drivers or across time horizon
Introduction
Other considerations

• Fixed number of vehicles available

• Basic model
 ▫ There is no demand associated with the customers

• Capacitated model
 ▫ Customers have demands in terms of quantity

• Service time model
 ▫ Customers require service in terms of time
Literature Review

- Carlsson et al. (2009) proposed an LP-based balancing approach (LB) to solve the Min-Max MDVRP
 - Assignment of customers to vehicles using an LP
 - TSP solved by Concorde
 - These steps are repeated and the best feasible solution is reported
Literature Review

• LB is not expected to work very well when customers are not uniformly distributed

• It is not easy to extend LB to solve problems with customer service times
Solving the Min-Max MDVRP

• We develop a heuristic (denoted by MD)

• MD has three phases

 1. Initialization
 2. Local search
 3. Perturbation
Phase 1: Initialization

- Assign customers evenly to vehicles

\[
\begin{align*}
\min & \quad \sum_{i,j} c_{ij} x_{ij} \\
\text{s.t.} & \quad \sum_{j} x_{ij} = 1 \quad \forall i \\
& \quad \sum_{i} x_{ij} = \left\lfloor \frac{n}{m} \right\rfloor \quad \text{or} \quad \left\lceil \frac{n}{m} \right\rceil + 1 \quad \forall j \\
& \quad x_{ij} \in \{0, 1\} \quad \forall i, j
\end{align*}
\]

- Solve a TSP on each route using the Lin-Kernighan heuristic
Phase 2: Local Search

- Step 1. From the maximal route, identify the customer to remove (savings estimation)
Phase 2: Local Search

• Step 2. Identify the route on which to insert the removed customer (cost estimation)

• Step 3. Try inserting the customer in the cheapest way
 ▫ Successful – go back to Step 1
 ▫ Unsuccessful – try moving another customer

• Step 4. Stop if we have tried to move every customer on the maximal route
Phase 3: Perturbation

- Perturb the locations of the depots
Phase 3: Perturbation

- Solve the new problem
- Set the depots back to their original positions
- Solve the problem and update the solution
- Repeat the process until there is no improvement for five consecutive perturbations
Phase 3: Perturbation

- The angle of subsequent perturbation depends on the angle of the previous perturbation.
Computational Results

• 20 test problems
 ▫ 10 to 500 customers
 ▫ 3 to 20 depots
 ▫ Problems have uniform and non-uniform customer locations

• MD used an Intel Pentium CPU with 2.20 GHz processor

• Code for LB required a 32-bit machine (Intel Core i5 with 2.40 GHz processor)
Computational Results

Problem MM8 (3 depots, 200 customers, 2 vehicles)
Computational Results

Problem MM8 (3 depots, 200 customers, 2 vehicles)
Computational Results

Uniform Customer Locations

- MD outperforms the LB-based heuristic by 12.5% on average

<table>
<thead>
<tr>
<th>Identifier</th>
<th>LB Objective</th>
<th>Time (s)</th>
<th>MD Objective</th>
<th>Time (s)</th>
<th>Improvement (%)</th>
<th>VRPH*</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM2</td>
<td>149.225</td>
<td>38.2</td>
<td>129.863</td>
<td>11.1</td>
<td>12.98</td>
<td>136.105</td>
</tr>
<tr>
<td>MM3</td>
<td>265.349</td>
<td>61.4</td>
<td>238.973</td>
<td>18.1</td>
<td>9.94</td>
<td>243.511</td>
</tr>
<tr>
<td>MM7</td>
<td>222.071</td>
<td>14.5</td>
<td>189.015</td>
<td>1.5</td>
<td>14.89</td>
<td>189.633</td>
</tr>
<tr>
<td>MM8</td>
<td>242.730</td>
<td>73.2</td>
<td>213.501</td>
<td>29.8</td>
<td>12.04</td>
<td>226.135</td>
</tr>
<tr>
<td>MM10</td>
<td>197.594</td>
<td>32.9</td>
<td>197.39</td>
<td>3.5</td>
<td>0.10</td>
<td>194.172</td>
</tr>
<tr>
<td>MM11</td>
<td>119.658</td>
<td>78.5</td>
<td>102.391</td>
<td>2.6</td>
<td>14.43</td>
<td>103.954</td>
</tr>
<tr>
<td>MM12</td>
<td>114.826</td>
<td>37.9</td>
<td>78.307</td>
<td>2.5</td>
<td>31.80</td>
<td>79.747</td>
</tr>
<tr>
<td>MM13</td>
<td>138.823</td>
<td>35.8</td>
<td>121.535</td>
<td>4.9</td>
<td>12.45</td>
<td>125.760</td>
</tr>
<tr>
<td>MM14</td>
<td>146.492</td>
<td>35.5</td>
<td>134.612</td>
<td>8.2</td>
<td>8.11</td>
<td>140.841</td>
</tr>
<tr>
<td>MM15</td>
<td>110.963</td>
<td>41.0</td>
<td>99.805</td>
<td>5.2</td>
<td>10.06</td>
<td>111.571</td>
</tr>
<tr>
<td>MM16</td>
<td>115.744</td>
<td>60.2</td>
<td>101.328</td>
<td>22.8</td>
<td>12.46</td>
<td>113.925</td>
</tr>
<tr>
<td>MM18</td>
<td>439.606</td>
<td>68.4</td>
<td>393.428</td>
<td>619.1</td>
<td>10.50</td>
<td>444.173</td>
</tr>
</tbody>
</table>
Computational Results
Non-uniform Customer Locations
• MD outperforms the LB-based heuristic by 19.0% on average

<table>
<thead>
<tr>
<th>Identifier</th>
<th>LB Objective</th>
<th>LB Time (s)</th>
<th>MD Objective</th>
<th>MD Time (s)</th>
<th>Improvement (%)</th>
<th>VRPH</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM4</td>
<td>569.453</td>
<td>43.9</td>
<td>481.889</td>
<td>18.0</td>
<td>15.38</td>
<td>485.551</td>
</tr>
<tr>
<td>MM5</td>
<td>398.970</td>
<td>40.2</td>
<td>319.941</td>
<td>32.8</td>
<td>19.81</td>
<td>402.885</td>
</tr>
<tr>
<td>MM9</td>
<td>183.157</td>
<td>36.8</td>
<td>151.789</td>
<td>111.6</td>
<td>17.13</td>
<td>158.417</td>
</tr>
<tr>
<td>MM17</td>
<td>325.708</td>
<td>56.8</td>
<td>243.895</td>
<td>235.1</td>
<td>25.12</td>
<td>263.195</td>
</tr>
<tr>
<td>MM19</td>
<td>474.935</td>
<td>68.4</td>
<td>365.939</td>
<td>616.0</td>
<td>22.95</td>
<td>388.128</td>
</tr>
<tr>
<td>MM20</td>
<td>385.297</td>
<td>92.1</td>
<td>333.050</td>
<td>359.6</td>
<td>13.56</td>
<td>340.817</td>
</tr>
</tbody>
</table>

Conclusions

• On the 20 test problems, MD outperforms the LB-based heuristic by 13.2% on average

• In future work, we want to investigate the quality of the MD solution when applied to the service time model

• We also hope to enhance MD in order to produce even better solutions