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 Conclusions 



3 

Background 
Chinese Postman Problem (CPP) 

 Consider a graph G={V,A} where 

‣ V={vi} 

‣ A={(vi,vj) | vi, vj ∈ V, i<j} 

‣ cij = Cost of traversing arc (vi,vj) 

‣ cij = cji 

 Goal: Construct a least-cost cycle that visits all arcs in 

A at least once 
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Background 
Windy Postman Problem (WPP) 

 A variant of the Chinese Postman Problem 

 The graph is Windy, i.e., it is harder to traverse in one 

direction on an arc as opposed to the other 

 Goal: Construct a least-cost cycle that visits all arcs in 

A at least once 

 Key Difference: Costs are not symmetric 
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Background 
Levitating Plow Problem (LPP) 

 Motivates Plowing with Precedence and is used in our solution 

methodology 

 A variant of the Windy Postman Problem that incorporates four 

costs: 

‣ The cost of plowing uphill and downhill 

‣ The cost of deadheading uphill and downhill 

 The plow can deadhead at any time 

‣ When considering a street that is not plowed, the plow has the 

option to deadhead the street 

‣ Requires levitation over the snow (coming soon to a plow near 

you) 
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Background 
Methodology for the CPP, WPP and LPP 

 Key observation: If a graph is Eulerian, then an 

optimal cycle can be produced by Fleury’s Algorithm 

 Therefore, it is sufficient to convert the instance graph 

to an Eulerian graph in an optimal way 

 Possible methods 

‣ Integer programming 

‣ Add least-cost paths between odd-degree nodes 
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Background 
LPP - IP Formulation 

 Adapt IP formulation from the Windy Postman Problem 

 Essential variables: 

‣ xij = the number of times (i,j) is plowed 

‣ yij = the number of times (i,j) is deadheaded 

 Essential constraints: 

‣ Plow each street twice 

‣ Degree matching for each node 

 While the LPP is NP-hard, the IP is easily solved by 

commercial solvers 
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Literature Review 

 Arc Routing is well studied. There are many survey articles: 

‣ Assad and Golden (1995) 

‣ Eiselt et al. (1995a, 1995b) 

‣ Dror (2000) 

 Perrier et al. (2006, 2007) provide a four-part survey of winter road 

maintenance covering: 

‣ System Design 

‣ Models and Algorithms 

‣ Vehicle Routing and Depot Location 

‣ Vehicle Routing and Fleet Sizing 
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Introduction 

 Variant of the Levitating Plow Problem 

‣ Levitating plows are not real 

‣ If a plow encounters an unplowed street, it must 

plow it 

 Therefore, the option of deadhead traversal is only 

available after a street is plowed 

 Introduces the concept of precedence: the potential 

choices and associated costs of traversing a street 

depends on the preceding tour 
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Introduction 

 The concept of precedence requires a fundamentally 

different solution methodology than those used in 

WPP literature 

 An Eulerian graph yields many Eulerian cycles 

‣ Equivalent in WPP 

‣ Not equivalent in Plowing with Precedence 



11 

Introduction 

Original Instance Induced Eulerian  

Graph 

Deadhead costs = 1 

2 

10 

2 

2 2 

2 
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Introduction 

 Many Eulerian cycles: 

‣ {1,4,3,1,3,2,1} 

- Plow arc (3,1) before 

(1,3) 

- Cost = 19 

‣ {1,3,2,1,4,3,1} 

- Plow arc (1,3) before 

(3,1) 

- Cost = 11 
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Problem Statement 

 Consider a graph G={V,A} where 

‣ V={vi} 

‣ A={(vi,vj) | vi, vj ∈ V} 

‣ cij
+ = Cost of plowing arc (vi,vj) 

‣ cij
- = Cost of deadheading arc (vi,vj) 

‣ cij
+ >> cji

+ >> cij
- ≥ cji

- 

 Goal: To construct a least-cost cycle that visits all streets in A at least 

twice (once for each side of the street) and begins and ends at a depot 

(required to incorporate precedence) 

‣ Plowing each street once (as in the previous example) is easily handled 

‣ Plowing each street an arbitrary number of times is easily handled 
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Problem Statement 

 Undirected arcs allow plowing against the flow of 

traffic 

‣ Practically, streets are closed for plowing 

 Good solutions will attempt to plow downhill on both 

sides of the street 

 Allows for the possibility of: 

‣ Plowing downhill 

‣ Then deadheading uphill 

‣ Then plowing downhill 



15 

Problem Formulation 

 Requires an index t to incorporate precedence 

 Essential elements: 

‣ xijt = 1 if plow (i,j) at time t, 0 otherwise 

‣ yijt =1 if deadhead (i,j) at time t, 0 otherwise 

‣ φijt =1 if (i,j) is first plowed at time t, 0 otherwise 

 Essential constraints: 

‣ Eulerian cycle continuity (arc entering node i at time t requires arc 

leaving node i at time t+1) 

‣ Forbid deadhead on (i,j) until (i,j) or (j,i) is plowed 

 Large number of variables and constraints (~8000 and 19000 

respectively, for an instance with 10 arcs and 7 nodes) 
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Solution Methodology 
Overview 

 Construct a “solution framework” using the solution to 

Levitating Postman Problem 

‣ Solution to IP gives a number of traversals for each 

arc 

‣ Solution serves as a lower bound 

 Use solution framework to construct initial solution using 

Fleury’s Algorithm 

 Perform local search on a solution 

‣ Reinitialize and repeat local search 

 Prune a solution to obtain the final solution 
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Solution Methodology 
Solution Framework 

 Circles on graph indicate 

elevation 

 It is possible that no cycle 

will yield the objective 

function of the solution 

framework 

 Let the cost of (0,1) be 10 

and the cost of (1,0) be 2 

 Let the deadhead cost be 1 

10 

2 



18 

Solution Methodology 
Solution Framework 

10 

2 

 Solution framework seeks 

to plow downhill twice 

 Plowing uphill is 

unavoidable, hence the 

solution framework 

forbiding it is infeasible 

 Solution framework has 

objective value of 6 

 Optimal cycle (0,1,0) has 

cost 12  Solution Framework 
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Solution Methodology 
Initial Solution 

 A cycle can be produced by the solution framework 

using Fleury’s Algorithm 

 This cycle is guaranteed to traverse (and hence plow) 

each street twice 

 Not guaranteed to have a cost that is the same as the 

lower bound of the solution framework (previous 

example) 

 Seek to improve a cycle using a local search heuristic 
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Solution Methodology 
Local Search 

 We explore the set of all Eulerian cycles that obey the 

solution framework 

 Search nearby cycles to find a better one 

 Requires: 

‣ Definition of neighborhood - define nearby 

‣ Fitness function - gives the quality of a cycle 

- In our case, the fitness is the cost of the cycle 
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Solution Methodology 
Local Search 

 Solution Fitness: 

if arc has been plowed twice 

→ then don’t plow 

else if arc hasn’t been plowed at all 

→ then plow 

else if going downhill 

→ then plow 

else if cycle isn’t going downhill later 

→ then plow 

else don’t plow 

For each arc, decide to plow based on the following: 
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Solution Methodology 
Local Search 

 All Eulerian cycles can be decomposed into sub-

cycles 

 Definition of neighborhood around a solution s, N(s): 

the set of all cycles that can be obtained by a 

combination of the following moves 

‣ Sub-cycles in the cycle are permuted 

‣ Sub-cycles in the cycle are reversed 



Plowing with Precedence 
Solution Methodology - Local Search 

{1,2,3,1,2,3,4,1,3,4,1} 

{1,2,3,4,1,3,4,1,2,3,1} 

{1,2,3,4,1,3,4,1,3,2,1} 
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Solution Methodology 
Local Search 

 The number of 

permutations is large: n! 

for n cycles 

 To limit the size of the 

neighborhood, if n>4, we 

limit the set of 

permutations to 4!+n for 

linear growth 

 Most intersections have 

four or fewer cycles 
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Solution Methodology 
Reinitialization 

 Local search is deterministic and depends on the 

initial solution 

 We reinitialize to produce new initial solutions for local 

search 

 This is done by permuting cycles around different 

nodes randomly a large number of times 

 The best solution produced in 15 runs of local search 

and reinitialization is retained 
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Solution Methodology 
Pruning 

 It is possible that a cycle 

will have sub-cycles that 

have only deadhead 

moves 

 These cycles can be 

pruned to obtain a lower-

cost cycle that still plows 

each street twice 

 Pruning is done at the end 

of local search plus 

reinitialization phase 
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Solution Methodology 
Lower Bounds 

 Linear Program (LP) relaxation 

‣ Difficult to solve in a reasonable amount of time 

‣ Removed some constraints to speed up the LP 

‣ Obtained bounds are very tight 

 LPP in solution framework 

‣ Does not incorporate precedence at all 

‣ Outperforms the LP relaxation 
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Computational Results 

 We test our algorithm on 45 modified Windy Rural Postman 

Problems given in Corberan et al. (2007) 

‣ Remove Rural concept 

‣ Existing costs are interpreted as plowing costs 

‣ Randomly generate deadhead costs 

 Instances are characterized by: 

‣ Number of nodes (7 to 196) 

‣ Number of arcs (10 to 316) 

‣ Average cost deviation - average discrepancy in cost between 

plowing up and plowing down (4% to 80%) 



29 

Computational Results 

 Our IP formulation for Plowing with Precedence is large, so 

we only solve the smallest of instances (up to 9 nodes) to 

optimality with Gurobi 

 We compare the solution produced by our heuristic to the 

lower bound given by the solution framework 

‣ If the heuristic solution matches lower bound, then we 

know we have the optimal solution 

 Our heuristic performs very well 

‣ Produces the optimal solution to 24 of 45 instances 

‣ Average deviation of 0.17% from the lower bound 



30 

Computational Results 
Running Time 

 All tests were 

performed on a single 

thread of a 1.86 GHz 

Intel Core2Duo 

processor 

 Min = 0.156 seconds 

 Max = 3686 seconds 

 Average = 687 

seconds 
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Computational Results 
Improvement over Initial Solution 

 Compare final solution 

cost against the initial 

solution cost 

 1.8% average 

improvement 

 Measure percentage 

improvement vs. 

Average cost deviation 
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Computational Results 
Deviation from Lower Bound 

 Cost deviation is largest 

driving factor in deviation 

from lower bound 

 0.17% average deviation 

from the lower bound 

 Deviation from the lower 

bound increases as cost 

deviation increases 

 Want to investigate 

further 
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Computational Results 

 We selected two large instances (116 and 196 nodes) 

and constructed several new instances that: 

‣ Preserved the same graph 

‣ Average cost deviation ranged from 10% to 70% 

 Compare the effects of average cost deviation on: 

‣ Running Time 

‣ Percentage Improvement 

‣ Deviation from Lower Bound 
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Computational Results 

Instance A3101 Instance M3101 

Running Time vs. Average Cost Deviation 
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Computational Results 

Instance A3101 Instance M3101 

Percentage Improvement vs. Average Cost Deviation 



36 

Computational Results 

Instance A3101 Instance M3101 

Deviation from Lower Bound vs. Average Cost Deviation 
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Conclusions 

 Introduced the Plowing with Precedence variant of the WPP 

 Addressed the practical consideration that the choice of 

deadheading a street is only available after plowing 

 Introduced the concept of precedence to postman problems 

 Our heuristic generated very good results, with solutions that 

are, on average, within 0.17% of the lower bound for instances 

derived from those in the literature, and 0.49% for all instances 

‣ Many solutions are optimal 

 Observed increases in running time, percentage improvement, 

and deviation from the lower bound as the average cost 

deviation increased 
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Conclusions 

 Future work 

‣ Improve lower bound for large problems 

‣ Improve upper bound 

‣ Generalize the concept of precedence: Let the 

possible choices and costs of traversal be a more 

general function of the number of times traversed 

‣ Add multiple plows: When one snow plow clears a 

street, other plows are able to deadhead that street 


