Plowing with Precedence

A Variant of the Windy Postman Problem
April 22, 2012 - POMS 2012

Benjamin Dussault, Bruce Golden, Chris Groer, and Edward Wasil

Overview

i

Background

» The Chinese Postman Problem and the Windy Postman Problem
» The Levitating Plow Problem

_iterature Review

ntroduction

Problem Statement

Problem Formulation
Solution Methodology
Results

Conclusions

Background
Chinese Postman Problem (CPP)

Consider a graph G={V,A} where
» V={vi}
 A={(ViVi) | Vi v E V<))
» Cjj = Cost of traversing arc (vi,Vj)
» Cij = Cji

¢+ Goal: Construct a least-cost cycle that visits all arcs In
A at least once

Background
Windy Postman Problem (WPP)

+ A variant of the Chinese Postman Problem

¢+ The graph is Windy, I.e., It IS harder to traverse In one
direction on an arc as opposed to the other

¢+ Goal: Construct a least-cost cycle that visits all arcs In
A at least once

¢+ Key Difference: Costs are not symmetric

Background
Levitating Plow Problem (LPP)

¢+ Motivates Plowing with Precedence and is used in our solution
methodology

¢ A variant of the Windy Postman Problem that incorporates four
COStS:

» The cost of plowing uphill and downhill

»The cost of deadheading uphill and downhill

¢+ The plow can deadhead at any time

» When considering a street that is not plowed, the plow has the
option to deadhead the street

» Requires levitation over the snow (coming soon to a plow near
you)

Background
Methodology for the CPP, WPP and LPP

¢+ Key observation: If a graph is Eulerian, then an
optimal cycle can be produced by Fleury’'s Algorithm

¢ Therefore, It Is sufficient to convert the instance graph
to an Eulerian graph in an optimal way

Possible methods
» |nteger programming

» Add least-cost paths between odd-degree nodes

Background
LPP - IP Formulation

¢ Adapt IP formulation from the Windy Postman Problem

¢+ Essential variables:

» Xij = the number of times (1,]) is plowed

» Vi = the number of times (1,]) Is deadheaded
¢+ Essential constraints:

» Plow each street twice

» Degree matching for each node

+ While the LPP is NP-hard, the IP Is easily solved by
commercial solvers

L iterature Review

¢ Arc Routing is well studied. There are many survey articles:
» Assad and Golden (1995)
» Elselt et al. (1995a, 1995b)
» Dror (2000)

¢+ Perrier et al. (2006, 2007) provide a four-part survey of winter road
maintenance covering:

» System Design

» Models and Algorithms

» Vehicle Routing and Depot Location

» Vehicle Routing and Fleet Sizing

Introduction

¢ Variant of the Levitating Plow Problem
» Levitating plows are not real

» |t a plow encounters an unplowed street, it must
plow it

¢ Therefore, the option of deadhead traversal is only
avallable after a street is plowed

¢ Introduces the concept of precedence: the potential
choices and associated costs of traversing a street
depends on the preceding tour

Introduction

¥ The concept of precedence requires a fundamentally
different solution methodology than those used In
WPP literature

+ An Eulerian graph yields many Eulerian cycles
» Equivalent in WPP

» Not equivalent in Plowing with Precedence

10

Introduction

Deadhead costs = 1

Original Instance

Induced Eulerian
Graph

11

Introduction

¢ Many Eulerian cycles:
» {1,4,3,1,3,2,1}

- Plow arc (3,1) before
(1,3)

- Cost=19
»{1,3,2,1,4,3,1}

- Plow arc (1,3) before
(3.1)

- Cost=11

12

Problem Statement

¢ Consider a graph G={V,A} where
» V={vi}
» A={(vi,V)) | vi, vj € V}
» Cjj" = Cost of plowing arc (vi,Vj)
» Cii = Cost of deadheading arc (Vi,Vj)
» Cijit >>Cjit >> Cij 2 Cjir

¢+ Goal: To construct a least-cost cycle that visits all streets in A at least
twice (once for each side of the street) and begins and ends at a depot
(required to incorporate precedence)

» Plowing each street once (as in the previous example) is easily handled

» Plowing each street an arbitrary number of times is easily handled

13

Problem Statement

¢ Undirected arcs allow plowing against the flow of
ig=tife

» Practically, streets are closed for plowing

¢ Good solutions will attempt to plow downhill on both
sides of the street

¢ Allows for the possibility of:
» Plowing downhill
» Then deadheading uphill

» Then plowing downhill

14

Problem Formulation

+ Requires an index t to incorporate precedence
¢+ Essential elements:
» Xijt = 1 1f plow (1,]) at time t, O otherwise
» Vit =1 If deadhead (i,)) at time t, O otherwise
»iit =1 1f (1)) Is first plowed at time t, 0 otherwise
¢+ Essential constraints:

» Eulerian cycle continuity (arc entering node i at time t requires arc
leaving node | at time t+1)

» Forbid deadhead on (1,)) until (i,}) or (J,i) Is plowed

¢+ Large number of variables and constraints (~8000 and 19000
respectively, for an instance with 10 arcs and 7 nodes)

15

Solution Methodology

Overview

¢ Construct a “solution framework™ using the solution to
Levitating Postman Problem

» Solution to IP gives a number of traversals for each
arc

» Solution serves as a lower bound

¢ Use solution framework to construct initial solution using
Fleury’'s Algorithm

+ Perform local search on a solution
» Reinitialize and repeat local search

Prune a solution to obtain the final solution

16

Solution Methodology

Solution Framework

¢ Circles on graph indicate
elevation

¢ It Is possible that no cycle
will yield the objective
function of the solution
framework

¢+ Let the cost of (0,1) be 10
and the cost of (1,0) be 2

+ Let the deadhead cost be 1

17

Solution Methodology

Solution Framework

#+ Solution framework seeks
to plow downhill twice

¢ Plowing uphill is
unavoidable, hence the
solution framework
forbiding it Is infeasible

+ Solution framework has
objective value of 6

¢ Optimal cycle (0,1,0) has
cost 12

Deadhead |:{>

P I 0 W ~*\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\‘

Solution Framework

18

Solution Methodology

Initial Solution

¢ A cycle can be produced by the solution framework
using Fleury’s Algorithm

¢ This cycle Is guaranteed to traverse (and hence plow)
each street twice

+ Not guaranteed to have a cost that Is the same as the
lower bound of the solution framework (previous
example)

¢+ Seek to Improve a cycle using a local search heuristic

19

Solution Methodology

Local Search

+ We explore the set of all Eulerian cycles that obey the
solution framework

¢+ Search nearby cycles to find a better one
¢+ Requires:
» Definition of neighborhood - define nearby
» FItness function - gives the quality of a cycle

- In our case, the fitness is the cost of the cycle

20

Solution Methodology

Local Search

+ Solution Fithess:

For each arc, decide to plow based on the following:

If arc has been plowed twice

— then don’t plow

else if arc hasn’t been plowed at all
— then plow

else if going downhill

— then plow

else If cycle isn’t going downhill later
— then plow

else don’t plow

21

Solution Methodology

Local Search

¢ All Eulerian cycles can be decomposed into sub-
cycles

¢ Definition of neighborhood around a solution s, N(S):
the set of all cycles that can be obtained by a
combination of the following moves

» Sub-cycles In the cycle are permuted

» Sub-cycles In the cycle are reversed

22

Plowing with Precedence
Solution Methodology - Local Search

{1,2,3,14,2,3,4,1,3,4,1}

{1,2,3,4,1,3,4,1,2,3,1}

|

{1,2,3,4,1,3,4,1,3,2,1}

Solution Methodology

Local Search

¢ The number of From Depot
permutations Is large: n!
for n cycles

¢ To limit the size of the To Depot

neighborhood, if n>4, we
Imit the set of
permutations to 4!+n for
iInear growth

+ Most intersections have
four or fewer cycles

24

Solution Methodology

Reinitialization

¢+ Local search Is deterministic and depends on the
Initial solution

+ We reinitialize to produce new: initial solutions for local
search

¢ This Is done by permuting cycles around different
nodes randomly a large number of times

¢ The best solution produced in 15 runs of local search
and reinitialization Is retained

25

Solution Methodology

Pruning

¢ It Is possible that a cycle
will have sub-cycles that
have only deadhead
moves

¢+ These cycles can be
pruned to obtain a lower-
cost cycle that still plows
each street twice

¢ Pruning is done at the end
of local search plus
reinitialization phase

26

Solution Methodology

Lower Bounds

¢ Linear Program (LP) relaxation
» Difficult to solve In a reasonable amount of time
» Removed some constraints to speed up the LP
» Obtained bounds are very tight

¢ LPP In solution framework
» Does not incorporate precedence at all

» Outperforms the LP relaxation

27

Computational Results

¢ We test our algorithm on 45 modified Windy Rural Postman
Problems given in Corberan et al. (2007)

» Remove Rural concept
» EXisting costs are interpreted as plowing costs
» Randomly generate deadhead costs
¢ Instances are characterized by:
» Number of nodes (7 to 196)
» Number of arcs (10 to 316)

» Average cost deviation - average discrepancy in cost between
plowing up and plowing down (4% to 80%)

28

Computational Results

¢+ Our IP formulation for Plowing with Precedence iIs large, so
we only solve the smallest of instances (up to 9 nodes) to
optimality with Gurobi

¢ We compare the solution produced by our heuristic to the
lower bound given by the solution framework

»|f the heuristic solution matches lower bound, then we
know we have the optimal solution

%« Our heuristic

» Produces t

performs very well

ne optimal solution to 24 of 45 instances

» Average deviation of 0.17% from the lower bound

29

Computational Results
Running Time

¢+ All tests were
performed on a single
thread of a 1.86 GHz
Intel Core2Duo
pProcessor

+ Min = 0.156 seconds
Max = 3686 seconds

¢ Average = 6387
seconds

30

Computational Results
Improvement over Initial Solution

¢ Compare final solution
cost against the initial
solution cost

+ 1.8% average
Improvement

+ Measure percentage
Improvement vs.
Average cost deviation

31

Computational Results
Deviation from Lower Bound

¢+ Cost deviation Is largest
driving factor in deviation
from lower bound

+ 0.17% average deviation
from the lower bound

I{I‘: DeViation from the Iower . ‘t)OD"OfU‘(&L‘\;Uf/%VdUX%mﬁ €0.00% 70.00%
bound INncreases as cost
deviation Increases

Cost Deviation

¢ Want to investigate
further

80.00% 90.00%

32

Computational Results

+ We selected two large instances (116 and 196 nodes)
and constructed several new instances that:

» Preserved the same graph

» Average cost deviation ranged from 10% to 70%
¢ Compare the effects of average cost deviation on:

» Running Time

» Percentage Improvement

» Deviation from Lower Bound

33

Computational Results

Running Time vs. Average Cost Deviation

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 0.00% 20.00% 30.00% 40.00% 50.00% 60.00%
Cost Deviation Cost Deviation

Instance A3101 Instance M3101

70.00%%

34

Computational Results

Percentage Improvement vs. Average Cost Deviation

10.00% 7.00%

9.00%
6.00%
8.00%

7.00% 5.00%

s 4.00%
5.00%

4.00% 3.00%

3.00% 2.00%

2.00%

o
e
3
-3
v
"
=
‘€
o
&
>
[
.
g
&
s
&
E

Improvement over Initial Solution

1.00%
0.00% * 0.00% v
0.00% 10.00% 2000% 30.00% 4000% 5000% 60.00% 70.00% 0.00% 10.00% 2000% 30.00% 40.00% 50.00% 60.00% 70.00%

Cost Deviation Cost Deviation

1.00%

Instance A3101 Instance M3101

35

Computational Results

Deviation from Lower Bound vs. Average Cost Deviatior

w
o
o
o

w
[~
R 3

)
c
(=
=

—
w
o
oL

—
[=
(=
o

E
3 -
=
b
g.
—
E
4
e
&
£
E

Deviation from Lower Bound
= : s

w
o
F3

PN ‘v‘,
v

¢) T
@ ®

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00%%

o
(=
(=

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00%%

Cost Deviation Cost Deviation

Instance A3101 Instance M3101

36

Conclusions

i

i

Introduced the Plowing with Precedence variant of the WPP

Addressed the practical consideration that the choice of
deadheading a street is only available after plowing

Introduced the concept of precedence to postman problems

Our heuristic generated very good results, with solutions that
are, on average, within 0.17% of the lower bound for instances
derived from those In the literature, and 0.49% for all instances

» - Many solutions are optimal

Observed increases in running time, percentage improvement,
and deviation from the lower bound as the average cost
deviation increased

37

Conclusions

Future work

>

>

Improve lower bound for large problems

Improve upper bound

Generalize the concept of precedence: Let the
possible choices and costs of traversal be a more
general function of the number of times traversed

Add multiple plows: When one snow plow clears a
street, other plows are able to deadhead that street

38

