Probabilistic Arc Routing Problem

by

Si Chen, Murray State University
Bruce Golden, University of Maryland
Richard Wong, United Parcel Service
Hongsheng Zhong, United Parcel Service

INFORMS Annual Meeting, Seattle
November 2007
Outline

• Motivation

• Arc Routing Problem with Probability

• Proposed Solution Methods

• Computational Results

• Conclusion
• The rectangle represents a Service Territory serviced by four drivers.

• They are encouraged to follow a Master Route which defines a sequence of street segments.
Benefits of Using Master Route

- Maintain the **consistency** of the routes
 - Each service provider serves roughly the same geographical area each day
 - Provide service at approximately the same time each day

- Improve the **efficiency** of delivery
 - Load packages into package cars in accordance with the pre-determined sequence
Problem Description: DARP

- The deterministic arc routing problem (DARP)
 - Given a service territory consisting of street segments
 - Construct the master route that traverses all the streets with the minimum length
 - On a particular day skip customers that do not require services
Street Segment Presence Probability

- Street segment presence probability

 - the probability that a street segment requires at least one stop during a given time period

 - high variability is observed from real-world industrial data

- Failure to address the variability due to street segment presence probability may cause inefficiency
• 7 street segments
• **B** has a small presence probability
Master Route (MR) 1 and 2 have the same length
On a particular day, B does not require a service.

Apparently, Route 1 is better than Route 2.
Street Segment Presence Probability

Red: [0, 0.2]
Blue: (0.2, 0.6]
Orange: (0.6, 1]
DARP Master Route
Probabilistic Master Route
Streets that need to be visited on a particular day
The Route Generated From DARP Master Route
The Route Generated From Probabilistic Master Route
Study ARP in a Probabilistic Context

- Two approaches that take into account the uncertainty in street segment presence
 - The probabilistic arc routing problem (PARP)
 - The multi-period arc routing problem (MARP)
Problem Description: PARP

- The probabilistic arc routing problem (PARP)
 - Given a service territory consisting of street segments

- Construct a master route that traverses all the street segments with the minimum expected length
Problem Description: MARP

- The Multi-period arc routing problem (MARP)
 - Given
 - a service territory consisting of street segments
 - a set of time periods (days)
 - a set of street segments that need to be serviced on each day
 - Construct a master route that traverses all the street segments with the minimum average length over all of the days
Solution Approach

- The procedure for DARP is provided by the small-package delivery company.

- We propose:
 - A Probabilistic Local Search Procedure for PARP
 - A Multi-Period Evaluation Procedure for MARP

- Both procedures utilize local search routines:
 - 1-Shift and 2-OPT
Original Master Route
1-Shift
2-OPT
Probabilistic Local Search Procedure

- Use the DARP master route as Initial Solution

- Apply 1-Shift and 2-OPT

- Use the *expected* length to evaluate each local search movement
Multi-period Evaluation Procedure

- Use the DARP master route as the initial solution

- Apply 1-Shift and 2-OPT

- Use the *average* length over all of the days to evaluate each local search movement
Computational Experiments

- Compare the performances of the master route from DARP, PARP, and MARP over
 - deterministic length
 - expected length
 - average length

- Test problems include industrial data and computer generated data (not reported here due to the length of the presentation)

- We use VC++ 6.0 and a PC with Pentium IV 2 GHz and 1.24G RAM
<table>
<thead>
<tr>
<th>Index</th>
<th># of Street Segments</th>
<th># of days</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>235</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>228</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>226</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>169</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>147</td>
<td>30</td>
</tr>
</tbody>
</table>
Running Time Comparison I

<table>
<thead>
<tr>
<th>Index</th>
<th>PARP (sec)</th>
<th>MARP (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13553</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>11818</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>11482</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>2761</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>1567</td>
<td>3</td>
</tr>
</tbody>
</table>
Deterministic Length Comparison I

<table>
<thead>
<tr>
<th>Index</th>
<th>DARP Master Route</th>
<th>PARP Master Route</th>
<th>MARP Master Route</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1.1042</td>
<td>1.1206</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1.1873</td>
<td>1.2045</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1.1611</td>
<td>1.0869</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1.0852</td>
<td>1.0585</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1.1427</td>
<td>1.1448</td>
</tr>
</tbody>
</table>
Expected Length Comparison I

<table>
<thead>
<tr>
<th>Index</th>
<th>DARP Master Route</th>
<th>PARP Master Route</th>
<th>MARP Master Route</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.9783</td>
<td>0.9841</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.9502</td>
<td>0.9522</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0.9768</td>
<td>0.9817</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0.9883</td>
<td>0.9888</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.9831</td>
<td>0.9885</td>
</tr>
</tbody>
</table>
Average Length Comparison I

<table>
<thead>
<tr>
<th>Index</th>
<th>DARP Master Route</th>
<th>PARP Master Route</th>
<th>MARP Master Route</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.9795</td>
<td>0.9810</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.9577</td>
<td>0.9455</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0.9799</td>
<td>0.9753</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0.9925</td>
<td>0.9876</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.9892</td>
<td>0.9754</td>
</tr>
</tbody>
</table>
Conclusion

- Studied the arc routing models for small package local routing

- PARP and MARP address the variability due to street segment presence probability

- Propose a probabilistic local search procedure and a multi-period evaluation procedure

- Computational results demonstrate savings in mileages