Homework #6 Solutions

P26.18

a) Find the equivalent resistance of

\[R \quad \frac{R}{R} \quad \frac{R}{3R} \quad \frac{R}{R} \]

Last three add in series \(R' = 3R \)

These add in parallel to give

\[\frac{1}{R''} = \frac{1}{R} + \frac{1}{R'} = \frac{R + R'}{RR'} \]

\[R'' = \frac{RR'}{R + R'} = \frac{3R^2}{4R} = \frac{3}{4}R \]

with \(R''' = R'' + \frac{2}{3}R \)

\[= 2 \frac{3}{4}R \]

\[\frac{1}{R'''} = \frac{1}{R} + \frac{1}{R''} = \frac{R'''' + R}{RR'''} \]

\[R'''' = \frac{RR'''}{R + R'''} = \frac{R^2 \cdot 2 \frac{3}{4}}{3 \frac{3}{4}R} = \frac{11}{15}R \]

\[R_{\text{tot}} = 2R + R'''' = 2 \frac{11}{15}R \]
6) Find current in three resistors if the circuit is connected to a 50 V source.

Know the total current in the circuit.

\[I = \frac{E}{2 \frac{11}{15} R} = \frac{50 V}{\frac{41}{15} 125 R} = 0.146 A \]

From earlier have

\[R''' = 2 \frac{3}{4} R = 2.75 R \]

Have \(I = I_1 + I_2 \)

Also know that

\[I_1 R = I_2 R''' \]

From the loop rule so

\[I = I_1 + I_1 \frac{R}{R'''} \]

\[I_1 = \frac{I}{1 + \frac{R}{R''}} = \frac{0.146 A}{1 + \frac{1}{2.75}} = 0.107 A \]

Find currents in each resistor

\[E_1 = 58 V \]
\[E_2 = 3 V \]
\[R_1 = 120 \Omega \]
\[R_2 = 82 \Omega \]
\[R_3 = 64 \Omega \]
\[R_4 = 25 \Omega \]
\[R_5 = 110 \Omega \]
Use loop rule around two loops:

Left loop: \[E_1 - I_1 R_1 - I_1 R_2 - I_3 R_3 = 0 \]

Right loop: \[E_2 - I_2 R_4 + I_3 R_3 - I_2 R_5 = 0 \]

Pot rule: \[I_2 + I_3 = I_1 \]

Get ride of \(I_3 \) using pot rule

1. \[E_1 - I_1 R_1 - I_1 R_2 - R_3 (I_1 - I_2) = 0 \]
 \[E_1 - I_1 (R_1 + R_2 + R_3) + I_2 R_3 = 0 \]

2. \[E_2 - I_2 R_4 - I_2 R_5 + R_3 (I_1 - I_2) = 0 \]
 \[E_2 - I_2 (R_4 + R_5 + R_3) + R_3 I_1 = 0 \]

Combining 1 and 2

\[E_1 - I_1 (R_1 + R_2 + R_3) + R_3 \left[\frac{E_2 + R_3 I_1}{R_4 + R_5 + R_3} \right] = 0 \]

\[I_1 = \frac{E_1 + E_2}{R_4 + R_5 + R_3} \frac{R_3}{R_1 + R_2 + R_3 - \frac{R_3^2}{R_4 + R_5 + R_3}} \]
\[I_1 = \varepsilon_1 + \varepsilon_2 \frac{64}{25 + 110 + 64} \]

\[= \varepsilon_1 + \varepsilon_2 \frac{64}{199} \]

\[\times \left(266 - \frac{64^2}{199} \right) \]

\[\approx 58 + 3(0.646) \quad A = 0.244 \text{A} \]

Use (1) or (2) to calculate \(I_2 \) and pt. rule to calculate \(I_3 \).

P 26.50

Calculate the time constant

\[\text{a)} \quad \begin{array}{c}
\begin{aligned}
E & \xrightarrow{R_1} I_1 \\
R_2 & \xrightarrow{I_2} \frac{Q}{C} \xrightarrow{-} Q
\end{aligned}
\end{array} \]

\[\frac{dQ}{dt} = I_c \]

Left loop: \(E - I_1 R_1 - I_2 R_2 = 0 \)

Right loop: \(-\frac{Q}{C} + I_2 R_2 = 0 \quad \Rightarrow I_2 = \frac{Q}{R_2 C} \)

Pt. rule: \(I_1 = I_c + I_2 \)

Want to eliminate \(I_1, I_2 \) so have eqn for \(Q \) and \(I_c = \frac{dQ}{dt} \)

\[I_1 = \left(E - \frac{Q}{C} \right) \frac{1}{R_1} \]

\[(E - \frac{Q}{C}) \frac{1}{R_1} = \frac{dQ}{dt} + \frac{1}{R_2 C} Q \]
\[
\frac{dQ}{dt} + Q \left(\frac{1}{R_2C} + \frac{1}{R_1C} \right) = \frac{\varepsilon}{R_1}
\]

Time constant

\[
\frac{1}{\tau} = \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \frac{1}{C}
\]

\[
\tau = \frac{R_1R_2C}{R_1 + R_2}
\]

b) max. change on cap.?

At late time \(\frac{dQ}{dt} = 0\)

\[
\Rightarrow Q = \frac{\varepsilon C}{R_1} \frac{R_1R_2}{R_1 + R_2}
\]

P26.90

When voltage on \(C\) reaches 90 V, it immediately discharges to 65 V and then begins to recharge. Acts like a standard RC circuit until the discharge. From book

\[
V_C = \varepsilon \left(1 - e^{-t/\tau} \right)
\]

Time to reach 90 V
\[q_0 = 100(1 - e^{-\frac{t_{90}}{RC}}) \]

\[e^{\frac{t_{90}}{RC}} = \frac{1}{10} \quad \frac{t_{90}}{RC} = \ln(10) \]

\[t_{90} = 0.1326 \ln(10) = 0.3045 \text{s} \]

Time to reach 65 V is given by

\[\frac{65}{100} = 100\left(1 - e^{-\frac{t_{65}}{RC}}\right) \]

\[e^{\frac{t_{65}}{RC}} = \frac{35}{100} \]

\[t_{65} = RC \ln(\frac{100}{35}) = 0.139 \text{s} \]

Time to go from 65 V to 90V is

\[t_{90} - t_{65} = 0.1655 \text{s} \]

Note: takes essentially no time to go back to 65 from 90 since bulb has essentially zero resistance.

P27.12 Calculate force on loop with diverging B

Only downward force survives by symmetry

\[dF_y = I dB \sin \theta \]
\[F_y = IBr \sin \theta \quad Sd \ell = IBr \sin \theta \cdot 2\pi r \]

\[\tan \theta = \frac{r}{d}, \quad \sin \theta = \frac{r}{\sqrt{r^2 + d^2}} \]

\[F_y = IB \frac{2\pi r^2}{(r^2 + d^2)^{\frac{3}{2}}} \]

P 27.16
Force on a negative charge

\[\mathbf{F}_n = q \mathbf{n} \times \mathbf{B} \]

\[\text{a)} \quad \mathbf{F}_n \quad \text{b)} \quad \mathbf{F}_n \quad \text{c)} \]

\[\text{d)} \quad \mathbf{B} \quad \mathbf{n} \quad \mathbf{E}_n \quad \text{e)} \quad \mathbf{F} \quad \mathbf{n} = 0 \]

Q 26.6
Given two light bulbs and two batteries. Arrange to get max power to bulbs.

Each bulb has a potential of 2\(\mathcal{E} \).
Q 27.3

\[F = I \frac{\ell}{m} \times B \]

\(\ell \) is in along \(I \) and \(B \) is to the right.

Force is down.

P 27.11

Show that the force is the same as that on a straight wire from \(a \) to \(b \).

Choose coordinates with \(x \) from \(a \) to \(b \) and \(y \perp \) to the line from \(a \) to \(b \).

\[dF = I \frac{dx}{m} \times B \]

Let \(dx = dx \hat{\mathbf{i}} + dy \hat{\mathbf{j}} \)

\[dF = I \left(dx \hat{\mathbf{i}} + dy \hat{\mathbf{j}} \right) \times B(-k) \]

\[= I B \left(- \hat{\mathbf{k}} \times \hat{\mathbf{i}} dx - \hat{\mathbf{k}} \times \hat{\mathbf{j}} dy \right) \]

\[= I B \left(dx \hat{\mathbf{j}} - dy \hat{\mathbf{i}} \right) \]

Integrate from \(a \) to \(b \).

\[F = I B \int_{a}^{b} \left(\int dy - \int dx \right) \]

\[F = I B \int_{a}^{b} \left(b - a \right) \]

same as straight wire.