Calculate magnetic flux through the loop.

\[B = \frac{\mu_0 I}{2\pi r} \]

\[\Rightarrow B \text{ varies with } r \text{ so consider the slice shown.} \]

Flux through slice \(d\Phi = B d\alpha \)

\[d\Phi = \frac{\mu_0 I a}{2\pi r} \frac{a}{b} dr \]

\[\Phi = \frac{\mu_0 I a}{2\pi} \ln \left(\frac{b + a}{b} \right) \]

For path around loop shown:

\[E = - \frac{\mu_0 a}{2\pi} \ln \left(\frac{b + a}{b} \right) \frac{dI}{dt} \]

\[= - \frac{2 \times 10^{-7} \, T \cdot m}{A} \times 0.12 \, m \ln \left(\frac{22}{15} \right) \frac{2500 \cos(2500t)}{s} \]

\[= - 2.4 \times (1.5) \times 10^{-4} \frac{A}{m} \ln \left(\frac{22}{15} \right) \times \frac{V}{A} \times \frac{2500 \cos(2500t)}{s} \]

\[E = - 3.5 \times 10^{-5} \cos(2500t) \, V \]
\[V(t) = 0 \text{ at } t = 0 \]
\[F = I B L \times B \]
\[\Rightarrow \text{ to right} \]
\[F = I L B \]

a) For constant \(I \), \(F \) is a constant so
\[a = \frac{I L B}{m} \]
\[V(t) = \frac{I L B}{m} t \]

b) For constant \(E \), there will be a back emf \(E_b \) that will oppose the increased magnetic flux through the loop. This will oppose \(E \) and therefore reduce the current.
\[\Delta E = - \frac{d}{dt} (BA) = -B \frac{dA}{dt} \]
\[= -B L V \]
\[E + \Delta E - IR = 0 \Rightarrow \text{loop rule} \]
\[I = \frac{E - B L V}{R} \]

\[m \frac{dv}{dt} = F = L B \left(\frac{E - B L V}{R} \right) \Rightarrow \text{terminal speed} \]
\[\frac{dv}{dt} + \frac{B^2 L^2}{m R} V = \frac{L B}{R m} E \]
\[\text{characteristic time:} \quad \frac{m R}{B^2 L^2} \]
\[
\frac{dv}{dt} + \frac{v}{\gamma} = \frac{v_T}{\gamma}
\]

\[
v = \frac{v_T - v}{\gamma} \frac{d}{dt}
\]

\[
\int_0^v \frac{dv}{v_T - v} = \int_0^t \frac{dt}{\gamma} = \frac{t}{\gamma}
\]

\[- \ln (v_T - v) \bigg|^v_0 = \frac{t}{\gamma}
\]

\[
\frac{v_T - v}{v_T} = e^{-\frac{t}{\gamma}}
\]

\[
v(t) = v_T \left(1 - e^{-\frac{t}{\gamma}} \right)
\]

(c) terminal speed: \(v_T = \frac{e}{B} \)

P29, 40

Circular coil rotates at 120 rev/s = \(\omega \) and has 250 loops, in a \(B = 0.45 \) T field. RMS output? \(R = 5 \) cm

\[
E = -\frac{d}{dt} \int_B B \cdot d\mathbf{A} = -\frac{d}{dt} B R A \cos \theta
\]

\[
\theta = \omega t = 2\pi f t
\]

\[
E = +BR^2 A R^2 \sin(\omega t) 2\pi f
\]

\[
E_{me} = \left< E^2 \right> = B^2 R^2 \frac{1}{2\pi} \left< \sin^2 \omega t \right> = \frac{BR^2 E^2}{12}
\]
\[E_{rms} = \frac{0.45}{1.2} \frac{T}{\text{m}^2} \frac{(20)^2}{5} \frac{2\pi^2}{12} \]

\[I_T = \frac{N}{Am} \]

\[\frac{Tm^2}{s} = \frac{N m^2}{Am^2} = \frac{T}{Q} = \mathcal{V} \]

\[E_{rms} = 0.6 \frac{1.2}{6} \frac{2\pi^2}{12} \mathcal{A} = 1.88 \mathcal{V} \]

\[P = 29.64 \]

\[\text{Change at } x = 0.1m \]

\[Q = 0.1 \mu C \]

\[B \text{ decreases with } \]

\[\frac{dB}{dt} = -0.1 T/s \]

Electric field lines are circles in clockwise direction.

\[\oint E \cdot dl = E 2\pi r = -\pi r^2 \frac{dB}{dt} \]

\[E = -\frac{r}{2} \frac{dB}{dt} \]

\[F = -Q \frac{r}{2} \frac{dB}{dt} \]

\[\frac{GTm}{s} = \frac{Q N m}{Am^2} = N \]

\[F = 10^{-9} N \]
The orbiting electrons maintain their circular orbit by an inward radial force

\[F = -e \frac{ve \times B}{m} \]

The changing \(B \) produces a circular \(E \) that is clockwise to accelerate the clockwise circling electrons.

b) Electrons move clockwise so \(E \) is radially inward counterclockwise.

c) Want \(E \) clockwise. If \(B \) increases, \(E \) will be counterclockwise \(\Rightarrow \) Lenz's law.

d) \(B \)

Take \(B \) positive inward. Want \(B \) positive and increasing.

\(\Rightarrow \) only first quarter of cycle.
Consider electrons on a thin strip as shown. They move with velocity $v = \omega r$ across B

They will experience an outward force $F = e\omega r B$

Total work done from $r = 0$ to $r = R$

$$\mathcal{W} = e\omega B \int_0^R r \, dr = e\omega B \frac{R^2}{2}$$

This is equal to \mathcal{E}

$$\Rightarrow \mathcal{E} = \frac{e\omega R^2}{2} B$$

Problem 29.76

Cylindrical inductor $N = 2000$ turns

$R = 1.25 \text{ cm}$

$L = 21.7 \text{ cm}$

$E \times 10^{-4}$

$$L = \frac{\mu_0 N^2 A}{L} = 4\pi \times 10^{-7} \frac{Tm^2}{A} \frac{(2.8)^2}{10 \pi (1.25)^2 m^2} \cdot 21.7 m$$

$$\frac{Tm^2}{A} = \frac{N}{Am} \frac{m^2}{A} = \frac{J}{A^2} = H$$

$$L = 4\pi^2 (2.8)^2 (1.25)^2 \times 10^{-5} H = 2.2 \times 10^{-2} H$$
A toroid with a rectangular cross section. What is the self-inductance?

For the current shown, \(B \) will be counted clockwise. Use Ampere's law along path shown:

\[
\oint B \cdot dl = B \cdot 2\pi v = I_{\text{tor}} M_0
\]

\[
B = \frac{N I M_0}{2\pi v}
\]

\[
L = \frac{N M_0}{I}
\]

\[
\Phi = \oint B \cdot dl = \frac{N I M_0 h}{2\pi v}
\]

\[
\Phi = \frac{N I M_0 h}{2\pi} \int_{v_1}^{v_2} \frac{dv}{v} = \frac{N I M_0 h}{2\pi} \ln \left(\frac{v_2}{v_1} \right)
\]

\[
L = \frac{N^2 I^2 M_0 h}{2\pi} \ln \left(\frac{v_2}{v_1} \right)
\]