1. (a) (20 points) Evaluate

\[\int_{-\infty}^{\infty} dz \frac{\sin^2 z}{z^2} \]

Hint: \(\sin^2 z = (1 - \cos(2z))/2 \)

(b) (20 points) Evaluate

\[\int_{C} dz \frac{1}{z^{3/2}(z^2 + a^2)} \]

with the contour \(C \) given by

with \(a \) real and positive. The contour lies very close to the cut.

2. (30 points) Consider the following integral

\[Q_\nu(z) = \int_{C} dt e^{zt} t^\nu \]

with \(-\pi < \text{Arg}(t) < \pi\), where \(\nu \) is a real, positive number and the contour \(C \) given by

10 (a) For what values of complex \(z \) is the integral defined?

20 (b) Evaluate \(Q_\nu(re^{-it}) \) with \(r \) real and positive by analytic continuation. Express your answer in terms of \(Q_\nu(r) \).
3. (30 points) An integral representation for the Airy function is given by

\[A_i(z) = \int_C \kappa e^{ik\kappa} e^{i\kappa^3/3} \]

with \(C \) given by

Take \(z \) to be large, real and positive.

(i) (a) Indicate where the integrand is large and small in the \(k \) plane.

(ii) (b) Find the location of the saddle points and indicate the directions of the PSDs.

(iii) (c) Evaluate \(A_i(z) \).