1. (50 points) An electromagnetic wave of frequency ω is normally incident on an infinite conducting surface located at $z = 0$ (see the figure above). Assume that $\mathbf{J} = \sigma \mathbf{E}$ inside of the conductor, where σ is a known constant.

(a) Starting from Maxwell's equations calculate the dispersion relation for the electromagnetic wave in the vacuum region and in the conductor. Assume large but finite conductivity σ to simplify the latter.

(b) What are the boundary conditions on the fields at the conducting surface?

(c) Calculate the complex amplitude of the transmitted and reflected waves ($k_0 \sigma \ll 1$).

(d) Calculate the Poynting vector \mathbf{S} of the incident wave, reflected wave and transmitted wave at the boundary ($z = 0$). What fraction of the energy flux is transmitted into the conductor? What happens to this energy?

2. (50 points) An infinite cylindrical rod (radius a) of magnetically permeable material μ is placed in an external magnetic field $\mathbf{B} = B_0 \mathbf{\hat{x}}$.

(a) Sketch the magnetic field lines for the case $\mu \gg \mu_0$.

(b) What are the conditions that must be satisfied by \mathbf{B} and \mathbf{H} at the boundary?

(c) Calculate \mathbf{B} and \mathbf{M} everywhere for $\rho < a$.

(d) If the cylinder has a finite length $L \gg a$, where would the solutions in (c) be valid? How would the magnetic field produced by the cylinder fall off at distances large compared with L? Derive an expression for the magnetic...
field produced by the cylinder that is valid at distances large compared with L.

Hint: the solution can be written in terms of the magnetic potential ϕ_m which can be obtained as an integral that can be evaluated. You don't have to evaluate B explicitly but make sure that you have an expression from which it can be easily evaluated.
a) calculate dispersion relation for conduction

\[\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \varepsilon_0 \varepsilon \frac{\partial \mathbf{E}}{\partial t} = \mu_0 \varepsilon \mathbf{E} \]

\[\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0 \]

\[\nabla \times \nabla \times \mathbf{E} = -\nabla (\nabla \cdot \mathbf{E}) = -\nabla \cdot \nabla \mathbf{E} + \nabla^2 \mathbf{E} = \varepsilon_0 \varepsilon \mathbf{E} \]

\[+ k^2 = \mu_0 \varepsilon (\omega^2 + i\omega) \]

\[k = \frac{\mu_0 \omega}{\varepsilon} (1+c) \equiv \frac{1}{\varepsilon} (1+i) \]

\[\nabla \times \mathbf{B} = \nabla \times \mathbf{E} = \varepsilon_0 \varepsilon \mathbf{E} \]

\[k^2 = \varepsilon_0 \omega^2 \]
b) Since \(\mathbf{u} = \mathbf{u}_0 \) on both sides,
\[\hat{n} \times \mathbf{B} = 0\]
\[\hat{n} \times \mathbf{E} = 0\]

c) Continuity of \(\mathbf{E}_x \)

1. \(\mathbf{E}_0 - \mathbf{E}_r = \mathbf{E}_c \)
 continuity of \(\mathbf{B}_y \)

2. \(\mathbf{B}_0 + \mathbf{B}_r = \mathbf{B}_c \)
 relate \(\mathbf{B}_y \) to \(\mathbf{E}_y \)

 in vacuum:
 \[\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0\]
 \[i \kappa \mathbf{E}_x - \omega \mathbf{B}_y = 0\]
 \[\mathbf{E}_x = \omega \mathbf{B}_y\]

 in conductors:
 \[
 \left(\frac{1}{\kappa} + (1+i) \right) \mathbf{E}_x = \frac{\omega}{\kappa} \mathbf{B}_y
 \]

From 1) and 2)

\[\kappa \mathbf{B}_0 - \kappa \mathbf{B}_r = \omega \mathbf{B}_c \frac{\xi}{(1+i)\kappa} = \kappa \xi \frac{\mathbf{B}_c}{1+i}\]
\[\mathbf{B}_0 + \mathbf{B}_r = \mathbf{B}_c\]
\[2 \mathbf{B}_0 = \mathbf{B}_c \left(1 + \frac{\xi}{1+i} \right)\]
\[B_t = \frac{2B_0}{1 + \frac{ks}{1 + t}} \]

\[B E_t = \frac{\omega 2B_0 S c}{(1 + i) C} \]

\[E_t = \frac{2ks S cB_0}{1 + t} \]

\[B_a = B_t - B_0 \Rightarrow B_0 \]

\[E_r = cB_0 \]

\[a) \text{ Poynting flux} \]

\[S_{\text{t}}^t = \text{Re} \frac{E_t B_t^*}{2 \mu_0} = \text{Re} \frac{\omega S}{1 + i} \frac{B_0}{2 \mu_0} \frac{1}{1 + \frac{2}{1 - i}} \]

\[= \frac{\omega S}{\mu_0 c} B_0^2 c = ks \frac{B_0^2 c}{\mu_0} \]

\[\text{Vacuum:} \]

\[S_{\text{t}}^0 = \frac{1}{2 \mu_0} c B_0^2 \]

\[\frac{S_{\text{t}}^t}{S_{\text{t}}^0} = 2ks \]

\[\Rightarrow \text{dissipated by Joule heating} \]
(2) (a) \[\mu \rightarrow \mu_0 \]

\[\Rightarrow \quad B_\infty \]

\[\downarrow \quad B_0 \]

\[\rightarrow \quad B_\infty \]

\[\Rightarrow \quad \nabla \times \hat{e} \]

\[\frac{q+e}{a-e} \]

\[= 0 \quad \Rightarrow \quad H_q \]

\[\frac{q+e}{a-e} \]

\[= 0 \quad \Rightarrow \quad H_\infty \]

b) \[B_\infty \frac{q+e}{a-e} \]

\[= 0 \quad \Rightarrow \quad B_\infty \]

\[\frac{q+e}{a-e} \]

\[= 0 \quad \Rightarrow \quad H_q \]

\[\frac{q+e}{a-e} \]

\[= 0 \quad \Rightarrow \quad H_\infty \]

c) \[\text{Since } \nabla \cdot \mathbf{J} = 0 \quad \Rightarrow \quad \nabla \times \mathbf{H} = 0 \]

\[\Rightarrow \quad \mathbf{H} = -\nabla \phi \mathbf{m} \]

\[B_\infty = \mu_0 H_\infty = -\mu_0 \nabla \phi \mathbf{m} \]

\[\nabla \cdot B = 0 \quad \Rightarrow \quad \nabla \cdot \mu_0 \nabla \phi \mathbf{m} = 0 \]

\[\text{For } a \neq \infty \quad \Rightarrow \quad \nabla^2 \mathbf{m} = 0 \]

\[\text{For large } \infty \quad \mathbf{m} = -\frac{B_0 \mathbf{X}}{\mu_0} = -\frac{B_0 \mathbf{e} \cos \phi}{\mu_0} \]

\[\underline{\text{BCs}} \]

\[H_q \]

\[\frac{q+e}{a-e} \]

\[= 0 \quad \Rightarrow \quad \frac{\partial \phi}{\partial a} \mathbf{m} = 0 \]

\[B_\infty \]

\[\frac{q+e}{a-e} \]

\[= 0 \quad \Rightarrow \quad \mu \frac{\partial \phi}{\partial \phi} \mathbf{m} = 0 \]
\[e^m \sim e \quad e^m \]

\[e^m = e^m \cos(m \phi) \left(\frac{a}{e} \right)^m - B \cdot e \cos \phi \frac{\mu}{m_o} \]

\[\Rightarrow \text{other } e^m \text{ solutions discarded} \]

\[\Rightarrow \text{symmetric around } \phi = 0 \]

\[\phi < a \]

\[e^m = e^m \cos m \phi \left(\frac{e}{a} \right)^m \]

only \(m = 1 \) survives matching

\[e^m > = c_1^> \cos \phi \left(\frac{a}{e} \right) - B_o \cdot e \cos \phi \frac{\mu}{m_o} \]

\[e^m < = c_1^< \cos \phi \left(\frac{e}{a} \right) \]

\[\frac{\partial e^m}{\partial e} \text{ matching} \]

1

\[c_1^> - \frac{B_o a}{m_o} = c_1^< \]

\[\mu \left(\frac{\partial e^m}{\partial e} \right) \text{ matching} \]

2

\[C_1^> \mu_0 \frac{1}{e^m} + B_o a = -\mu \left(\frac{1}{m_o} \right) c_1^< \]

Putting 1 into 2

\[c_1^< + \frac{B_o a}{m_o} + \frac{B_o a}{m_o} = -\mu \left(\frac{1}{m_o} \right) c_1^< \]
\[c_i^2 = -2 \frac{B_0 a}{\mu_0} \frac{1}{1 + \frac{\mu}{\mu_0}} \]

\[c_i^+ = \frac{B_0 a}{\mu_0} + c_i^- = \frac{B_0 a}{\mu_0} \left(1 - \frac{2}{1 + \frac{\mu}{\mu_0}} \right) \]

\[c_i^+ = \frac{B_0 a}{\mu_0} \frac{\mu}{\mu_0} - 1 \frac{\mu}{\mu_0} + 1 \]

\[P < a \]

\[c_i^+ = \frac{c_i}{a} - \frac{x}{\frac{\mu}{\mu_0}} \]

\[H^+ = -c_i \frac{1}{a} \frac{x}{\frac{\mu}{\mu_0}} \]

\[B^+ = -c_i \frac{1}{a} \frac{\mu}{\mu_0} \frac{x}{\frac{\mu}{\mu_0}} \]

\[m = \mu_0 \left(\frac{1}{\mu} + \frac{1}{\mu_0} \right) = \frac{\mu}{\mu_0} \]

\[B_{\mu_0} = \frac{B}{\mu} + \frac{B}{\mu_0} \]

\[H = \frac{B}{\mu} \left(\frac{1}{\mu_0} - \frac{1}{\mu} \right) = B \frac{\mu - \mu_0}{\mu \mu_0} \]

\[m^+ = -c_i \left(\frac{\mu}{\mu_0} - 1 \right) \frac{x}{\frac{\mu}{\mu_0}} \]

\[B^+ = 2 B_0 \frac{\mu}{\mu_0} \frac{1}{1 + \frac{\mu}{\mu_0}} \]

\[M^+ = 2 B_0 \frac{1}{\mu_0} \left(\frac{\mu}{\mu_0} - 1 \right) \frac{x}{\mu_0 + 1} \]

\[= \mu_0 \hat{x} \]
d) Finite length with \(L \gg a \).

The solutions are valid for \(\varepsilon \ll L \) and not too close to the ends.

For distances large compared to \(L \) it will look like a magnetic dipole

\[
\nabla \cdot B = 0 = \nabla \cdot \mu_0 \left(- \nabla \epsilon_m + \frac{m}{\mu} \right)
\]

\[
\nabla^2 \epsilon_m = \nabla \cdot \frac{m}{\mu} = -4\pi \left(- \frac{\mu_0 M}{\mu} \right)
\]

\[
\epsilon_m = -\frac{1}{4\pi} \int \frac{\nabla' \cdot \frac{\mu_0 m(x')}{|x-x'|}}{|x-x'|} \, dx'
\]

\[
= -\frac{1}{4\pi} \int \nabla \cdot \frac{m}{|x|} \, dx
\]

\[
\epsilon_m = \frac{\mu_0 m \cdot \mathbf{x}}{|x|^3}
\]

\[
\epsilon_m = \frac{\mu_0 a^2 L}{2}
\]

\[
\nabla \epsilon_m = -\frac{1}{4\pi} \frac{m \cdot \mathbf{x}}{|x|^3}
\]

\[
\nabla \epsilon_m = \left(\frac{\mu_0 a^2 L}{|x|^3} \right)
\]

\[
\frac{m}{\mu} = \frac{\mu_0 a^2 L}{|x|^3}
\]

\[
\nabla \cdot B = -\mu_0 \nabla \epsilon_m
\]