Adversarial Point-of-Interest Recommendation

Fan Zhou
University of Electronic Science and Technology of China
fan.zhou@uestc.edu.cn

Ruiyang Yin
University of Electronic Science and Technology of China
yinruiyang94@gmail.com

Kunpeng Zhang
University of Maryland, College park
kzhang@rhsmith.umd.edu

Goce Trajcevski
Iowa State University, Ames
gocet25@iastate.edu

Ting Zhong
University of Electronic Science and Technology of China
zhongting@uestc.edu.cn

Jin Wu
University of Electronic Science and Technology of China
wj@uestc.edu.cn

ABSTRACT
Point-of-interest (POI) recommendation is essential to a variety of services for both users and business. An extensive number of models have been developed to improve the recommendation performance by exploiting various characteristics and relations among POIs (e.g., spatio-temporal, social, etc.). However, very few studies closely look into the underlying mechanism accounting for why users prefer certain POIs to others. In this work, we initiate the first attempt to learn the distribution of user latent preference by proposing an Adversarial POI Recommendation (APOIR) model, consisting of two major components: (1) the recommender (R) which suggests POIs based on the learned distribution by maximizing the probabilities that these POIs are predicted as unvisited and potentially interested; and (2) the discriminator (D) which distinguishes the recommended POIs from the true check-ins and provides gradients as the guidance to improve R in a rewarding framework. Two components are co-trained by playing a minimax game towards improving itself while pushing the other to the boundary. By further integrating geographical and social relations among POIs into the reward function as well as optimizing R in a reinforcement learning manner, APOIR obtains significant performance improvement in four standard metrics compared to the state of the art methods.

KEYWORDS
POI recommendation, adversarial learning, policy gradient

1 INTRODUCTION AND MOTIVATION
Location-based recommendation systems primarily aim at suggesting spatial entities (i.e., point-of-interest (POI)) to users, and have recently spurred a significant research interests in both academia and industry. Different variations of POI recommendations have been explored, including next POI recommendation [4, 7], time-aware POI recommendation [13] and out-of-town POI recommendation [21].

A body of existing works has focused on improving the POI recommendation performance by exploiting various implicit context features embedded in check-ins, such as their spatial information [13, 14, 17]; semantics [9]; social relations [5, 11, 36]; temporal characteristics [18, 33]; and sequential dependence [6, 19, 27, 35]. Complementary to these, approaches that model user preference through mining various features for POI recommendation have been proposed – e.g., Matrix Factorization (MF) [11, 13, 14, 17], Context Embedding (CE) [15, 27, 33] and Pairwise Ranking (PR) [4, 12, 22, 33]. A recent work [16] summarized that geographical information and social influence are the two most effective factors for modeling user preference, while MF based methods such as GeoMF and RankGeoFM exhibit superior performance on POI recommendation. Some of the existing methods make simple but proven-to-be effective assumptions for POI recommendation.

At the heart of our motivation is the observation that many of the existing studies lack formal underlying mechanisms to understand essential user check-in behavior, which may often lead to elusive results. Inspired by recent advances in deep generative models [8, 25] that are successfully and widely used in the areas of computer vision and information retrieval, we attempt to learn user latent preference in a generative way, rather than extracting different features and quantitatively analyzing their impact on POI recommendation as done in most of the existing works.

Towards that, we propose a novel POI recommendation approach, called Adversarial POI Recommendation (APOIR), which learns the underlying check-in distribution in an adversarial manner by simultaneously training two synergistic components. Specifically, we model a user u and his check-in locations l in a generative way, with two neural network components: recommender (R) and discriminator (D) – being co-trained alternatively, to optimize the generative process of $u \rightarrow l$. R recommends POIs based on the currently learned user preference distribution, while D, acting as a catalyst, judges whether the recommended POIs are true locations visited by that user and provides guidance to improve R. Two effective features (geographical and social influence) are also incorporated into the APOIR to further improve the performance. Note that our model can be generalized to include other features.
To train APOIR, we alternate the updates of the recommender and the discriminator as follows. Given the currently learned preference distribution, a set of POIs are sampled to update the R using the policy gradient method. Subsequently, D is updated using user u’s true check-ins along with the ones sampled from the updated R. After an equilibrium is reached – which is, the true user preference distribution is close enough to the empirical learned distribution, a list of POIs with high probabilities based on the learned distribution are generated and eventually recommended. Our main contributions can be summarized as follows:

- We address the POI recommendation in a generative way, which is a novel approach in the area of spatial mining and POI recommendation.
- We propose a method – APOIR – to learn underlying user preference distribution, which significantly boosts the recommendation performance. In addition, APOIR successfully unifies reinforcement learning and matrix factorization methods into an adversarial learning framework for POI recommendation.
- We evaluate our method on three public location-based social network (LBSN) datasets and compare it to several state-of-the-art models. Our results show that APOIR approach performs well, e.g., achieving 10.17%, 11.7% and 10.0% improvement over the best baseline on Gowalla, Foursquare and Yelp datasets in terms of Precision@5.

3 PROBLEM FORMULATION AND PRELIMINARIES

Given a set of POIs \mathcal{L} ($|\mathcal{L}| = M$) and a set of users \mathcal{U} ($|\mathcal{U}| = N$), each with associations to multiple historical check-ins L^u, POI recommendation aims at recommending each user $u_i \in \mathcal{U}$ with top-K new POIs in the set of $L^u_i = \mathcal{L} - L^u_i$ that u_i is likely to be interested in but has never visited before.

Matrix Factorization (MF): [10] decomposes the user check-in matrix $C \in \mathbb{R}^{N \times M}$ into a user matrix $U \in \mathbb{R}^{N \times Q}$ and a POI matrix $L \in \mathbb{R}^{M \times Q}$ with Q-dimensional latent factors by:

$$
\arg \min_{U,L} \sum_{u \in \mathcal{U}} \sum_{l \in \mathcal{L}} (c_{ul} - u^T_l L^2 + \kappa^u ||U||_F^2 + \kappa^l ||L||_F^2)
$$

where κ^u and κ^l are regularization coefficients, N is the number of users and M is the number of check-ins. The probability of recommending a POI l_j to user u_i is thus derived based on the inner product between the latent factor of user u_i and that of POI l_j (denoted as $u_i^T l_j$). The preference score vector of u_i over all POIs is denoted $u_i L^T$.

Gated Recurrent Units (GRU): [3] is a variant of recurrent neural network (RNN) models consisting of gating mechanisms that control the influence of the hidden state of previous unit h_{t-1} on the state h_t at time step t, i.e., learning to ignore the previous units if necessary. Specifically,

$$
g_t = \sigma(W_l +Uh_{t-1})
$$

$$
s_t = \sigma(W_l + Uh_{t-1})
$$

$$
\hat{h}_t = \tanh(W_l + U(s_t \odot h_{t-1}))
$$

$$
h_t = (1 - g_t)h_{t-1} + g_t \hat{h}_t
$$

where g_t and s_t are update and reset gates, respectively; \hat{h} is a candidate hidden state state; W and U are parameter matrices of respective units; σ and \tanh are sigmoid and hyperbolic tangent functions, respectively; \odot is element-wise product.

Generative Adversarial Nets (GAN): [8] aims at obtaining the Nash equilibrium between a discriminator D and a generator G by optimizing the following minimax objective:

$$
J_{GAN} = \mathbb{E}_{x \sim P_X} [\log(D(x))] - \mathbb{E}_{\tilde{x} \sim \mathbb{P}_G} [\log(1 - D(\tilde{x}))]
$$

where P_X is the data distribution and P_G is the model distribution implicitly defined by $\tilde{x} = G(z)$, and J_{GAN} is maximized w.r.t $D(x)$ and minimized w.r.t. $D(G(z))$. The generator G takes a noise prior distribution $z \sim p(z)$ (e.g., uniform or Gaussian) as input and upon which a sample is generated using a deep neural network. The discriminator D_{th} – usually another neural network – plays the role of classifier and distinguishes that a certain sample coming
from the true distribution \(p_g \) or the generator \(G \). It has been demonstrated that this game achieves global equilibrium if and only if \(p_g(x) = p_x(x) \), where \(p_g \) is the defined distribution and the optimal discriminator is \(D^*(x) = p_x(x)/(p_x(x) + p_g(x)) \) [8].

4 OUR PROPOSED APPROACH: APOIR

We now discuss in detail our proposed method, and feature modeling and training details.

Temporal & sequential preference modeling. Before presenting the APOIR method, we first leverage a variant of GRU, combined with MF, to capture both temporal and sequential preference of users. Given a sequence of POIs \(l_1, l_2, \cdots, l_t \), each associated with a check-in time \(\tau_1, \tau_2, \cdots, \tau_t \), we compute the time interval between adjacent POIs as \(\Delta_{\tau_i} = \tau_i - \tau_{i-1}, i \in [1, t] \). Then, we can modify the candidate hidden state of Eq.(2) with a time gate \(T_t \) as:

\[
T_t = \sigma_l(W_l^1 + \sigma([\Delta_{\tau_i}; \tau_i]W_l^2))
\]

\[
\hat{h}_t = \tanh(W_l^1 + U(s_t \otimes T_t \circ h_{t-1}))
\]

(4)

where \([\Delta_{\tau_i}; \tau_i] \) is a concatenation of time interval between two successive check-ins and the current check-in time. Now time gate \(T_t \) captures the temporal preference of users, as well as POI representation \(l_t \), and is used to control the influence of previous hidden state \(h_{t-1} \) in Eq.(4). Finally, a user’s temporal and sequential preferences are coded in the last hidden state \(h_t \), which is then used to update user representation with an element-wise product as \(\hat{u}_t = u_t \circ \hat{h}_t \). The new user latent factor representation \(\hat{u}_t \) would be used in the following adversarial learning.

Note that above temporal GRU is similar to recent advances on recurrent unit modification [18, 19, 37] towards capture contextual information associated with input data in RNN, except that we only consider temporal features here because we would learn other important factors in an adversarial manner later.

4.1 Adversarial Learning

In this work, we use a generative process \(u_t \rightarrow L \) to model the relationship between a user \(u_t \) and the set of POIs \(L \). The underlying true distribution of the user preferences over POIs (expressed as a conditional probability \(p_{true}(L|u_t) \)) will be learned by alternatively optimizing two competing components: Recommender and Discriminator.

4.1.1 Recommender. \(R_{\theta}(I^R|u_t) \), parameterized by \(\theta \), is used to recommend a set of unvisited but potentially interested POIs \(I^R \) for \(u_t \). The recommender \(R_{\theta} \) here is a generator analogue in GAN where it mainly fits a true distribution of data \(p_{true}(L|u_t) \). Similar to this, the POIs recommended by \(R_{\theta} \) are based on a process of sampling from the learned empirical distribution \(R_{\theta}(L|u_t) \). Such a user-POI preference distribution is approximated using the pairwise bayesian personalized ranking (BPR) [22], where user representation is obtained via above described temporal GRU. The objective is to learn a \(R_{\theta} \) where the true distribution is close enough to the empirical one so that it is difficult for the discriminator to decide whether the POI is generated by \(R_{\theta} \) or from the true distribution.

4.1.2 Discriminator. \(D_{\phi}(u_t, I^R) \), parameterized by \(\phi \), is used to discriminate whether the recommended POI \(I^R \) matches the true preference \(L^{u_t} \) of user \(u_t \). In other words, it constructs a binary vector where 1 denotes that the recommended POI is exactly the true check-ins (positive example) while 0 means a mismatch (non-visited example). The goal of \(D_{\phi}(u_t, I^R) \) is to improve its ability to distinguish historical check-ins from the recommended ones upon \(R_{\theta} \), for a given user \(u_t \).

4.1.3 Objective. According to the GAN paradigm [8], the above two models can be unified into a minimax game: \(R_{\theta}(I^R|u_t) \) maximizes the probability of \(D_{\phi}(u_t, I^R) \) not being able to discriminate recommended POIs \(I^R \) from the truth. Correspondingly, \(D_{\phi}(u_t, I^R) \) judges and improves the recommendation performance of \(R_{\theta}(L|u_t) \). Eventually, \(R_{\theta}(I^R|u_t) \) recommends POIs for user \(u_t \) with high quality once an equilibrium reaches, in which \(D_{\phi}(u_t, I^R) \) cannot distinguish the recommended POIs from the truth. Formally, we have the following objective trained alternatively between the recommender \(R_{\theta} \) and the discriminator \(D_{\phi} \):

\[
\mathcal{J}^{R^*, D^*} = \min_{\theta} \max_{\phi} \sum_{u_t \in \mathcal{U}} \left(E_{l_{\tau} \sim L^{u_t}} [\log D_{\phi}(u_t, l^\tau)] + E_{l_{\tau} \sim R_{\theta}(L|u_t)} [\log(1 - D_{\phi}(u_t, l^R))] \right)
\]

(5)

where \(l^\tau \) is the set of visited (positive) check-ins, and discriminator \(D_{\phi}(u_t, I^R) \) estimates the probability of POIs \(I^R \) being preferred/visited by user \(u_t \). We use the sigmoid function \(\sigma(D_{\phi}(u_t, I^R)) \) as the discrimination score, similar to [25].

As shown in Eq.(5), both the discriminator and the recommender are iteratively optimized in a minimax game, and we now describe them in details.

4.1.4 Training Discriminator. The objective of the discriminator is to maximize the probability of correctly distinguishing the true check-in locations from the generated recommended POIs by the recommender, given positive samples from true preference distribution and non-visited samples from the recommender. That is, the training objective of \(D_{\phi} \) is to find an optimal \(\phi^* \) by maximizing:

\[
\phi^* = \arg \max_{\phi} \sum_{u_t \in \mathcal{U}} \left(E_{l_{\tau} \sim L^{u_t}} [\log D_{\phi}(u_t, l^\tau)] + E_{l_{\tau} \sim R_{\theta}(L|u_t)} [\log(1 - D_{\phi}(u_t, l^R))] \right)
\]

(6)

where \(l^\tau \sim R_{\theta}(L|u_t) \) is the generated POIs by the current optimal \(R_{\theta} \), and \(l^\tau \sim L^{u_t} \) are the positive samples. \(D_{\phi}(u_t, I^R) \) can also be considered as the probability of \(R_{\theta} \) assigning correct labels to recommended POIs \(I^R \). Since function \(D_{\phi}() \) is differentiable w.r.t parameters \(\phi \), the above objective can be solved by stochastic gradient descent [25].

4.1.5 Training Recommender. Similarly to SeqGAN [29], the recommender \(R_{\theta} \) generates (selects) a list of ranked POIs for user \(u_t \). Specifically, given the current \(D_{\phi} \) which is fixed after Eq.(6), we can minimize the following objective to find an optimal \(\theta^* \):

\[
\theta^* = \arg \min_{\theta} \sum_{u_t \in \mathcal{U}} E_{l_{\tau} \sim R_{\theta}(L|u_t)} [\log(1 - \sigma(D_{\phi}(u_t, I^R))]
\]

\[
= \arg \max_{\theta} \sum_{u_t \in \mathcal{U}} E_{l_{\tau} \sim R_{\theta}(L|u_t)} [\log(1 + \exp(D_{\phi}(u_t, I^R))]
\]

(7)

which is the objective considered in previous works [25, 34]. However, it does not consider the contexts associated with items, or POIs.
in our case. To explicitly explore the rewards from POI contexts, we modify above objective as:

\[
\theta^* = \arg \max_{\theta} \sum_{u \in U} \mathbb{E}_{l \sim R_{\theta}(l|u_1)} \log(\lambda + \exp(D_{\theta}(u_1, l^R)))
\]

\[
= \arg \max_{\theta} \sum_{u \in U} \mathbb{E}_{l \sim R_{\theta}(l|u_1)} \log \frac{R_{l \sim R_{\theta}(l|u_1)}(u_1)}{R_{l \sim R_{\theta}(l|u_1)}}
\]

where we add a factor \(\lambda \) which is a constant for each \(u_i \), and a defined reward \(R = \lambda + \exp(D_{\theta}(u_1, l^R)) \) will be used as the reward (will explain it later).

Since the POIs \(l^R \) sampled from the recommender \(R_\theta \) is discrete, \(R_{l \sim R_{\theta}(l|u_1)} \) cannot be directly optimized with gradient descent as in continuous GANs [8]. Following the discrete GANs [25, 29, 34] where the gradient descent is not available, we use the probability of being sampled for each POI to replace the discrete POI as:

\[
\nabla_\theta J^R(u_i) = \nabla_\theta \mathbb{E}_{l \sim R_{\theta}(l|u_1)} \log R = \sum_{j=1}^{M} \nabla_\theta R_{\theta}(l^j|u_1) \log R
\]

\[
= \sum_{j=1}^{M} R_{\theta}(l^j|u_1) \nabla_\theta \log R = \mathbb{E}_{l \sim R_{\theta}(l|u_1)} [\nabla_\theta \log R]
\]

\[
= \nabla_\theta \log R_{\theta}(l^k|u_1) \log R \quad (8)
\]

where \(K \) is the number of POIs sampled by the recommender and \(l^k \) is the \(k^{th} \) sampled POI. Eq.(8) shows that we use policy gradient based REINFORCE algorithm [26] to derive the gradient. In the context of reinforcement learning [23], \(\log \lambda + \exp(D_{\theta}(u_1, l^R)) \) acts as the reward for the policy \(R_{\theta}(l^k|u_1) \) when taking action of recommending POI \(l^k \) in the environment \(u_i \).

4.2 Modeling Reward

We note that above reinforcement learning based likelihood sampling is also used in previous work [25, 29, 34] for sequential data generation and information retrieval. However, these work did not explicitly model the reward of Eq.(8). Instead, they can be considered as optimizations for various methods, e.g., IRGAN [25] is essentially an adversarial optimization method for MF in item recommendation.

In this section, we proceed with modeling the context of POIs and the implicit feedback into the reward function. In this work, we exploit two most important factors [16], i.e., geographical and social factors, respectively for explicitly measuring reward of candidate POIs. Specifically, we consider following reward \(\lambda \) in Eq.(8):

\[
\lambda = \alpha R_{geo} + (1 - \alpha) R_{soc} \quad (9)
\]

where \(R_{geo} \) and \(R_{soc} \) are the reward from the geographical and social factors, respectively. Hyperparameter \(\alpha \) is used for scaling the two factors. \(R_{geo} \) and \(R_{soc} \) are in fact two 1-D vectors \(R_{geo}, R_{soc} \in \mathbb{R}^{1 \times M} \) constructed as follows:

- **Geographical reward** \(R_{geo} \) is initialized with 0 in each column. We set the \(j^{th} \) item \(v \in R_{geo} \) as 1 if POI \(v \) is within a distance \(d \) to any visited POIs for user \(u_i \). That is, we are interested in including the nearby POIs \(N(v) \) for all check-ins of user \(u_i \) into the candidate list and magnify its importance since people are normally visiting the neighboring POIs [14, 16, 17, 31].

- **Social reward** \(R_{soc} \) is generated in a similar way by setting the \(j^{th} \) column \(v \in R_{soc} \) to 1 if corresponding POI has been visited by \(u_i \)’s friends \(u_j \in F(u_i) \), where \(F(u_i) \) denotes the friends of \(u_i \) motivated by the observation that people may visit the POIs where their friends have visited before [2, 11, 16, 31].

4.2.1 Overall Rewards. Note that the second term \(\exp(D_{\theta}(u_1, l^k)) \) in the reward of Eq.(8), the function of the discriminator, is also a reward item \((1 \times M)\) vector. Now, we have the following overall reward:

\[
R = \beta(\alpha R_{geo} + (1 - \alpha) R_{soc}) + (1 - \beta) R_D \quad (10)
\]

where hyperparameter \(\beta \) controls the effect from POI context and the discriminator \(R_D = \exp(D_{\theta}(u_1, l^k)) \), both of which can be learned from the data. Then, Eq.(8) can be reformulated as:

\[
\nabla_\theta J^R(u_i) \approx -\frac{1}{K} \sum_{k=1}^{K} \nabla_\theta \log R_{\theta}(l^k|u_1) \log(\beta(\alpha R_{geo}) + (1 - \alpha) R_{soc} + (1 - \beta) \exp(D_{\theta}(u_1, l^k))) \quad (11)
\]

Essentially, reward \(R \) acts as a regularizer to the recommended POIs from the recommender \(R_{\theta}(l^k|u_1) \) which outputs the user preference probability over POIs (also a \(1 \times M \) vector). As the training process goes, \(R \) may gradually push recommender \(R_{\theta} \) to produce the POIs matching the preference of the user. It has been proved that if we know the true preference distribution of users, the above adversarial minimax training of APOIR can achieve Nash equilibrium [8] – the recommender exactly fits the true distribution of the user preference, i.e., \(R_{\theta}(L|u_i) = \mu_{true}(L|u_i) \), the discriminator cannot distinguish the recommended POIs from the truth, i.e., the probability of \(l^R \) being preferred by \(u_i \) based on \(D_{\theta}(u_1, l^R) \) is close to 0.5.

The overall logic of adversarial POI recommendation is summarized in Algorithm 1.

4.3 Discussion

The complexity of the APOIR training is linear in the number of GAN iterations, each of which has a time complexity \(O(NK|L^u|) \) in terms of the number of candidate POIs \(L^u \). We note that possible improvements can result from reducing the size of \(L^u \) through filtering the POIs by considering spatial and/or categorical ranking influence [9].

Although both APOIR and IRGAN [25] leverage REINFORCE method for training the generator (recommender for APOIR), we highlight their fundamental differences: (1) APOIR explicitly models the POI reward which can help better understanding and interpreting the recommendation methods; In contrast, IRGAN is a GAN based optimization method for MF; and (2) APOIR additionally incorporates a temporal GRU for modeling the user dynamic preference.

We also note that the reward \(R \) in APOIR only explicitly considers two POI contexts (arguably, the most important two [16]), whereas temporal and sequential factors have been incorporated in the context GRU units. Other factors such as categorical information of POIs have been used in the literature [9]. Incorporating them into the reward function Eq.(9) for better understanding of the POI context, along with incorporating POI embedding [27, 33]
Thus, we replace the temporal GRU in APOIR with a matrix factorization based user representation. The datasets after pre-processing are described in Table 1.

Table 1: Statistics of three datasets used in experiments.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>#Users</th>
<th>#POIs</th>
<th>#Check-ins</th>
<th>Sparsity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gowalla</td>
<td>18,737</td>
<td>32,510</td>
<td>1,278,274</td>
<td>99.865%</td>
</tr>
<tr>
<td>Foursquare</td>
<td>24,941</td>
<td>28,593</td>
<td>1,196,248</td>
<td>99.900%</td>
</tr>
<tr>
<td>Yelp</td>
<td>30,887</td>
<td>18,995</td>
<td>860,888</td>
<td>99.860%</td>
</tr>
</tbody>
</table>

Datasets: We conducted our experiments on three publicly available LBSN datasets: Gowalla, Foursquare and Yelp. For all datasets, we filter out those POIs with fewer than 10 visitors and those users (usually aka. the colder-start users) with fewer than 15 check-in POIs. Since Foursquare data does not have social information, we only report results from those not considering social information. Therefore, we remove the social factor R_{soc} in Eq. (9) for comparison on Foursquare. And Yelp data does not have check-ins time. Thus, we replace the temporal GRU in APOIR with a matrix factorization based user representation. The datasets after pre-processing are described in Table 1.

Following previous works [16, 27], we partition each dataset into training set and test set. For each user, we use the earlier 75% check-ins as the training data and the most recent 25% check-ins as the test data. All datasets are very sparse (the frequency of most POIs being visited is extremely low). Since a POI recommender system typically aims at recommending POIs that a user has not visited before, we further merge repetitive check-ins and use the earliest one. This can also avoid a testing interaction appearing in the training set.

Baselines: We compare APOIR with 10 approaches, covering from the most popular/representative POI recommendation techniques to models using different kinds of context information:
- USG [28]: is a collaborative filtering-based recommendation with user preference, social influence and geographical influence simultaneously incorporated.
- MGMPFM [1]: combines Poisson factor model and a multi-center Gaussian based geographical modeling method.
- LFBCA [24]: is a link-based method that constructs a graph to model users and their relations.
- iGSLR [30]: exploits personalized geographical preference and social influence with FCF (friend-based CF) and KDE (kernel density estimation).
- LORE [32]: considers sequential influence in addition to social and geographical influence by FCF, KDE and MF.
- IRemMF [17]: incorporates characteristics of neighboring POIs in both individual level and region level into weighted matrix factorization for POI recommendation.
- GeoMF [14]: integrates spatial influence in user geographical regions and its propagation.
- RankGeoFM [13]: is a ranking based geographical factorization method incorporating the spatial-temporal factors.
- GeoTeaser [33]: a temporal POI embedding model to capture the contextual check-in information and the temporal characteristics using word2vec framework.
- PACE [27]: builds a word2vec-based architecture to jointly learn the embeddings of users and POIs to predict both user preference over POIs and context associated with users and POIs.

We exclude many MF-based approaches, since they have already been shown to be inferior to RankGeoFM [13]. Several recent approaches such as SG-CWARP [15] and ASMF [11] are also excluded because of their worse performance as compared to GeoTeaser [33] and PACE [27].

Metrics: We compare the model performance using four standard metrics in POI recommendation, i.e., Pre@K (precision), Rec@K (recall), nDCG@K (normalized discounted cumulative gain), and MAP@K (mean average precision) [16, 27]. They show different perspectives of the performance evaluation. Precision and recall measure the number of correct recommendations, while nDCG and MAP consider the rank of the recommendations by assigning a score to each recommendation. We report the average score for all metrics, and perform one-sample paired t-test to judge the statistical significance where necessary.

5.1 Results

Overall Performance: Figures 1-3 illustrate the comparisons among different methods. From the results, we have following observations: (1) APOIR consistently performs the best and significantly improves the POI recommendation performance over the baselines on all metrics across datasets. Take the Yelp data for example (Figure 2), APOIR achieves 10.0% on Pre@5, 16.0% on Rec@5, 23.3% on MAP@5 and 9.4% on nDCG@5 over RankGeoFM which performs significantly better than the baselines.
Figure 1: Comparisons Among Different Algorithms on Gowalla Data.

Figure 2: Comparisons Among Different Algorithms on Yelp Data.

Figure 3: Comparisons Among Different Algorithms on Foursquare Data.

the second best. (2) The strength of APOIR comes from its capability of capturing user preference with an adversarial learning process. Figure 4(a) plots the training process of APOIR. We observe in experiments that discriminator exhibits strong ability at the beginning of the training but deteriorates as the recommender grows to produce more competitive POIs – Figure 4(b) compares the performance with or without adversarial training. (3) MF-based methods, such as IRenMF, GeoMF and RankGeoFM, outperform other baselines which proves the effectiveness of MF in modeling latent features underpinning the complex interactions between users and POIs and the implicit feedback from the geographical information. (4) The most recent context embedding-based models such as GeoTeaser and PACE do not exhibit the performance as expected. We conjecture that the dataset used in their released implementation is relatively small and dense. Thus, it is difficult to obtain similar performance with larger and sparser datasets – having more POIs and more low-frequency visited POIs may result in worse embedding in word2vec[20].

6 CONCLUSIONS

We proposed a novel approach – APOIR – for POI recommendation by learning the underlying user preference over POIs in an adversarial manner. APOIR leverages different contexts into the rewards in the reinforcement learning and adopts a generative framework for training two competing components: a recommender and a discriminator. By pushing each other to be close to its limit, the recommender may approach the true preference of users (upon which POIs are sampled and recommended), reaching an equilibrium where it becomes difficult for the discriminator to distinguish these generated POIs from the truly visited ones. Comprehensive experiments on three datasets have demonstrated the effectiveness
of APOIR, with a significant performance improvement on POI recommendation when compared to existing methods.

ACKNOWLEDGMENT

This work was supported by National Natural Science Foundation of China (Grant No.61602097 and No.61472064), NSF grants III 1501560 and CNS 1646107, and ONR grant N00014-14-10215.

REFERENCES

[14] Defu Lian, Cong Zhao, Xing Xie, Guangzhong Sun, Enhong Chen, and Yong Rui. 2014. GeoMF: joint geographical modeling and matrix factorization for point-of-interest recommendation. In KDD.
[27] Carl Yang, Lianxiao Bai, Chao Zhang, Quan Yuan, and Jiawei Han. 2017. Bridging Collaborative Filtering and Semi-Supervised Learning: A Neural Approach for POI Recommendation. In KDD.
[32] Jia-Dong Zhang, Chi-Yin Chow, and Yanhua Li. 2014. LORE: exploiting sequential influence for location recommendations. In SIGSPATIAL.