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The following is a review of commonly used identities involving trigonometric and
hyperbolic functions. It is intended to supplement your existing knowledge, as well as the
material from the book and class lectures. It is not my intention that you memorize all
of the identities contained herein, but rather that you familiarize yourself with them. Of
course, the ones identified as very important should be memorized. The others can then
be easily recovered by the steps indicated in the text. If you are not already, you should
become familiar with these steps to the point were they seem obvious to you. When you
have reached that stage you will have mastered, rather than have memorized, the identities.
In order to facilitate that process, the identities are presented in conceptually related
groups. The many striking parallels between trigonometric and hyperbolic functions should
also prove helpful. These skills will serve you in two ways. First, they will minimize the
number of formulas that you have to memorize. Second, they will enable you to more
easily recover the hundreds of identities that are not listed on these sheets.



1. TRIGONOMETRIC FUNCTIONS

1.1: Definitions. The most important trigonometric functions are sin(z) and cos(x).
As is discussed in the book, they both are defined for every x and oscillate between —1
and 1. If you understand sin(z) and cos(z), you can understand all the other common
trigonometric functions through their definitions:

o sin(z) cot(z) = cos(z)
tan(z) = cos(z) ’ tz) = sin(z) ’ (1.1)
sec(x) = L csc(x) :

cos(z)’ sin(z)

These are all very important and should be known. Notice that tan(z) and sec(x) are not
defined where cos(z) = 0, while cot(z) and csc(z) are not defined where sin(z) = 0. If you
are not so already, use your calculator or a book to become familiar with the graphs of
these functions.

1.2: Relationships. It is easily seen from their definitions that these functions are
interrelated in many ways. For example, one has the reciprocal relations:

1 1 1
tan(z) sec(x) = csc(x) =

cot(z) = (1.2)

cos(z)’ sin(x)
These either follow directly from or are restatements of (1.1) and should be known. Most
calculators have buttons for only sin(z), cos(z), and tan(z), so relations (1.2) are commonly
used to generate the other functions. One also has the co-function relations:

cos(z) = sin(§ — ), sin(x) = cos(§ — ),
cot(z) = tan(§ — ), tan(z) = cot(§5 — z), (1.3)
csc(x) = sec(y — ), sec(x) = csc(§ — ) -

The top two of these are very important and should be known. The others then follow
easily from definitions (1.1). Notice that the right and left columns can be obtained from
each other by simply replacing x by 7 — z. Finally, most fundamental of all are the
Pythagorean relations:

sin?(z) 4+ cos?(x) =1,

sec?(z) — tan®(z) =1, (1.4)
esc?(z) — cot?(z) = 1.
The first these is very important and should be known. The second and third can be easily

recovered from the first by dividing it by cos(x) and sin(z) respectively, using definitions
(1.1), and making an obvious rearrangement of the terms.



1.3: Symmetries. It is evident from their graphs that each trigonometric function
enjoys many symmetries—that is, relations to itself. For example, there are the periodic
symmetries:

sin(z + 27) = sin(x) cos(z + 27) = cos(z) , tan(z + 7) = tan(x),

csc(x + 2m) = cse(x) sec(x + 2m) = sec(x), cot(z + m) = cot(x) . (1.5)

The top three of these are very important and should be known. The bottom three are
obtained from the ones immediately above them through the reciprocal relations (1.2). In
addition, there are the anti-periodic symmetries:

sin(z + w) = —sin(x) , cos(z + m) = — cos(x)

cse(z + m) = —csc(z) sec(x + m) = —sec(z) . (1.6)

The top two of these are very important and should be known. The bottom two are again
obtained from the ones immediately above them through the reciprocal relations (1.2).
Finally, there are the even/odd symmetries:

sin(—z) = —sin(z), cos(—z) = cos(x), tan(—z) = — tan(x),

csc(—z) = —cse(x), sec(—zx) = sec(x), cot(—z) = — cot(x) . (1.7)

The first two on the top are very important and should be known. The others then follow
immediately from definitions (1.1). Can all of the other symmetries that you see by looking
at the graphs of these functions be built up from the ones listed in (1.5-1.7)7?

1.4: Addition Formulas. The identities that describe how trigonometric functions
change when their argument undergoes an arithmetic operation are generally known as
addition formulas, because addition is the most fundamental arithmetic operation. These
identities are often laid out in long lists as if they should all be memorized. In fact, they
all derive from a few basic ones in very simple ways. So it is best to just memorize those
few, and learn to recover the others. Those few are the three angle sum formulas:

sin(z + y) = sin(z) cos(y) + cos(z) sin(y) ,
cos(z + y) = cos(x) cos(y) — sin(z) sin(y) ,

tan(x) + tan(y)
1 — tan(z) tan(y)

(1.8)

tan(z +y) =

The first two of these are the most important because the third is easily recovered by
dividing the first formula by the second. By replacing y by —y in (1.8) and using the
even/odd symmetries (1.7), one is led to the angle difference formulas:

sin(z — y) = sin(x) cos(y) — cos(x) sin(y) ,

cos(z — y) = cos(x) cos(y) + sin(z) sin(y) , (1.9)

_ tan(z) — tan(y)
tan(z —y) = 1 + tan(z) tan(y) .



If you set y = z in formulas (1.8) you obtain the double-angle formulas:
sin(2z) = 2sin(x) cos(z) ,
cos(2z) = cos?(z) — sin?(z) = 2cos?(z) — 1 = 1 — 2sin?(z),

tan(2x) = % .

(1.10)

The alternative forms given for cos(2z) follow from the first of the Pythagorean relations
(1.4). The formulas for sin(2x) and cos(2z) are so commonly used that they are good to
know too. By setting y = 2z in the angle sum formulas, you can continue on to obtain
triple-angle formulas and so on, but we will not give them here. The last two formulas for
cos(2x) given in (1.10) lead to the half-angle formulas:

sin(z/2) = i<1_+08($)) g cos(x/2) = i(%) g

1-— cos(x)) 3 _ sin(x) _1- cos(x)
1 + cos(z) 1+ cos(z) sin(z)

(1.11)

tan(z/2) = :I:(

The top two derive from the last two formulas for cos(2z) by simply replacing = by z/2 and
making an obvious rearrangement of the terms. Care must be taken to pick the correct
sign for the square root. The first equality of the third is easily recovered by dividing the
first formula by the second. The alternative forms given for tan(z/2) follow from the first
of the Pythagorean identities (1.4). There is no ambiguity of sign in those forms.

Other members of the addition formula family include the product formulas:

cos(z) cos(y) = 5[ cos(z — y) + cos(z + y)] ,
sin(z) sin(y) = 3 [ cos(z — y) — cos(z + y)] , (1.12)
sin(z) cos(y) = 3 [sin(z — y) + sin(z + y)] .

The first two of these easily follow by adding and subtracting the cosine angle sum and
difference formulas. The last easily follows by adding the sine angle sum and difference
formulas. The final members of the addition formula family that we will give here are the

sum formulas:
cos(z) + cos(y) = 2cos<$2ﬂ> cos(x ; y) ,

sin(z) + sin(y) = 2sin(“’2ﬂ> cos(m > y) .

These can be viewed as being derived from the first and last formulas of (1.12) by replacing
x by (z+y)/2 and y by (y—x)/2. Like the product fromulas, these need not be memorized
so long as you can recall the basic idea behind their derivation.

(1.13)




2. INVERSE TRIGONOMETRIC FUNCTIONS

2.1: Definitions. Because they are periodic, trigonometric functions do not have inverses
when considered over their whole domain. They do however have inverses if we consider
them over restricted domains. We chose the restricted domains as follows:

function restricted domain

y = sin(x) —5<r< 3

y = cos(x) 0<z<m

y = tan(x) -5 <z<3 (2.1)
y = cot(x) O<z<m

y = sec(z) 0<z<fand F<z<m

y = csc(z) —5<z<0and0<z < 7§

The above choices of resticted domains for sin(z), cos(z) and tan(z) are fairly universal,
but there are differences from book to book on the choices of resticted domains for cot(z),
sec(xz) and csc(z). With these choices of restricted domains, the inverse trigonometric
functions have the following domains and ranges:

inverse function domain range
y = sin”!(x) lz] <1 -5<y< 3%
y = cos~(x) lz| <1 0<y<m
y = tan~!(x) all x -5 <y<3F (2.2)
y = cot™1(x) all z O<y<m
y:sec_i(m) x| >1 0<y<Zand F<y<m
— ™ v
y =csc™(z) lz| > 1 -5 <y<0and 0<y< 3

Do you understand the various inequalities that give the domains and ranges of these
inverse functions? These should be evident by examining their graphs.

2.2: Relationships. One consequence of our choice of restricted domains is that the
inverse trigonometric functions satisfy the co-function relations:

sin™*(z) + cos ™! (z) =

tan™!(z) + cot "' (z) =

sec H(z) 4+ cscHz) =

(2.3)

[MERRIE R ST

These reflect the co-function relations (1.3).



The reciprocal relations (1.2) are reflected in the reciprocal relations:

1 1
sec_l(x) = cos ™! (—) , csc_l(x) = sin~! (—) , (2.4a)
which hold for every z such that |z| > 1, and

1
tan—! (—) for every z > 0,
T

cot™(z) = (2.4b)

1
tan—! <—) +m for every x < 0.
x

Neither (2.3) nor (2.4) need be memorized, but you should be familiar enough with the
inverse trigonometric functions that they can be recovered with a little thought. Can you
think of relations between inverse trigonometric functions that reflect the Pythagorean
relations (1.4)?

2.3: Symmetries. It is evident from their graphs that the inverse trigonometric functions
have less symmetries than the trigonometric functions. For example, they are not periodic
or anti-periodic. They do however have the odd symmetries:

sin™!(—z) = —sin"'(z),
tan~!(—z) = —tan"'(z), (2.5)
csc™H(—z) = —cscTH(x) .

These arise because sin(z), tan(x) and csc(z) each have odd symmetry (1.7) and because
each of the restricted domain used to define their inverses is symmetric under change of
sign. Notice that cot~'(z) is not odd because the restricted domain used to define it is
not symmetric under change of sign. When the odd symmetries (2.5) are combined with
the co-function relations (2.3), they yield the shifted odd symmetries:

cos ' (—xz) +cos H(z) =7,
cot ™ (—z) + cot Hz) =T, (2.6)
sec™(—z) +sec H(z) =7.

Once again, neither (2.5) nor (2.6) need be memorized, but you should be familiar enough
with the inverse trigonometric functions that they can be recovered with a little thought.
Can you see these symmetries in the graphs of the inverse trigonometric functions?



3. HYPERBOLIC FUNCTIONS

3.1: Definitions. The most important hyperbolic functions are sinh(z) and cosh(z),
which are given by the definitions:

xr __ ,—x x —x

sinh(z) = u, cosh(z) = e e (3.1)
2 2

Both functions are defined for every x. If you understand these functions, you can under-

stand all the other common hyperbolic functions through their definitions:

1 h X _ ,—Z h T —
tanh(z) = sinh(z) _ e 7 coth(z) = cos (z) _ " +e 7
cosh(z) e*+e @ sinh(z) e*—e® 39
1 2 1 2 (32)
sech(z) = = csch(z) = =

cosh(z) er+e 2’ sinh(z) e® —e "’

These are all very important and should be known. Notice that tanh(z) and sech(z) are
defined for every x because cosh(z) > 0, while coth(z) and csch(z) are not defined where
sinh(z) = 0, which only happens at = 0. If you are not so already, use your calculator
or a book to become familiar with the graphs of these functions.

3.2: Relationships. It is easily seen from their definitions that these functions are
interrelated. For example, one has the reciprocal relations:

1 1 1

coth(z) = fanh(z) sech(z) = cosh ()’ csch(z) = Sinh(z)

(3.3)

These either follow directly from or are restatements of (3.2) and should be known. Most
fundamental of all are the Pythagorean relations:

cosh?(z) — sinh?(z) = 1,
sech?(z) + tanh®(z) =1, (3.4)
coth?(z) — csch?(z) = 1.

The first these is very important and should be known. The second and third can be easily
recovered from the first by dividing it by cosh(z) and sinh(x) respectively, using definitions
(3.2), and making an obvious rearrangement of the terms.

3.3: Symmetries. It is evident from their graphs that the hyperbolic functions have the
even/odd symmetries:

sinh(—z) = —sinh(z), cosh(—z) = cosh(z), tanh(—z) = — tanh(z),

csch(—z) = — esch(z), sech(—z) = sech(z), coth(—z) = — coth(z) . (3.5)

The first two on the top can be seen directly from definitions (3.1), but are very important
and should be known. The others then follow immediately from definitions (3.2).
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3.4: Addition Formulas. Finally, hyperbolic functions also satisfy a family of addition
formulas that describe how they change when their argument undergoes an arithmetic
operation. This family is very similar to the analogous family for trigonometric functions.
As in that case, the identities all derive from a few basic ones in very simple ways. So it is
best to just memorize those few, and learn to recover the others. Those few are the three
argument sum formulas:

sinh(z + y) = sinh(z) cosh(y) 4 cosh(zx) sinh(y),
cosh(z + y) = cosh(z) cosh(y) + sinh(z) sinh(y),

tanh(z) 4 tanh(y)
1 + tanh(z) tanh(y) -

(3.6)
tanh(z +y) =

The first two of these are very important and should be known. The third is easily recovered
by dividing the first formula by the second. By replacing y by —y in (3.6) and using the
even/odd symmetries (3.5), one is led to the argument difference formulas:

sinh(z — y) = sinh(z) cosh(y) — cosh(z) sinh(y),
cosh(z — y) = cosh(z) cosh(y) — sinh(z) sinh(y) ,

tanh tanh (3.7)
tanh(x —y) = anh(z) — tanh(y) .
1 — tanh(z) tanh(y)
By setting y = x in formulas (3.6), you obtain the double-argument formulas:
sinh(2z) = 2sinh(x) cosh(z) ,
cosh(2z) = cosh?(z) + sinh?(z) = 2cosh?(z) — 1 = 1 + 2sinh®(z), (3.8)

2 tanh(z)

tanh(2$) = m .

The alternative forms given for cosh(2z) follow from the first of the Pythagorean identi-
ties (3.4). The last two formulas for cosh(2z) given in (3.8) lead to the half-argument
formulas:

sinh(z/2) = sign(x)(%)é, cosh(z/2) = (%)

cosh(z) — 1) 5 _ sinh(z) _ cosh(z) — 1
cosh(z) +1 cosh(z) + 1 sinh(z)

(3.9)

tanh(z/2) = sign(a:)(

The top two derive from the last two formulas for cosh(2z) by simply replacing x by /2
and making an obvious rearrangement of the terms. The first equality of the third is easily
recovered by dividing the first formula by the second. The alternative forms given for
tanh(z/2) follow from the first of the Pythagorean identities (3.4).



Other members of the addition formula family include the product formulas:

cosh(z) cosh(y) = [ cosh(z + y) + cosh(z — y)] ,
sinh(z) sinh(y) = [ cosh(z + y) — cosh(z — y)] , (3.10)
sinh(z) cosh(y) = [sinh(z + y) + sinh(z — y)] .

The first two of these easily follow by adding and subtracting the cosh argument sum and
difference formulas. The last easily follows by adding the sinh argument sum and difference
formulas. The final members of the addition formula family that we will give are the sum
formulas:

cosh(x) + cosh(y) = 2 cosh (%—i—y) cosh (332;‘1/> ,

sinh(z) + sinh(y) = 2 sinh(%) cosh(x ; y) .

These can be viewed as being derived from the first and last formulas of (3.10) by replacing
x by (z+y)/2 and y by (x—y)/2. Like the product fromulas, these need not be memorized
so long as you can recall the basic idea behind their derivation.

(3.11)

4. INVERSE HYPERBOLIC FUNCTIONS

4.1: Definitions. The odd hyperbolic functions (sinh(x), tanh(z), coth(z) and csch(z))
have inverses when considered over their whole domain, while the even ones (cosh(z) and
sech(z)) do not. However, the even ones do have inverses if we consider them over the
restricted domain z > 0. The inverse hyperbolic functions will then have the following
domains and ranges:

inverse function domain range
y = sinh™!(z) all all y
y = cosh™*(x) x>1 y>0
y = tanh™ ' () lz| <1 all y (4.1)
y = coth™ () lz| > 1 y#0
y = sech™!(x) 0<z<l1 y >0
y = csch™!(x) z#0 y#0

Do you understand the various inequalities that give the domains and ranges of these
inverse functions? These should be evident by examining their graphs.



10

Just as the hyperbolic functions have explicit formulas in terms of exponentials, with

logarithms one can write down the inverse formulas:
sinh~!(z) = ln(a: +Vz? 4+ 1)

cosh™!(z) = ln(a: +Vz? - 1)

—1 . 1 1 +x
tanh™ (x) = 2ln -
1 1
coth™ (z) = 3 ln(i i_ 1)
14+ v1—22
sech™!(z) = ln(u>
x

1 1
hl(z)=In( - +4/ = +1
csch™ " (z) n(a: + 2 + )

for every x,

for every x > 1,

for every |z| < 1,

for every |z| > 1,
forevery 0 <z <1,

for every z # 0.

These formulas need not be memorized because they may be easily derived.

4.2: Relationships. The reciprocal relations for hyperbolic functions (3.3) are reflected

in the reciprocal relations:

1
coth™'(z) = tanh™" (—) for every |z| > 1,
T

1
sech™!(z) = cosh™! (—
x
1)

csch™!(x) = sinh™* (
x

) forevery 0 <z <1,

for every x # 0.

These need not be memorized, but you should be familiar enough with inverse hyperbolic
functions that they can be recovered with a little thought. Can you think of relations

between inverse hyperbolic functions that reflect the P

4.3: Symmetries. It is evident from their graphs th
have the odd symmetries:

ythagorean relations (3.4)7

at the inverse hyperbolic functions

These arise because sinh(z),

sinh™!(—z) = —sinh™!(z),

tanh™!(—2z) = — tanh ™! (z), (4.4)
coth™(—z) = — coth™!(2), '
csch™!(—z) = — csch™*(z).

tanh(z), coth(z) and csch(z) each have odd symmetry (3.5)

and because no restriction of their domains was needed in order to define their inverses.
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5. EXERCISES

. Use the relations (1.3) and/or the symmetries (1.5-1.7) to show:

+x) = —cos(§ — ),

a. sin(§ +z) =sin(§ — ), b. cos( ) ( ]
- +x)=—sec(5 — ).

c. tan(§ +2) = —tan(§ —x), d. sec(

INIEINIE

. Use addition formulas to show:

a. sin(3z) = 3sin(z) — 4sin’(z),
b. sinh(4z) = 4sinh(z) cosh(z)[cosh®(x) 4 sinh?(z)],

3tan(z) — tan3(z)
1 — 3tan?(x)

c. tan(3z) =

. Use the reciprocal relations (1.2) and (3.3) to show:
a. sec”!(x) = cos™1(1/x) for every |z| > 1,

b. csch™!(z) = sinh ™! (1/z) for every = # 0,

c. relation (2.4b) holds.

. Use Pythagorean relations to show:

a. cos™H(z) =sin~' (V1 —2?) for every 0 <z < 1,
b. sec™!(z) = tan~! (V22 — 1) for every z > 1,

c. sinh™" (2) = cosh™' (V1 + 22) for every z > 0.

. Illustrate the identities a and b of Problem 4 with appropriately drawn right triangles.
Hint: In each case one side of the triangle will be of length 2 and another of length 1.

. Derive the formula for sinh™!(z) given in (4.2). Hint: To find y = sinh™!(z) you must
solve z = sinh(y) for y. But by (3.1) you see that

v_ev ] 1
x:sinh(y):%:§<u——>,
u

where u = e¥. Solve this equation for u in terms of 2 and then use In to find y.

. Derive the formula for coth™(z) given in (4.2). Hint: Follow the strategy suggested
by the hint for Problem 6.



