CMSC666 Numerical Analysis I Fina (40%) + Midterms
(25%) + Homework (35%), Final: 8am-10am, Dec 17 (Fri)

Introduction to Numerical Anaylsis, J. Stoer, R. Bulirsch
(31"(1 edition) Background (Ch.1,4); Interpolation (Ch.2); Integration (Ch.3);

Eigen Problems (Ch.6); Linear System (Ch.8)

1 Interpolation
e Sample values at points {@;,y; }._,
(assumes continuity C).
e Sample derivative values, y; = f(2:), {zs, vi, ¥} }iy

e Sample averages over subintervals,
_ 1 Tit1
Yird = i f"El f(x)dz

Linear Interpolation: Polynomial, trigonometric, splines;
O(z; Py, Py) = >0, Pe®()
Non-linear: Rational; ®(z; Py, -+, P,) =

aotaizt-Fanz”
1+b1 2+ Fbpa™

1.1 Polynomial Interpolation

Theorem 1.1 (Lagrange formula) Given n+1 distinct
points {xo, -+, xn} and n+1 associated values (x;,y;),i =
0,---,n. 3 a unique polynomial P(x) = ap + a1x + -+ +
anz™, s.t. (i) deg(P) < n and (ii) P(x;) = y;,i = 0,---,n.

Proof:  (Uniquness) Let P, and P; satisfy (i) and (ii).
Then, @ = P, — P, is a polynomial with degree < n.
Q(z;) = Pi(z;) — Po(z;) =0for i =0,---,n. Qhasn+1
roots = @ = 0.

(Existence) Let W (z) = [\, (z — ;).
Define Lagrange polynomial L;(z) = C w(z)

z—x;)w’ (z;) =
(0—w0)- (=i 1) (T—ip1) - (—2n) ey
(aclfxo[;(1171171)(901717111)(%*In) Then, Ll(xj) - 5”

1 ifi=j e N
0 , otherwise. Set P(x) = Yicoy:Lilw)- Plz;) =
Dimobili(wg) = 220 vidis = vj- QED

Error estimates: Given an arbitrary functin f and
points {z;}_,. Let P(z) = I, f(z;)Li(z). How well
does P approximate f over [z, zg|?

Theorem 1.2 Assume f € C"*'([xr,zg]). Let {x;};_,
be distinct with xp < o < T1 < -+ < T < xR. Let
P(x) = Yo f(zi)Li(x). Then, Vo € [rp,xg], 3 €
[z1, xR, s.t. f(2) = P(x) = Gy W (@) f D (€)

Proof:  Assume W(z) # 0 (i.e.  # x;). Let K(x) =
%(f)(m). Define g(t) = f(t) — P(t) — W(¢)K(x). Then,
g(x) =0 and g(x;) =0 for i =0,---,n. g hasn+20’s
and g(t) € C"*'([zr,zr]). By Rolle theorem, g\ has i
0’s for i = 0,---,n + 1. Therefore, 3¢, g*+t1)(¢) = 0. But
g t(t) = fOID#) —0— (n + 1)!K(z). Sett =€ =
K(z) = (nJlrl)!f(nJrl)(g)- QED
Remark: If f is a polynomial of degree < n + 1, then
1) is constant. So the error formula has no unknowns.

C norm |Glo(z, 2ny = sSuP{IG(@)| | @ € [zr,2R]} =

|G| (shorthand).

Corollary 1.3

1 n
1= Ploan,an) < ( IWle Hf( +1)Hc'

n+1)!
Remarks: This bound is sharp when f is a polynomial
with degree < n+1. |W|. depends on only {z;};_, while
|| (D) | depends only on f.

Chebyshev Interpolation Given [z, 2zg] and n, how
to choose {z;}_, so that |[W|, is minimum?

Remark: It’s enough to consider [zr,zg] = [-1,1]. If
{2}, solve the problem for [—1,1], then z; = £&5f2L +
TEZEL z; solve the problem for [xp,zg].

Let = cosf, where 6 € [0,7]. sinf = V1 —22 > 0.
cos(nf) + isin(nf) = (cosf + isinh)" = (z — iv/1 — x2)".
Define Chebyshev polynomial of degree n,

T.(z) = cos(nf) = cos(ncos ')
= z" - (g) 2" 21— 2%) + (Z) "1 —2?)? —
To(x) = 1
Ti(x) = =z
To(z) = 22% -1
Ty(x) = 42 -3z
Ty(z) = 8z*—8z%+1
Ts(z) = 162° —202° + 5z

2"~z 4+ lower terms

_ Tn.(x) , when n even,
Tn(-z) = { —T,(z) , when n odd.

T,(T;) = (—1), when; = cos(*~)
n

ITalle = 1
The solution for our problem is z; = cos((222)Z). Then,
Th+1(z;) = 0 and x; are the roots of Tj,,41. In this
case W(x) = T";—}L(JC) IWleq11) = 5. In general

_ ler—zg|"t?

”W"C([mL@R]) - 22n+1

Suppose  I{z;}7_,, st [W]e < > Set

Qr) = FTusa() = W(a). Q) = S — W),
Then, Q(Z;) > 0 when j even and Q(Z;) < 0 when j odd.
@ have at least n+ 1 roots but deg(Q) < n. Hence Q = 0.

Example: Let f(z) = mﬁ and e, = Hf — P(n)”C,

Uniformly pick points | Chebyshev

n én én

2 0.96 0.93
4 0.71 0.75
6 0.43 0.56
8 0.25 0.39
10 0.30 0.27
12 0.56 0.18
14 1.07 0.12
20 8.57 (diverges) 0.03




Neville’s Algorithm Given {(z;,v:)};_, and T €
[zL,xg], how should one compute P(T) in a way that is
stable and fast as possible? Neville is the best for few
(one) evaluations.

Let Pi,.... . () be a polynomial with degree < k and
Vi=0,---,n, P, .. (z:) = y;. These partial interpolants
can be computed by

Bo (.CC) = Yig>
Pyir(x) = (x — @) Piy i () + (@i, — ) Pig ooy, ()

Ty, — Tig

The algorithm is pictured as a tableau:

Zo Yo
> Py1(T)

1 > Py12(T)
> Plg(f)

T2 Yo > Po1,...n(T)
> Pn—l,n(f)

Tn  Yn

This computes P(T) with n(n + 1) multiplications and

—1 “ e
221 Jivisions.

Newton’s Interpolation Formula It is better for
many evaluation of P since it first computes P, then eval-
uates P(Z) for many T's. Write P as P(x) = by + b1(x —
xo)+ba(x—zo)(x—21)+ - Fby(x—20) - (x—2p_1) =
bo + (z — o) (b1 + (:v — .1'1)([)2 ++(z— xn_g)(bn_1 +

(x—=xp—1)byp) - -+)). One can evaluate P(Z) by the Horner
scheme which involves n multiplications to find b;’s.

Yo = P(zo) = bo

y1=P(x1) = bo+bi(z1 —z0)

Y2 = P(IQ) = b0+b1($2 —$0)+b2($2 —$0)(I2 —.Il)

More efficient is the method of divided differences.

Py,..x(x) = Po..k—1(x)+yo,. k(x—m20) - (x— K1)
= P +yo,.k@—2x1) - (x —xp)

Y1, .k — Yo, k—1

Yo,k =

Tp — Xo
Consider the tableau:

xo Yo =bo
> yo1 = by

1 > yoi12 = bo
> Y12

o Y2 > Yo,1,en = b,
> ynfl,n

Tn  Yn

L? Approximation Let I = (z1,xr) be an interval and
w(x) > 0 be continues weight over I. Define

i~ [

dx<oo}

Define the L?(wdx) inner product

(flg) = /If(:v)g(:v)w z)dzx

Clearly (f,g) — (f | g) is (i) linear in f and g (bilinear),
ie. (afi + falg)=al(fi|g)+ (f2]9), (ii) commutative,

Le. (f | g) = (g][), and (iii) (f | f) > 0 with (f | f) =
0 < f = 0. Define the L2(wdz) norm by |f| = (f | f)2.

Theorem 1.4 (Cauchy-Schwarz)
1A gl = 1CF [ 9)l-
The equality holds < f is a scaler multiple of g.

Proof: Let G = ((f L) g)) Va, 5,0 < (af +

(flg) (919
By | af +Bg) = a(f | f) +2aB(f | 9) + (g | 9) =
(a 6) G (g) So G is positive semidefinite (or non-
negative definite). Hence, 0 < det(G) = (f | f)(g9 | 9) —
(f | 9)%. The equality holds < Ja, 3, s.t. af + Bg = 0.
QED
Example: For T = [-1, 1] and w(x) = 1,
I e [ gl@)2de > (1, F@)g(@)dz)
1 ( ) Orthogonal polynomials
[-1,1] m T,,(z) Chebyshev
[0, 00] e ” L, (z) Laguerre
[—00, 0] %e’%zz H, (x) Hermite

One can use Cauchy-Schwarz to show

Lof +gl <171+ gl

2. Jaf] = alfl,

3. |f1 =0, and

1 1fl=0e f=0.
L? polynomial Approximation Suppose
" € L*(wdz),yn € N = 1{0,1,2,---}, ie.

J; *"w(z)dz < oo. This holds for all examples given
before. Let P™ = {polynomials with degree <n} =
{p |p(x) =ap+ - -az™}. P™ is a linear sub-space of
L?(wdz) of dimension n + 1.

Given f € L?(wdx), how to find the polynomial p € P"
that best approximates f? We want to find p € P", s.t.

(1.1)

Theorem 1.5 Jp solves (1.1) & Vqe P, (f—p|q) =0.

If = pl* <inf {If =’ la€ P"}.

Proof: Define Gram matrix, G = ((2 | x7))” 0
f] wdx flxwdzzr fIJ: wdzx
fI rwdzx fl z2wdx fI 2" lwdz
fIJ: wd:z: f[ wd:z: flxznwd:c
Qo
e RHDx(n+d), (a0 o) G = [, p*wdz > 0,
an
where p = a9 + a1z + - - - apx™. The equality holds <

p=0<« (ao an) = 0. Therefore, G is positive



semidefinite. 3 an orthogonal matrix O, s.t. OTGO is a
positive diagonal matrix. Using Gram-Schmidt, we can
construct orthogonal polynomials

po(x) o0,
pi(z) = oo+ ooz,
pn(x> = Qpo+ ap1®+---+ annxnv

where a;; # 0. (p; | pj) = 0 when ¢ # j.

Clam: p(z) = Y., a;pi(z), where a; = ((pf I"; Check
(f =plpj) = (F1pj) —a;i(p; | ps)- QED
1.2 Trigonometric Interpolation
Let T™ = span{l,cos(kz),sin(kz)};_,. Given f(z) €
L?, 2m-periodic, find S,f(z) € T", st. Vit(x) €
T | f(z) — Spf(x)]| |f(z) —t(x)]. The answer is

Fourier expansion

Snf(z) = % + Z ay, cos(kx) + by sin(kx)) ,
k=1
1 27
where a, = —/ f(z) cos(kz)dx and

T Jo

1 2m

b, = - f(z) sin(kx)dx.

T Jo

are Fourier series.

If f(x) is p-periodic, then g(x) = f(4=x) is 27-periodic.
If f(z) is defined on [a, b], then g(z) = f(%2+1) is difined
on [0, 27]. By the transfromations

e = cos(kx) + isin(kx),
ikx —ikx
cos(kx) = %, and
eikx _ efikx
(k) — e
sin(kx) 57 ,

i n . .
T™ = span {e““ }k:_n. The Fourier expansion becomes

> . 1 27 .
Z fre*®. with f, = o fz)e **dz.
™

k=—o0

f(z) is the phase polynomial with phase z and fk is the
Fourier series. The partial sum (truncated expansion)
Snf(x) =30, fre®® is the best L? approximation of
f(z) among all t(z) € T, i.e. YVt € T™, | f(x) — Spf(z)| <
|f (@) — t(z)]. Also,  limn—co [ f(z) = Suf(2)] =

. 2 2
lim;, 00 ( o (f(z)— Snf(x))2d:v) —
Derivation of the formula: Equip the linear space T

with L? inner product,

(f@@) [g(@) = [ fla)g(z)dz

The complex conjugate is necessary for complex-valued
. . 1
function since L? norm |f(z)|

(f(z) | f(=))> =

[ME

1
27 YRS 2 27
( . f(:c)f(ac)d:c) P (fo |f(ac)|2d:c) > 0,¥f. Then,
for integers j and k,
B ) 2w
(elgz | ezk:c) _ / PREPLE P
0
2
_ / iR gy
0
[2]27 Jifj=k
= pili—k)z .
o], AR
_ 2 Jif 5=
o 0 ,ifj#k

For norm is minimal, Vt(z) € T™,

[ f(z) = Suf(@)] < | f(2) — t(2)]
= f(x) =S, f(z) and t(z) — S, f(:z:) are orthogonal
= (f(z) = Snf(z) | t(z) — Snf(2)) =
= (f(@) = Suf(z) | t(x)) =0
= (f2) - Suf(@) | ) =0
= (f(x) | e*7) = (Snf(x) | ™)

Z fjeij;ﬂ | eik:;ﬂ Z z]w | ezk:;ﬂ _ 27Tfk:

= f = i " f(x)e_“”d:r

ke 27 Jq '

Theorem 1.6 (Parseval equality)

@ =2 Y (P
k=—o00
Theorem 1.7 (Bessel inequality)

o 3 AR < ISP

k=—n

|Sn f (x)

By Bessel inequality, fk — 0 as k — —o0, 00.

Formally, f/(z) = Y200 frke™@i. If f'(z) € L2, frki
is the Fourier coeflicient of f/(x). By Bessel inequality,
limpg— oo, 00 |f;€/€2|2 =0= |fk| < ﬁ for some constant c.

Assume f'(z) € L2 f = = 027T fl(x)e*ody =
# ([f(:zc)e’ikﬂ?r + ik fozﬂ f(:v)e’ikxdgc) = f

Assume f(z) € L2 Similarly, |fi| < ;—; |f(z) —
Snf(z)| = ’Z|k|>n fke ‘ < Z|k|>n|fk| < Zk\>nc_2 -

0asn — oo.

1 Jifz>n
tee f(o) = { o HEZT U@ - Suf@)] - 0
as n — o0o. However, it does not converge at x = 7.

This is called Gibbs phenomenon. The difference is

0.09(f(7") = f(x7)).
Discrete Fourier Series Let z, = 231?1 be support
points with v = —n, -+ -, n. For any function f(z) defined

on [—, 7], suppose we only know f(z,). In [?(C*"*!) =



span {Wx},_ .., f(z) can be discreatized in form of vec-

flx_p) etk —n
tor f = , where W = , The in-
f(l'n) etkTn
ner product (f | §) = S f(zy)g(xy). Then, the
orthogonality of basis is preserved, ie. (W; | wi) =

0 Jifj#£k
2n+1 ,ifj=k °
Then, fk can be approximated by
Fo_ (f| wy) &
Ji= (W, | W) 2n +1 Z

—ikxy,

EZ:—n fkeikx
Vo, Dyf (@) = flao). vt e T |7 = Duf| < | -1,

The first part is truncation error due to cutoff of high

The Fourier expansion is D,f(z) =

frequency components, |f(x) — Spf(z)] e, Cs =
” f (S)(x)H. The second part is discretization error (alias-
ing exxor), $nf(z) = Dnf(@) = Siimn (i = fr)e™e.
r = 2n+1 Zv_fn (Zj_foo f] WU) ety =

#Jrl Z;i*oo fj szfn {g=k)z : Since Ty = 23171)1’
s Gili—R)ey 2n+1 ,if 2n+1)|(j —k)
v=—n o 0 , otherwise.

Then, fx — fx = > j£0 Frtanin);-

Let n =2m, w=2C =

n?

Fast Fourier Transforms

f(a;) and f= (fo, -+, fa-1). Then,
fk = (anflv"'vfnfl)k
1 n—1 ‘
= — Z fve—lk?’w’u
n
v=0
1 n/2 n/2
= = Zvae—ikw@v) +Zf2v+1e—ikw(2v+1)
n
v=0 v=0
1 —ikw
= 5((f07f2,"'7fn—2)k+€ (f1o f3ee s Fa1)k)

The running of the algroithm is IV log, V.

1.3 Spline Interpolation

One of the simplest is continuous, piecewise linear in-

terpolation (connect the dots). Given data (z;,y;)7_,
Y(z) = E?:o y;Tj(z), where T;(z) is a tent function,
i_jij]ill R if Ti—1 <T<T;
Tj(x): ;J_””Tﬂjill Jifxy <z <z
, otherwise.
This is the best second order accurate ~ (Ax)? if y; =

f(x;) with f € C2.

The idea of splines is to patch together higher degree
polynomials with greater regularity. What is the most
regularity we can impose using cubics? Assume Y (z) is

piecewise cubic. There are 4n unknowns: 2n interpola-
tion constraints, n — 1 continuity of derivative constraints,
n — 1 continuity of second order derivative constraints and
setting Y’/ (z) = 0 at o, y.

Consider the problem

.1 /z"
min{ -
2 Juo

Using Lagrange multipliers, let

l/wn Y/I
2 Juo

Then, VY € C? with Vj, Y (

(Y (x))*dx

Vi, = Y(Ij)}-

=Y N v5)-

Jj=0

QY. X) =

Ij):O,
0 = YVyQ

d ~
= d—SQ(Y +sY, )

o d 1/””"
- ds 2 Jso

s=0

(Y"(z) + sY"(x))?dx

7=0 s=0
= ' Y (2)Y" (x)dx
- Z([y"(x)f//(x)]j ~ / Yy )y’@)m)
j=1 j—1 Tj—1
= - [ Y3 (2)Y (z)dx
+ Z [Y”(:v)f/’(:v) Y”’(x)f/(:v)]j]
j=1 o
= 3 (Y@ (@) = Y@ )V (@5m)
j=1
= Y"(x;,)Y'(2n) = Y"(2§)Y" (o)
n—1
+20 () =Y ) V()
j=1
Y"(x,;)=Y"(z§) =0 and
(:){ Y'z;)=Y"(x ;J)r) forj=1,---,n

Y"(x;) = Y"(zg) = 0 and
Y is continuous.

@(*){

Assume condition (%) and let Y be arbitrary.

0 = iQ(Y—i—sY A)
d s=0
= Y [eve y/”(x)f/(x)]j — 3NV ()
j=1 Tt =0
n—1
= > (V") = Y"(z7) = N)Y ()
j=1



—-Mjfl +

Y (xg) Jif =0
=Y (x;)) Jifj=n
Y”I(,T;r) = Y"(x;) , otherwise.
Let MO = Mn = O,Mj = Y//(Ij) and Aj = x5 —Tj-1.
Y is piecewise linear. Consider Y over (z;_1,z;,

Then, \; =

T —Tj—-1 Tj— T
— + M;_
AJ + 7j—1 AJ

(55 Lj— 1)
PR et VA
J GAJ
—zj-1) + Bj(

2

15+ B

Y”(,T) = Mj

(z; —x)3
+M_] 1 GAJ

xj —x)

Y(z) =
+A(x
yi1=Y(xj1) = M;-

2
24,
6 1=

Y'(rj-1) =
Yi(x;) =

Since Y’ is continuous,

Aj

A
M;—

2

Yirr =Y Y —Yi-1
Aj A

— M,
Aj+Aj
3

+ A1 —Bj = L+ A; — B
Ajir
6

M; + M 1=

Yi+1—Y; _ Yi—Yi—1
Aj+1 Aj
Aj+Aj4r
2

Aj 2 Aj+1

3(A; +A,0) HER 3(A; + A, T

Let Cj=

Assume Vj, A; = A (uniform intervals).

%Mjfl + gMj + %MJ—H = Yo iy; AR
% % My c1
1 M, B c2
1 :
b3 e

This tridiagonal systems can be solved by Gaussian
elimination.

Theorem 1.8 Let f € C*([zr,zr]) and y; = f(z;)
where j = 0,---,nand xp, = xg < 21 < -+ < Ty = TR.
Let Y be the continuous, piecewise linear spline. Then,
If =Ylo < klf"lc A% where A = max{A;}; and k is a
constant.

Theorem 1.9 Let f € C*([xr,zg]). Let Y be the cubic
spline. Then, |f =Y |, < ks ”f(4)Hc A%,

2 Numerical Quadrature

Given integrand f, evaluate f;LR f(x)dz. Let z =z <
x1 < -+- < xp, = xr be a partition of [z, zgr]. Evaluate
y; = f(z;) and build an interpolant P(z), then evaluate

[ P(x)da.

2.1 Newton-Coles formula

If P is the polynomial interpolation of degree n of (z;,yi),
then P(z) = Y i o viLi(x) iwaf dz ~ 310 yiwi,
where the weights w; = f Li(z)dxz. Since Y ;" Li(z) =
LYY qw =xr—xr. Itis not so clear that each w; > 0.
Note w;’s depend only on {z;};, and [z, zg], but not f.
Example: For n =2 and A; = A, [7F f(z)dz ~ (y0 +
3Y1 + 3y2)A (Simpson’s rule).

Trapez01da1 rule If P is the linear spline,
T Yit+yi— A
Jor (@ R X A Ty +
Z? 11 A +A1+1 yi + %yna where A; = z; — z;_1.
ES] Lifi=0
A Ki+Ai+1 e
Then, w; = ==+ Jifi=1,---,n—1 . Note
Bn ,ifi=n

2
Y ow; =xg —xr and w; > 0.

Error estimate Given {z;};_, and {w;}]_,, how accu-
rate . o y;w;? Let A = max {Al} We estimate the
error E(f) when approximating I(f fIP‘ f(x)dx by
the numerical quadrature Q(f) = Z OylwZ Clearly,
E(f) =I(f) —Q(f) |E(f)] < MHf H A™ for some
constant M depended only on [z, xg], or in the asympotic
form ‘f;LR flz)dz =37, yiwi‘ ~ cA™ for ¢ depended on

f and [z, xR].

Right-hand rule Let f be continous and non-
decreasing. Then, Y i, yA f“ flz

Z?:l(yi - yifl)Ai < Azizl(yz —Yi— 1) A(yn - yO)
A(f(zn) = f(z0)) < (xr — ) [['|c A

Con&der—f (@i—z)(z—zi1) [ (2 )dz = 3 ; 1

Ti1 — T; + LL‘)f( )dl‘ %(f(xz 1) + f(xz))
f;i f(x)dz. Therefore, E( Dy wal (v; —)(z
xi—1)f"(x)dx = f;LRK x)f" (x)dx, where K( ) = %(:1:1
x)(x—xi—1) > 0 for ;1 <z < x;. One can estimate this
€rror as

I IA

(a—

\\n
A\_/
|

EOl < [ K@ ooy
o BN < IK@logee [ 1@z
o 1B = ([ wepra) ([Tirwpe)

Pick the best given what you know about f”.



Zi

3 o (@i—a)(x—2im1)dr = %?. Hence, f;j K(z)dx =
A? < Zm QILAQ where A = max{A;}. Then,
( )| < EBEEL A [ | (g gy for the first inequality.
For the | K (2 )"c ([xi-1, ml]) =
max{ %(xz —z)(zr —mi_1) } x € [Ii717xz]} = 2(171 -
T (PR — i) = §AY Hence, |E(f)|

sA2 [0 11" (@) da.

1

second inequality,

IN

Theorem 2.1 (Peano’s Kernel) Suppose Q(f) inte-
grates ploynomials of degree m or less exactly for f(x) €
C(T;L zR])’ i.e. fo |f(m+1 (z)|dx < oo. Then, 3K (), s.t

E(f) = [, K@) f" ) (z)da.

Proof: Let ®F(z) = Y0 %z — 2;)F H(z — z;) —
(x—xp)*t?! o 1, ifz>0 . :
(k1)1 where H(z) = { 0 , otherwise is the Heav

isick function. Note that dq) (:”) = ®FI(g), ®F(xr) =

0 and ®*(zr) = Y% (IR — @) - % -
Q(lea—a)ty _ p(lea_o)'y o for k < m.

Then, E(f) = f;LR (Z?:o wid(x —x;) — 1) f(x)dx =
f;R do® (r)f( ydz = f;LR(_1)m+1®m(x)f(m+1)(x)daj'

QED
For the trapezoidal rule, K (z) = & (z; —)(z — x;_1) for
x € [x—1, 2;]. The key to showing this is

()= S+ 1) - [ s

= /jl %(a@i
:?—E(f’(:vi) — f'(wi-1)) +/

Z;

—x)(x —xi—1) f(z)dw
T; 2
(a(a) — 20 " (@),

where 9(2) = K(z) and |K(z)| = %2. Let ¢4(x) =
& (@ — )% (x — 2-1)% > 0. ¥ (2) = —a(z) + f—; and

(
Ya(ri1) = Py(wi—1) = Yy(xi) = Ya(x;) = 0. Then,

"(xiz1) / Ya(x (z)dx

Sumlarly, we can find ¥g(z) > 0, s.t. PYg(r) = —pa(x) +

S (f )~

3§4'), where 30(4,) is the mean of ¥4(x). So,

2

E(f) = %(f’(z»—f’(wi_l))
!

30(4!)(]“”(90) @) / Yo(e)f© ()

The last term can be bounded

AT
le , Yo(x)dx Hf(ﬁ)('r)HC[zi,l,zi] = 3206 ”f(ﬁ)(I)HC'
Consider the trapezoidal rule with uniform subin-
tervals. Then, E(f) = %—;(f’(xR) — f'(z1)) —

o (f"(wr) = f"(w1)) + eo(f), where [e(f)] <

i (or = 20) [FO @) = 0(29).

by

Euler-Maclaurin formula For f € C?m+2,

Z

B2J AQJ

-1 ()= £ (21 ) +ezmia(f)

. B m
with egm4a(f) < (231++22

A2 (g _xL ”f(2m+2) H

Where ng are Bernoulli numbers. By = B4 30 ,Bg =
42 , Ba = Z=. The formula is an asymptotm expension.

Suppose f is periodic and [z, zg] is a multiple of the
period. The formula becomes |E(f)| = |Eami2(f)] ~
O(A?™%2) The trapezoidal rule has spectral accuracy
for f € C* (i.e. it converges faster than any A2m*2).

Extrapolation & Rombery Intergration Let Q(f)
denote the quadrature by the trapezoidal rule with uni-
form subintervals of length A = #£-%£L. The Euler-
Maclaurin formula gives Qa(f) = I(f) + aaA? + ayA* +

4 AP+ O(AZMT2) Suppose n is even. Qaa(f) =
I(f) +4asA? + 1604 A" + - - - 4+ 22 g, AP™ + O (AP H2),
Then, 2@aW)z@2al) — 1(f) 4 4ayA* + - + 2 A2 +
O(A?m+2) which is 4% order. What scheme is this?

3Qa(f) = 3Q2a(f) = 5(3f(wo) + f(z1) + flwa) + -+ +
F(@n1) + 3/ (@n))A = 5(3f (@0) + [ (w2) + f(wa) + - +
f(@n—1) + 3f(zn))2A, which is Simpson’s rule (or

Newton-Coles for n = 2).
Suppose n is divisible by 4. We look for a combination of

Qa(f), Qaa(f), Qaa(f) that eliminate A% and A* terms.

Qa(f) = I(f) + a2’ + s A + O(A®)

Q2a(f) = I(f) +4a2A% +16a4A" + O(A°)
Qua(f) = I(f)+ 16a2A% + 25604 A" + O(A)
Then, $@al)=20@2a(N1@aal) — 1(F) 4 O(A®), which is

Milie’s rule.
Qa(f)
= 4QA(f)§Q2A(f) = Sa
Qan(f) > %
> 4Q2A(f) Qaa(f) _ — Son
Qan(/f)
When n is divisible by 6, we can use

. Qa(f),Qaa(f),Q3a(f),Qsa(f) to eliminate A% At AS

terms. This 1eads to Weddle’s rule (or Newton-Coles
forn—6), 140 (x )—l—% (1) +---

Romberg considers n = 2™. Let T; be the trape-
zoidal rule with k uniform subintervals and M}
be the mid-point rule with % wuniform subinter-
vals.  Then, T\ = 2i(f(zr) + f(zr))(zr — z1),
M, f(ngm_R)(iUR —z2p), To = —(T1 + Mj) and

g =D pt=n

Top = L(Th + My). Let T)) = 222 —Tk — po the ™
level extrapolent. We have Neville’s algorithm
Ty

167" —1 ("
T > TP =1 1
> T4(1) 4T43 Ty > T8(3) _ 64T§2{;3_Ti2)
1 T(l)fT(l)
r L )
> Tg(l) 4T83 Ty

Ty



2.2 (Gaussian intergration

Let —00o < a < b < oo and f(z) be a function de-
fined on (a b). We consider integrals of the form I(f) =

I @)

Then, f contlnuous7 f > 0 and f:f(ac)w
f(z) =0. Assume f;(f(x))2w(x)dx < 0.

x)dr, where w(z) > 0 is a weight function.
(x)dx = 0 =

Orthogonal polynomials 1,z,22,

dependent = 1,x,---,2"

- are linearly in-
are linearly independent for

each n. If we apply Gram-Sehnuld to 1,z,22%,---, we
get a sequence of orthogonal polynomials ¢g, ¢1, - -, s.t.
((bmv(bn f (bm n(x)w(x)dx = Omn. an is a p01Y'

nomial of degree n. ¢, are uniquely determined by a, b, w
if the coefficient of 2" is positive. ¢g, ¢1, - - - are the orthog-
onal polynomials with respect to w. These polynomials
have many properties:
L[} dn(@)p(e)w(z)ds
degree < n.
2. ¢n(z) has n simple zeros in (a,b) for n > 1.
Proof:  Suppose ¢, () does not change sign on (a,b).
Then, f; On()w(x)dr = 0 since ¢, L g = ¢p(x) = 0,
which leads to a contradiction. Therefore, ¢, (x) has at
least one zero on (a,b).
Let x1,- -, x, be the zero of odd multiplicity of ¢, (x)
on (a,b) and suppose r < n. Then, ¢(r) = ¢p(x)(z —
x1) - (:v — z,) does not change sign on (a,b). But

= 0 if p is a polynomial with

f on(x)(x —21) - (. — 2 )w(x)dz = 0 since ¢, L ¢ =
On(x )(:E—:vl)---(x—:vT) =0= ¢, =0. It leads to a
contradiction. Therefore » = n. QED
Examples:
1. Legendre polynomial, P,(x) = (2’;), A (22 —1)"
for (a,b) = (—1,1) and w(x) = 1. The leading co-
efficient is 1 and |P,| = 2. n))2 2n+1 P, are or-

thogonal and are ¢,, to w1th1n a constant multiple.

to@) = /3.01() = /3w, 60(a) = l\/5<3x2 -1
and ¢, (x) = IL(DIH) The leading coefficient is TP P"

2. Chehyshev polynomial, T}, (z) = cos(ncos™!x)

for (a,b) = (-1,1) and w(z) = \/1177 These are
mutually orthogonal and are ¢,, to within a con-
stant multiple. We know that their zeros are in
(=1,1), |Tn)* = Z and the leading coefficient is 2"~

bn(x) = IITEfII) = \/gcos(n cos™! ) and the leading
coefficient is 21

3. Laguerre polynomial, L,(z) = fl— T (z"e™ ™), for
(a,b) = (0,00) and w(z) = e~ *. Lo(z) = 1 L1( )
—x+ 1, Lay(x) = 22 —43:—|—2L3():—:c —192% —
182 + 6. Then, (L, Ln) = [7° L (2) Lyn (x)e~"da =

Smn(m)(n!). on(x) = M the leading coeffi-

cient is =10

n!
4. Hermite polynomial, H,(z) = ex; dcg;efﬁ for
(a,b) = (—o00,00) and w(x) = e *. Hylx) =
1, Hi(z) = 2w, Hay(x) = 42® — 2, H3(x) = 82 —

122, Hy(z) = 162* — 4822 +12. |H,|?
the leading coefficient is 2™ and ¢, () =

= 2"nly/7,

(@rnlyF) 2

Gaussian rule For > 1, let zy,---,z, be the ze-
ros of ¢,(x) and P,_; interpolate f(x) at xq1,---,Z,.
Then, we approximate I(f) = f b fz

b

[ Pa(z)w( = 7S fla) Li@)w(z)de
>ict f(l'i)wi, where Li(z) = Tl 1*_9;2
[0 Li(x)w(z)d.

Q

and w;

Theorem 2.2 A Gaussian rule of order n is exact on
polynomials of degree < 2n — 1.

Proof: Suppose pis a polynomial of degree < 2n—1. By
long division, p(x) = q(z)¢n () + r(z) with degg < n —1
and degr < n. Then, f:p(x)w(x)dx = ff(q(m)qﬁn(x) +

r(z))w(z)de = fjr(a:)w(:zr)dz = Z?:l r(z)w;, =
S (p(@) — q@i)on(z))ws = Y7 plxi)w; since
bn(zi) = 0. QED

Order of k or degree at precision £ if an integration
rule is exact on polynomials of degree < k but not higher
degree polynomials.

Examples:

1. Legendre: For f(z) = 2",
1 wn—i—l 1
/—1 n ]1 a {

For n =1, ¢1(x) has a root 1 = 0. wy = fil ldz =

2. Then, f_ll f(x)dz ~ wif(0) = 2f(0) (mid-
point rule) is exact on polynomials with degree
<2-1-1=1 (linears).

For n = 2, the roots of ¢2(z) are r1 = —

, if n is even
, if n is odd.

O3

" dx = [

1
%7332

_L\/— fl flz)dz ~ wlf(—%) +w2f(i) i
exact for degree <2.2—-1=3. For f(x ) 1,
2 = wy + we. For f(x) =2z, 0= VA
Then, wy = wy = 1.

For n = 3, the roots of ¢3(z) are 1 = — g,:zrg =
0,05 = & [l fl@)ds ~ wif(—yf2) +

wa f(0) + wgf(\/é) is exact for degree <2-3 —

wy +we+ws = 2for f(x)=
1=5. —w; +ws = 0for f(z)=ux,
Swy+ 3wy = 2 for f(z) =%

Then, wy = w3z = % and wy = %

2. Chehyshev For n = 1, Ty(x) has a root z; = 0.
f 1 f) dr =~ w; f(0) is exact for degree < 1. For

.1 11
fl@)y=1,w = fl\/_—d:c—[sm 1x}_1:7r.

3. Laguerre: For n = 2, the roots of Ly(x) are 1 = 2—
V2and zo = 2+V2. [J7 f(z)e "de ~ wi f(2—V2)+
wa f(2—V2). For f(z) =1, w1 +wy = [, e “da =
[—e7?]y = 1. For f(z) = z, (2 — V2w + (2 +
V2)ws = fooo e %dr = [—ze | + fooo ze *dr = 1.
Then, w, = # and wy = 2%5.

4. Hemite: For n = 1, Hy(x) has a root 21 = 0.

S22, f@)e™ de ~ wy f(0) = /7 f(0).




For n = 2, the roots of Hy(z) are 1 = —%
and wy = % foo fxe_””2dx ~ wlf(—%) +
wzf(%) = 4 (f( )—i—f(f)) since wy + wy =

2
“Tdr =

= e~ dz = /7 and —YL 4 W2 = [ pe
oo

Theorem 2.3 (Mean value theorem for integral)
fbf Jdz = f(€)(b ~a) for € € (a.D).
J; 1@)a@)dz = £(©) J; ala

Error estimate Suppose f € C?"(a,b). Let h be a
polynomial with degree < 2n — 1 that interpolates

More generally,
Ydx if g(x) is at one sign.

foat mi,x1,x9,T2, ¢, Tn, Tpn, 1.6 h(a:l) = f(a:l)
and h'(z;) = f'(x;).  Then, [ h(z) =
Yigwih(z) = Y wif(x).  f(z) - h( ) =
f[fEhfI:l,J:Q,fEQ, e ,.’L'n,.’L'n,.’L'] H?:l(x - xz) =

) = [P f@w@)de — X0 wif () = [O(f(x) —
(@) w(@)de = [ fler, @1, 29, B2, Tn, Tn, m Sz —

zi)Pw(z)de = flry, 2z, 22,20, Tn, Tn, & f Hz (@ =
(2n) b

v)u(@)de = L@ T @ - e we)de =

(2n) @

f2n)'A2 J" &2 (v)w(x)dr = {%W for some &, 1 € (a,b),

where A, is the leadmg coefficient of ¢, (x).

Example: For Gauss-Legendre formula, A, =
n)! n 2n+1
% et ThenE(f)—(gfmef ().

Integrands with singularities Quadrature rule gen-
erally work well (or best) if the integrand is smooth, i.e.
it has several derivatives of modulate size (huge ﬁ)
If it is not the case, sometimes the integral on (a,b) can
be subdivided by a = ag < a1 < --- < @, = b in such
a way that the integral is smooth on each [a;—1,a;] and
continuous. f: f(z)de =377 ;71 f(z)dx.

Examples: Let f(z) = /zsinz. f'(z) = bl‘”E—l-\/fcosgc

f(x) = N Z‘;‘%z — Vasinz. Let t = \/_ dx = 2tdt.
fO Vzxsinzdr = fo 2t2 sin t2dt.
Or fo Vrsinzdr = fo xsmxdw—i—fE Vasinzdr =
fo — é—? + 5—5 + -o)dr + fg Vaxsinzdr =
00 (_1)i£2i+%
Z W +f£ (ESIH.’I]d.’I]
For [ f(z)dx, 1et x = 1,dv = Sdt. Then,

f f(z da:_fo t dt

3 Linear Systems

One faced with solving NV x N systems Ax = b, where N is
very large (=~ 10% or 107. Such systems can be effectively
solved by iterative methods. The idea is to construct a
sequence of approximate solutions z(®, (1) ... 2 At
each step, the error is e(™ = z(™ — 2. To specify an
iterative method, one needs (i) a rule for constructing an
approximation (™ to e(™), so that one set z("1t1) = z(") —

¢ and (ii) a stopping criterion, ideally based on bounds
le™]

on He(") ” or better on relative error T

Residual is defined to be r(® = b — Azx(") = Az —

Az 2“7)4”6(")-“ HAI_(IT)”") < A= Hf“|(|" | and gy <
e'” A" rl _

B = e = e < 1AHAT e lalja

is the condition number of A. If the condltlon number
of A is bounded, then a stopping criterion might be that

(n)
r . . .
“ ol ” below a tolerance for a certain number of iterations.

3.1 Vector and matrix norm

Vector norm on a linear space is a mapping |-|, s.t.
L z] =0,
2. |z =0<2z=0,
3. |z +yl <zl + |yl and

4. fox| = |af|].

The distance between z, y is |z — y|. Some common vector
norms for RV are

N
Loy = 35m wilal,
1
N 2
2. [z, = (S wia?)”, and
3. |7]o = max; {|zil},

where w = (wl wn) is vector of positive weights.

Matrix norm is assoicated with vector norm,

_ Sup{ ”m” v 4 0}.

Adjoint of A with respect to the inner product (z | y) =
SN zysw; is A*, st Ve, y, (A*z | y) = (z | Ay). Then

N
LAl = max; {2 sl },
2. |A], = max { A3

N
8. Al = max; {1, Jas|w; }.

For all matrix norm, we have
L1 =1,
2. [Az| < |A]]x], and
3. |AB| < |A]|B].

14]

A is an eigenvalue of A*A},

3.2 Spectral theory

A is an eigenvalue of A € €N if 30 #£ 2 e €V, sit.
Az = Az < det(A — AI) =0 < A — A is not invertible.

Spectrum of A,

sp(4) = {Ae C | A— X\ isnot invertible}. Let A €
sp(A), s.t. Je, Ae = Ae. For any matrix norm, |A\| = HH/\:H” =
“ﬂiﬁ” < max{ Hﬁ‘;ﬂﬁ\\ z # 0} = |A].

Spectral radius
| Al The

limy, oo [A"]7.

is pep(A) = max {|A] | A€ sp(4)} <
spectral radius formula psp(A) =



3.3 Stationary iterative methods

In these motheds, the rule for finding z("*1) from z(") is
the same for each n. Suppose we have an approximation
B to A, s.t. B~! is cheap to compute. Then, set ¢ =
—B~ 1" g0 that (") = z(®) 4 B=15(n),

When does this converge? Notice e("1) = z(nt1) _ 5 —
2 — g+ B~ = (M) — B=1Ae(™) = (] — B~1A)e(™.
Hence, e(™ = (I — B~ 'A)"e® = Gme®), where G =
I — B~'Ais the growth matrix.

Theorem 3.1 This converges for all z(© < psp(G) < 1.

Proof:  Clearly, if psp(G) > 1, then set e(®) = eigenvec-
tor of A with |[A] > 1 = no convergence.

e(m) Gre® ' A
||||e(0)|||| | o | < |G™| but lim, . |G"|" =

psp(G) < 1. Pick § > 0 with pep(G) < 1 — 6 for some
no, s.t. ¥n > no, [G*|" <16 = |G"| < (1—-5)". QED
Many classical choice for B are based on the decompo-
sitions A =D — W = D — L — U, where D is diagonal,
W is off-diagonal, L and U are strictly lower and upper
triangular respectively. Every entry of D is non-zero.

Jocobi | Gauss-Seidel | Successive overrelaxation
B D D—L %D —L
G| D~'w (D-L)~'U (D —wL) (1 —w)D +wU)

When w = 1, SOR is Gauss-Seidel.

Row diagonally dominant if A = (a;), |ai| >
Zj#i la;;| for ¢ = 1,---,n. A is column diagonally
dominant if [a;;| > 2, laj| for i = 1,---,n. Ais
strictly row/column diagonally dominant if all the corre-
sponding inequalities are strict (>).

Theorem 3.2 If A is strictly diagonally dominant, the
the Jacobi method converges.

Proof: For the row case, psp(Gy) < |Gyl =
—1 _ 1

|D=1W |, = max; { 1y 5,005 ) < 1.
Similarly, for the column case, psp(Gy) < |Gy], =
-1 _ 1

[Pt W, = max; { g X2 a5 f < 1. Q€D
Strict diagonally dominant is a strong condition. Con-

sider the problem —u” = f of [0,1] with u[0] = u[1] = 0.

Approximate it as —wHFRMITUio1 £ for g = gy, = 0

AQ
and A = % That is
2 -1 0 .- 0
U fi
-1 2 -1
1 Ug f2
A2l 0 -1 2 0 : = :
-1 Unp—1 fnfl
0 o -1 2

The matrix is irreducible but not strictly diagonal domi-
nant.

Irreducible A = (a;j)nxn is irreducible if there is no
Ay A

0 Ay , where
A11 is N1 X Nl, A12 is Nl X N2 and A22 is N2 X N2 with

N1+N2:Nand Nl,NQ > 0.

permutation matrix P, s.t. PTAP =

There is a simple graphical test for irreducibility. Create
N nodes. Connect node i to node j by an oriented arc if
ai; 7 0. The matrix is irreducible < there is a oriented
path connecting node every pair of nodes.

Irreducibly diagonally dominant if (i) irreducible,
(ii) diagonally dominant, and (iii) at least one of the di-
agonally dominant inequalities is strict.

Theorem 3.3 If A = (a;;) is irreducibly diagonally dom-
inant, then the Jacobi method converges.

Proof: Similar to theorem 3.2, HD’WV”OO < 1 for
the row case or HD’WVH1 < 1 for the column case =
psp(D7IW) < 1.

Suppose psp(D7'W) = 1. For the row case, Je €
VN € G\ =1, st. D7'We = de. |e|, =1 =
Hi,ei =1. aii€; = %ZJ i Aij€j. |aii| < Zj;éi |aij||ej|. By
the irreducibility, Vi, |e;| = 1. QED

Lemma 3.4 If a matriz A is either strictly diagonal dom-
inant or irreducibly diagonal dominant, A is invertible.

Proof: Suppose Ae = 0 with e # 0. Then,
leil 225 laijl < laie] = ‘Zj#aijej. WLOG, as-
sume fe|, = 1. Ji,e; = 1. = 3 ., lai;| < |ay| =
|3 aes| < Tyilaesl < 5, lail = legl = 1 for

all j when a;; # 0= a;; = Z#i |a;;| for all i = A is only
diagonal dominant but all inequalities are not strict which
leads to a contradiction. QED

Theorem 3.5 Jacobi, Gauss-Seidel, SOR conver-
gence theorem:

1. If A is either strictly diagonal dominant or irreducibly
diagonal dominant, then both Jacobi and Gauss-Seidel
methods converge.

2. If A= D —W with W > 0 entrywise and the Ja-
cobi method converges (i.e. psp(Gy) < 1), then Gauss-
Seidel method converages with psp(Gas) < psp(Gy).

3. If A is symmetric positive definite, then Gauss-Seidel
method converges and the SOR method converges for
w e (0,2).

4. The SOR method diverges for w ¢ (0,2).

Proof: 1. Let A € sp(Ggs) and Ggse = e for 0 # e €
CV. Then, (D — L) 'Ue = \e = Ue = ADe — A\Le =
(AD — AL — U)e = 0. Define A(\) = AD — AL — U.

For A > 1, A = A(1) is strictly diagonal domi-
nant = [Nlas| > N2 lay] + X000 lagl = A
is strictly diagonal dominant. On the other hand, if
A = A(1) is irreducibly diagonal dominant, |a;| >
> ji |aij| for every i and the inequality is strict for some

. i—1 N

i (A > 1 = Mas| — M50 lasg] — 205—i lai] >
>0 |, for every i .

IAl(lasi| = 2252 laijl) { >0 . forsomei = A(N) is di-

agonal dominant. A()) is clearly irreducible for A # 0
since the non-zero entries are the same as before. There-
fore, A(\) is irreducibly diagonal dominant.

By lemma 3.4, A()) is invertible for A > 1. A(M\)e =
0 = A(\) is not invertible = |A| < 1 = psp(Ggs) < 1.



The proof for Jacobi is similar.

4. Observe D — wL is lower triangular and (1 —
w)D + U is upper triangular.

| det(Gsor(w))| = |det((D —wL)™

HAGSP(GSOR) |/\|
Bdet((1-w)D+U)| =

wmy (1 - w)Ndet(D)’ = [1-w|N. pey(Gsor) = [1—w| >
lifw ¢ (0,2). QED
Hermitian symmetric if A € CVN A% = A, where

A* is the complex transpose of A. When A is real, A* =
AT so A is Hermitian symmetric if A is symmetric.

Euclidean inner product on €V, (z | y) = 2*y. Then,
(x| Ay) = 2" Ay = (A"z)"y = (A"z | y).

Self-adjoint with respect to (z | y) if (x | Ay) =
(Az | y) & A* = A. Then, max {eigenvalues of A} =
max{ (@A) | g O} and min {eigenvalues of A} =

(@)
‘x;é()}

z | Ax)

min{ ((

Non-negative definite (> 0)if A € CV*V, A* = A
and z* Az > 0. A is positive definite (> 0) if, in addi-
tion, x*Ax = 0= x = 0.

If A> 0, then D > 0 for both entrywise and as form. If
A> 0, then D > 0.

Theorem 3.6 (Spectral mapping theorem) Let p(z)
be a rational function. If X € sp(M), p(\) € sp(p(M)).

Theorem 3.7 Let A* = A and D > 0. Then,
1. Jacobi converges < —D < W < D.
2. SOR converges < |w — 1] <1 and A > 0.

Proof: 1. Since A* = A, we have D* = D
and W* = W. D7'W is self-adjoint with respect to
(x | y)p = 2*Dy, ie. (v | D"'Wy)p = 2*DD"'Wy =
»*WD Dy = (D™'W=x)*Dy = (D~'Wz | y)p. Then,

x “wa
psp(GJ) = psp(D_IW) = max{ 7“ ‘(5‘ m‘)/:/) )o] X # 0} =
max{ ‘Z*ngl ‘ T # 0}. psp(Gy) < 1 &V #0, lz Vg;‘ <

leVe£0,—c*Dr<az*Wrx<z*Drs —D < W < D.

2. (=) By theorem 3.5 part 4, SOR converges = |w—1| <
1. (show A > 0).

(C) Let M(w) = 2A_IBSOR(w) — 1. GSOR((AJ)
I — Bsgr(w)A. If o € sp(Bggr(w)A), then 8 = 2 — 1 €
sp(M(w)) and v = 1 — a € sp(Gsor(w)) by theorem 3.6.
(see notes) QED

Comparitive rates of convergence Let P be a per-
mutation matrix. Observe that the entries of diagonal
of a matrix do not change (up to permutation) when
the indices of a matrix are permuted. Then, PAP~! =
PDP~!' + PWP~! where PDP~! and PWP~! are still
diagonal and off diagonal respectively. However, it does
mix up L and U. So, Gauss-Seidel and SOR depend on
the ordering.

10

def

Consistently ordered when the spectrum of J(«)
aD 'L+ LD7L for a # 0, is independent of .

Theorem 3.8 Let A be consistently ordered. Then
1. pesp(Gy) & —p € sp(Gy).
2. u € sp(Gy) and \ satisfies

A+ w—1)2 = 22 (3.2)

= \E Sp(GsoR(w)).
3. A € sp(Gsor(w)) \ {0} and p satisfies equation 5.2

= 1 € sp(Gy).
Proof: 1. Observe Gy = J(1) and -Gy = J(-1).
Since sp(J(1)) = sp(J(=1)), n € sp(Gy) = sp(J(1)) =
sp(J(=1)) = sp(=Gy) = —p € sp(Gy).-

3. 0 # X € sp(Gsor(w)) & Gsor(w)e = e for some
e e C\{0} & (1—w)D4wlU)e = A(D-wL)e & (A w—

1)D—AwL—wU)e:0<:>(%D—\/}L—%U)e:

0 p =221 € sp(J(VA)) = sp(J(1)).

2. I XN#0, set V), s.t. = %

If A = 0, then equation 3.2 implies (w — 1) = 0 i.e.
w = 1. But det(Gsor(1)) =det((D — L)"'U)=0= X =
0 € sp(Gsor(w))- QED
Corollary 3.9 Let A be consistently ordered.  Then

psp(Gas) = (psp(Gy))?. (i.e. Gauss-Seidel converges twice
as fast as Jacobi.)
Proof: In theorem 3.8, when w =1, A = p2. QED

Theorem 3.10 Let A be consistently ordered, sp(G}) be

real and p; e psp(Gy) < 1. Then, psp(Gsor(w))

w—1 , Jor wopt < w < 2,
= pJ w?p?
l—w+ 24 L wpp/l—w+ 1 , for 0 < w < wept,
2
h = 2 1. M —h =
where Wopt 1 > oreover, 1

pSP(GSOR(WOPt)) < pSP(GSOR(W)) < 1.

Proof: For w =1, psp(Gsor(1l)) = p3 by corollary 3.9.
Consider w # 1. By theorem 3.8 part 2, sp(Gsor(w)) =

{/\i‘/\i—l—w—i— :I:w/m/ (w, ), O<u€spGJ)}

where d(w,pn) = 1 — w4+ 25 If d(w,pu) < 0, then

= ‘1—w+#iiwu\/—d(w,u)‘ = |1 — w|

At If
d(w,p) > 0, Ay are both real with Ay A_ = (1 — w)? and

A+ > A_. A is an increasing function of u. The largest
value is reached when p = p;.

If dw,py) <0, then 2 > w > wepr > 1. It is always
in the first case = pop(Gsor(w)) = |1 —w| = w — 1. If
d(w,py) > 0, then 0 < w < Wopt- Sometimes it is in the

second case. Since 1 —w + = pJ +wpyy/d(w, py) > |1 —w|,

psp(Gsor(w)) =1 —w + “2’“ +wpsry/d(w, py). QED
Observe that wept is an increasing function of p;. We
_ 2
find ps, s.t. py < pe < 1. Set w = m > Wopt-




Example: Consider the block tridiagonal matrix 0 .
a% +a% +c10
Dl A12 0 0 ..
A D A - _ o a;_1 a; 1
21 2 23 Gy=D W= aj7%+a].+2% +c;62 0 a].7%+a].+2% +c;62
0 Agg D3 0 ?
: . Am—l,m aN*%
0 0 Appn—1 Dp, llN,l+aN+%+cN52
. . . < _ %3ty 1.---.N Let
where each D; is diagonal. This is consistently ordered AJ = Max3y = LT te” J=40 ¢
: _ . p-1 17y-1
sice J(a)_alD 1LA+ DU pr = V1—¢€2, where e < 1. Hence, pj < V1—¢€2,
0 =Dy 0 0 =\ 2
a1 2 pes < 1 — € and psor(ws) = ( 114::2) = 5= For
-1 11
aDy An 0 Dy Az e = 0.01, py < V0.9999 ~ 0.999950, pes < 0.9999 and
== 0 aDg_lAgg 0 0 pSOR(W*) = _09 ~ 0.98.
' - ID AL . : :
0 O aD-1A Om ™ | Alternating methods So far we have studied station-
m,m=1 _,/ ary methods z("*D = z(™ — &M where the rule for
L0 0 L0 0 this is ¢ = —B 17" where B ~ A in the sense
0 a 0 a psp(I_ B_lA) < 1.
=1. ) J(1) ) ) Now suppose you have two guesses, B; and By. Con-
: . 0 : . 0 sider z(2nt1) = 5(2n) 4 Bl_lr@") and z(2n+2) = z(n+1) 4
0 0 amt 0 0 aom? By 'r(@n+) | Then, 6@+ = (I — By ' A)(I — By *A)e®m).

if 4P, a permutation matrix, s.t.

>, where D; and D, are diagonal.

Block property A

D, A
PAPT = (/1 12
<A21 Dy
def

Example: Consider the matrix using the form Au =
V2u = gon [0, L]? with u = 0 on boundary. Let A =

Consider p(—uwﬂ -

N+1

Uit1,j + 45 — Ui j—1 — Ui-1,5)-

Estimating rates of convergence Suppose p;

psp(Gy) < 1. If we can find py, s.t. py < pie < 1, then if

A is consistently ordered, pgs o psp(Gas) = p3 < p2 < 1.

Be setting w,. =

def
ﬁ, psor(wx) = psp(Gsor(we)) =

2
(ﬁ) . Note that wepr < wy < 2.

. : d d
Example: Consider the BVP, —-4L (a(z)%) +
el = olo) or x € L) w0) < ulD)'= O

(z) > 0 and c(x) > 0. Consider the differencing
Tl( %UJ+1 Uj a]_%w + Cjuj — gJa where
= N+1’ the nodes z; = j§ for j = 1,---, N,
the mid-points Tiy1 = ( —l—%)& for j = 0,---,N,
aj 1 = a(xj_,_%), ¢; = c(z;) and g; = g(zx;). This yields
U1 91
the linear system A = , where A =
un gN
aitag 1
262 2 +Cl ?a%
a. 1+4a. 1 _
ay_1tayg 1
N 252 N+3 +cn 3—216LN+%

is symmetric, strictly diagonal dominant with the diago-
nal elements > 0, and, therefore, positive definite. Then,

11

The method converges < ps,((I—By *A)(I—B;'A)) < 1.
Example: ADI (Alternating Direction Implicit) method:
—Au =g on Q =0, L]* with u = 0 on 9.

3.4 Conjugate gradient method
Proposition 3.11 Consider the equation

Az =b (3.3)

)

where AT = A > 0. The solution to equation 3.3 is also
the solution at

f@) = min{f(y) [y RV},

3y | Ay) — (0] y).

Suppose z solves equation 3.3. Vy = z+2z € RY.
sle+z] Alw+2)) = (0| 2 +2) = [(2) + (2 | Az —

L(Z| Az) = flw) + 3(2 | A2) > f(w) by 4> 0.
Conversely, suppose T solves equation 3.4. Vz € R |t €
2

R, f(z) < f(z+tz) = f(2) +t(z | Az —b) + 5(z | Az).
The parabola have a minimum at ¢ = 0. Then, 0 =
dettz)| — (y | Az —b) = Az —b=0. QED

dx
t=0
An iterative method to solves equation 3.3: z("+1) =

(™ — &) where ¢ ~ (") = £(™ — z. Notice f(z(™) =
flz+e™) = f(2) + 3™ | Ae™). So () | Ael)
is a measure of the size of the error. Hence, minimizing
f(z(™) is the same as minimizing the A-norm of e(™),

(3.4)

where f(y) =

Proof:

fly) =
b) +

n)

() | Ae(™).
= | At

el

Suppose ™ = —ap™ where p™ e RY is given.
What is the best choice of a? We pick a to minimize
) ( | Ap™) = f( M) —a(p™ | r™) +
|

%
( n) | Ap™), where (") = b — Az(") is the residual.




() | ()

This happen at o = o, = ( Then, f(z"*tY) =

p(m) [ Ap(m))”
() | ) N N
fa™) — DS = Hem D) | Aetnih)
1 n n ((n)‘T(n)) n+1 27 n) |2
3(e™ | Aelm) — 2(5<n) [Apt) He( " )HA = He( )”A -
@™ | r™)

———1 . This is the maximum norm can be reduced
(p(™ | Ap(m)

for a given p(™.

Remark: We saw in Prof. Osborn’s lecture that for
SOR, el D[} = e[ — (& + & — 1) (@) | Dd™).
So, one idea to improve SOR (or other fixed methods) is
setting x((”jrl) = z(™ 4 C(w}p(")E X;vhere p™ = B~1(™ and
ap = (;’Zn) IIXP("))) = E;(”) “ g;(n)g, where Q = B~! with
Q*=Q > 0. If Q = I, then this is the method at steepest
descents —V,, f(z(™) = r(®) — p(m),

3.5 Conjugate gradient method 11

Let 0 < A e RN and Q > 0, st. Q ~ AL,
conjugate gradient iteration goes as follows:

The

CG Choose @ € RY. Set 7@ = p — Az©®, p® =
Qr©. Begin loop on n until “converges”
P | ()
n = <§a<n> \Ifw?)
(D) = () 4 o p(™)
pntl) = p(n) — o Ap(n)
test for “convergence” here
. (T(n+1) ‘QT(nJrl))
Pn = o TGy

p D = Qr(ntD) 4 g p(m)

Lemma 3.12 Vn, s.t. (™ # z, we have

2. ¥Ym < n, (p™ | Ap™) = 0.
3. span {p@, - p™} = span{Qrl0),...,Qrin} =
span {p'”, QAp'Y, - (QA)"pV} = Knia (01, QA)
(n + 1" Krylov subspace).
Proof: (1 & 2) They are trivially true
for n = 0. Suppose they are true for mn.
(r D ptm) = (r | pM) = (Ap™ | p™) =
0 for m < n by induction F S
0 for m = n by the definition of o, ° or.m
0, ()| pm) = ) | gpm) 4
B (rD | pm=1) = (p(n+D) | Qr(m)). (1) is true
for n 4+ 1. (pth) | Aptm™)) = (Qr»tV) | Ap(m) +

Balp™ | Ap™) = L) | Q) — gl
ﬁn(p(") | Ap(m)) =0. QED

Theorem 3.13 Let A,Q € RV YN with A > 0 and Q > 0,
z© e RY and p = Q(b — Az(?). The following are
equivalent:

1. 2™ s the n™ iteration of CG,

2. vy € 20 + K, (p1V, QA), f(z!™) < f(y),
3. 2™ —af, <y — 2l 4,

4. b—Az™ LK, (p, QA),

where f(y) = 3(y | Ay) — (b |y) and |2], = /(= | Az).
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Proof: (1=2) By CG, z(" € 2z + I, (p@,QA).
Let y = 2 + 2 € 2O 4+ £,(»©,QA) for some z €
K, QA). fly) = (=™ +2) = f(™) + (2 | Ax™) —
b) + (2 | Az). By lemma 3.12 part 1, (z | Az(™ —b) = 0.
2
(29) 3 |2 — 2l = @) f(2) < @) - f()
2
3 ly =zl Yy € 20 + K, (01, QA).
(3=4) Let z € K,(p\®,QA) and y = (™ + tz. Then,
2 2
31 —afly < Sy -l = §la® — 2l +o(z | 2 -
D)a+ 81l = 0= (2|2 “x)s = (| s —),
(4= 1) Show it! QED

Convergence rate Since (y | QAz)a = (y | AQAz)
(QAy | Az) (QAy | 2)a, QA is self-adjoint
w.r.t. the A-inner product. Hence |QA|, = psp(QA)
and ”(QA)iluA = pSp((QA)il)- y # 0 = Ay #
0 = (y | QAy)a (Ady | QAy) > 0 = QA
is positive definite w.r.t. the A-inner product. Let
Amax = max{A esp(QA)} = pup(QA) and Apin =
min {\ € sp(QA)} = m by theorem 3.6. Then,

the condition number,

AI'IlB-X

)\min

def

> 1.

K? = CondA(QA) = [QA], (A, =

Theorem 3.14 Let e(™ = (™ — x be the error of n™
iterate of CG. Then, ™|, <2 (21) ] -

What has this brought us? For stationary iteration,
) = 2 L Qr( | Let po = psp(I — QA). Then,
He(")H < 0% He(O)HA. This will converge iff sp(QA) C

k—1
k+1

(0,2). sp(QA) C [Amins Amax] = sp({ — QA) C [1 —
/\maxu 1- )\min] = pQ = maX{p\max - 1|7 |1 - )\min|} =
Amax 1+
Amax < 1+pQ and Apin > 1—PQ = k%= Amin < 1_5;2-
Al o Vitre—v/1-po _ rQ < )
Hence AT S e y/Iro 1+\/1_sz < pg. So when
py =1—6% with § < 1, 25 < —Vll;f. The denomina-

tor helps. Remarks: Conjugate gradient always converges.
The game is to find a @) that makes Cond(QA) as small as
possible. This is called precondition.

3.6 Krylov space methods

Consider solving

Ax = b, (3.5)
where b € RY and A € RV*Y with det A # 0. We know
equation 3.5 has a unique solution z € RY. Can we narrow
it down more?

Let ¢(A) = ap A"+ - -+ a1 A+ ap be a polynomial. Then

9(A) % 4, A"+ +ay A+agl. Let (\) = det(A — A) be

the characteristic polynomial of A. The Cayly-Hamilton
theorem states 1(A) = 0.

Let M = min{deg(q) | ¢(A) = 0}. By Cayly-Hamilton,
M < N. There is a unique monic polynomial m(\) =
M MM 4, st m(A) = 0. Moveover,
po # 0 because A € sp(A) & m()\) = 0. Hence, A™! =
;—Ol(AM’1 +pp 1 AM=2 o4 yyl) and z = A7D =
(AM=1p+ pipg 1 AM =20+ -+ 1 b) € Kpsr(b, A). Az —

=1
Mo



2©) = b — Az® = O Hence z € 2O 4 Ky (D, A).
Clearly, for n > 0, 1 < dimlCn(r(O),A) <n. Let K <M
be the largest, s.t. Vn < K,dim K, (r(®), A) = n. Then,
A" (r®, A) and z € 20 + K (r©), A).
Krylov space iterative methods have the general form:
1. Choose (9 € RN,

2. Pick (™ € 2 + I, (r®] A), s.t. some norm of the
error is minimized.

Lemma 3.15 (Orthogonality Lemma) Let A* = A
wr.t. (). Ifvn < K,dim KC,,(p'?), A) = n for some p®) €
RV\{0}, then K, (p®), A) = span {p©, -, p=D} where
pt = Ap0 — Bop(©@), plntt) = Ap() — 5, p() — 5 p(r=D)

(n) (n)
forl1 < n < K-2, 3, = % and v, =
(n—1) (n)
W. Moweover,
(i) Form <n < K, (p™ | p™) =0.
(ii) Form <n < K, (p™) | Ap(™) = (p(m+1) | p(m).
Proof: See notes. QED

3.7 Minimum residual method

Recall that if z(™tD) = 2 4 qp()
that mir;imizes Heé"‘*””E is o =~
||e(n+1)HE = He(n) HE 4 2a(e(") | p("))E 4 a2(p(n) | p("))E.
Of course, we do not know e™. The game is to find

an inner product for which we can compute (™ | p(™)g
without knowing e(™). Recall that we know (™ = —Ae(™).

The idea is to use (y | 2) g oef (y | 2) a2 = (Ay | Az). Then,

, the value of «

(n) (n) .
(™ 1P "B gince

() Ap() . )

a = W. Recall that if det A # 0 and A* = A,
then A% > 0.

Return to the general setting z("t1) =

20 4 aop(O) 4o+ anp(n)' Suppose {p(k)}::()

is orthogonal w.rt. ( | )g.  Then, He("ﬂ)H?E <

min { ly — 2|3 ’ y € 2 4 span {p©®, ... ,p(”)}} since
ap are coeflicients of orthogonal projection onto
span {p(o), e ,p(")}. Putting this together with lemma
3.15, we get

MINRES Suppose A* = A wr.t. (| ) and det A # 0.
Choose z(@ € RY. Set r(® = b — A2, p(® = 1) and
¢ = Ar(®_ Begin a loop on n until stopping

(™ g™y (™ p™) 40

(@™ [qtm) ™ (pm [p() 42~

2t = () 4 o p(™)

p D) = () ¢(™)

Qp

Check for stopping.
_ @™ 1Aq™) "] Ap™) 40

P = @ T = G0 507 0
_ @™ g™ ™ p™) e
Tn = @D [ D) — =D [ pi-D) 5
(n+1) — q(n) — ﬁnp(n) — ’an(n_l)

¢t = Aq™) — Bq" — g™V

3.8

(like CG and MINRES) To solve Az = b with det A # 0.
The iterative scheme has the form z("t1 = z(") 4+ o, p(").

Optimal error methods

Let X, = span {p(o),-~-,p("_1)}, X = U, X, C
RY with dimX = max,{dimX,} and 7@ =
min {n ‘dian :dimY}. One could show X, = X

for n > 7. Then, 2™ = 2 4+ aup® + .- 4 a,,_1p* D €
0 + X, ¢ 2O + X. For the convergence of z(™) — z,
we need z € (0 + X.

Given such X,,, pick (™ to be optimal over z(¥ + X,,,
where “optimal” means Yy € z(©) + X, H:v(") — :CHG <
ly —z|, with G* = G > 0. Let P, be the projection
onto X,, that is orthogonal w.r.t. ( | )g, i.e. P2 = P,,
Im P, = X,, and GP, = P*G. By lemma 3.15, z(™) — z =
(I—P,)(2(®) —z) which is the same as 2™ = 2(®) — P, (),

Theorem 3.16 (Optimal error characterization
theorem) Vi € 2O 4+ X, the following are equivalent:

(i) & =™,
(1) (x — %) L X,, in G-inner product,
(iii) Yy € 2O + Xo, fo(&) < foly), where faly)
(W lv)e -2 )s-

We must find G, s.t. (y | )¢ can be computed. There
are two netural choices: G = A when A* = A > 0. Then,
faly) = (y | Ay) —2(y | b) (CG). G = A*A when det A #
0. Then, fa~a(y) = (Ay | Ay) — 2(Ay | b) (MINRES).
Observe that we can easily compute P,e(®) if we can
find a set of non-zero vectors {p(o), e ,p(ﬁ_l)}, s.t. X, =
span {p(o), e ,p(”fl)} for n <7@. and (p™ | p()g =0
for every m < n < @. This means {p®, -
orthogonal basis of X,,. Because z € (O +X, e(® = z(0) —
reX = 0 = Sy agp [ p")e

™ [PM)a
Hence, —P,e(® EZ;& arp®) — e = EZ;& ap™®,
—wig:;;z. Hence z("t) = z(") 4 ap(™ for

0<n<mand z™ = .

-, p™ D} is an

-1
n (%) where oy, =

SO Q=

3.9 General minimum residual

Consider Az = b, where b € RY and A € RN x N with
det A # 0. N is enormous (= 107). We have optimal error
methods:

1. find a good norm;
2. identify subspaces (often Krylov);

3. find  orthogonal  vectors,
span {p(o), “e ’p(’ﬂ—l)}.

For conjugate gradient, we have A* = A > 0 and

1. G =4

2. X,, = K, (p@,QA), where p(® = Q(b — Az() and
Q* =Q >0, s.t. Cond(QA) < Cond(A);

3. CG algorithm.

s.t. X,

QA is always positive definite w.r.t. A-norm.
For mininum residual, we have A* = A, det A # 0 and

1. G = A* A
2. X,, = K, (r© A), where r(®) = b — Az,
3. MINRES algorithm.

It is hard to “pre-condition” it. It is hard to find @), s.t.
QA is self-adjoint w.r.t. A* A-inner product.
For general minimum residual, det A # 0 and

13



1. G = A*A;
2. X, = K,(p'9,QA), where Q is invertible and p(®) =
Qb — Az(D) = Qr¥;

3. Arnoldi algorithm.

Lemma 3.17 (Arnoldi) Let G* = G > 0, B € RV*N
and v € RY. Set p©® r, pt) = Bp) —
n m m) | Bp(™
Zm:() ﬁmnp( ); where ﬁmn = W Th@’l’l,,

(i) p™ € Brp© + KCu(p©), B);

(i) (P | p™)G =0, for m < n;
(iii) Kn(p'”, B) = span {p(?, -, p("~V}.

Proof: Assume (i), (ii) and (iii) are trun for n. p("*+1) €
(B = Bunp™ + Ko (0, B) = Bp™ + K1 (0, B) =
B 1p© + BK,(p©, B) + Kpi1 (0, B) = B"1pl0) +

Kni1(p®, B) = (i) holds.

gp(m) | p(n+1))G — (p(m) | Bp(”))c; _
Yo Ben(@™ | pFe = (™ | Bp)g —
Brnn (P | ™) = 0 = (ii) holds. QED

3.10 Another algorithm

Consider Ax = b with det A # 0. Consider an itera-
tion method that measure their error in ( | )g, where
G = A*QA and Q ~ (AA*)~! with Q* = Q > 0, i.e.
Cond(QAA*) is as small as possible while multiplication
by @ is quick. This means (e | e) = (e | e)g = (r | )q-
So we need to construct a G-orthogonal set of vectors.

Lemma 3.18 Let G = A*QA and H = QAA*Q. Choose
v e RY and set u©® = A*QU(O Define p+)
Au™ — B0 and w1 = A*Quntl) —
6 ( (n) | u(n))G (n+1) ‘ (n+1))
(0 | o) g @™ [al)g
(i) (v (m) | v n))H — (u(m> | u(”))c =0 form<n<n,
where T is the mazimal Krylov subspace;

(i) u™ € (A*QA)"u® + I, (u?), A*QA);

Y™ | where

and v, = . Then,

(iii) v™ € (AA*Q)"v®) + IC, (v(?) AA*Q);
(ZU) K:n(u(o)v A*QA) = span {u(O), T 7u(n71)}}.
(v) K, (v, AA*Q) = span {v(@ ... oD}
Proof: By induction, (v(™ vty =
(U(m) | Au(”>)H - Bn (v(m) (n))H =
(A*Qu™) | u() g — B, (0™ | M)y = (u(m) | u™)g +
T3 @0 [0 = G (o) [ o)

(u(m) | u(n+1))G — (u(m) | A*Qv(n""l))c —
A (™ | u() g = (Au™ | D) g —v, (u™ | u()) g =
(v(m+1) | v("“))H + ﬂn(v(m) | v(n+1))H _
Y (™ | u(™) g = 0. Therefore, (i) is true.

Because u(® = A*Qu®, K,(u®,A*QA) =
A QK (v, AA*Q). QED

Algorithm Choose z(©) initialize r(® = b — Az,
2O — 10) 40 — A5 Qr©) 10 — 40 and p® — Ay
Begin loop on n:
o = B 17
T (e [ pM)q
D) () _ g ()

Check for convergence
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3.11 Preconditioning for Krylov optimal
error methods

In general, these methods solve Az = b by picking z("), s.t.
H:v c = min { |y — 2| ‘ye:zc(o)—i-lCn(p(o),K)}.
One needs to find G, p(™, K| s.t.
(i) one can compute a G' orthogonal basis of K(p(?), K),
s.t. Kn(p(, K) = span {p(™, ... pn=D1;
(i) (e [pt)
The three basic cases we have concerned:
1. K is G-positive definite, i.e. GK = K*G > 0.
CG,A=A*>0for G=Aand K = A.
2. K is G-self-adjoint, i.e. GK = K*G. e.g. MINRES,
G = A% and K = A (Lanczos).
3. A is invertible. e.g. GMRES, G = A*A and K = A
(Arnoldi).

) can be computed.

e.g.

Given Az = b, find @ quick “inverse”:

1. precondition CG, Q* =Q > 0, G = A and K = QA4;
2. precondition MINRES, Q* = @Q > 0, G = AQA and
K =QA4;

precondition GMRES, G
QA for @ invertible. Recall Condy(K)
1K (51, Since | K|, psp(K*K),

Conds(K) e iy, Where KK

A*Q*QA and AK*KA~1 = AA*Q*Q.

Example: Let A =D — L — L* with A* = A > 0 and
Q = (D—-L*)"'D(D — L)™' (symmetic Gauss-Seidel).
SSOR: Q = (D —wL*)™'1D(D — wL)!

Example: A* = A, same as above because Q)’s are pos-
itive definite. For A > 0, A = LL*, A ~ L;L} and
Q= (L)L

3.

A*Q*QA and K =

4 Eigenvalue problems

Let A € RV*Y that is diagonalizable. How might you
compute the eigenvalues and eigenvectors? Basic method
to do this is the power method.

Supﬁose A is diagonalizable within complexes. i.e.
I{vi},_, C CV that are linearly independent. Av; =
Aivi, A € C. Let V = (vl UN) with detV ##
0. Then, AV = VA, where A = Diag(\1,- -, \y) &

A1

. Then, A=VAV~'and A =V1AV.
AN

Vr € CN,r = av1 + - + ayvy. Then, Akr =

arMfv + -+ + any Ak un. Suppose |Ai| > |\ for i > 1.

AN

k k
A—l,fAkr = o1+ (i—f) Vot Fan )\—1) vy. Clearly,

1 k 1 k
as k — oo, ,\—xch T = 0, WHA TH = faa o1,
k
[A1] AFr a1 v Alr U1 Akt v

(>‘1 [A%r] loa] Toal " TARF] " Toul? TARA] M loa]”
(AFr | AFtlp

-

[A*r] AL

The game is to repeat this with (A — uI)~! in place of
A, where 1 is a guess at an eigenvalue. Recall sp((A —

uD) = {54 | xesn(a)}.



Lemma 4.1 (Similarity transformation) Let
A,B,U € RN*N with U invertible and A = U~'BU.
Then, sp(A4) = sp(B).

Let B VAV and § < 1. 6Bs
(V 4+ 6V) YA+ 6A)(V + 6V) — VAV = §(V LAV +
VAV — V7IWVIAV) + O(6%).  Hence, HB(;H
HV”AV FVILAV(VEIT) — (V) VlAY
Cond(V) H/IH +2|B] HV’lf/H. The best control is given
when Cond(V) = 1. This means |[VTV| = |V|* = 1.

and [(VIV)7Y| = 1. sp(VTV) = {1} = VTV = I.
Therefore, V' is an orthogonal matrix.

~
~

<

Orthogonal matrix if VVT = VTV = I. Let Q be
an orthogonal matrix. Then, det @ = +1 and sp(Q) C
{A € C | |A] = 1}. Permutations, rotations and reflection
are examples of orthogonal matrice.

Householder matrix Simple reflections have the form

Qu =1—2%% = 12007, where u € RV \ {0} and @ =
T

ITU\' Let e; = (0 0 \1;-/ 0 0> . Then,

Jn
1
1

Qu(e;) = -1

1

Givens matrix Simple rotations have the form Qg =

UNV

e"TunT | where u,v € RY are linearly independent and

uAv = wl —ovul and |u Av]? = |ul?]v]? — (uTv)2.
sp(Qg) = {1,€i0,6_i0} 1 € sp(Q¢) with multiplicity
N -2, Qg = e’ where @ -9 = 0. Qg(ejex) =
1
1
cos 6 sin 0
1
1
—sinf cos @
1
1

Hessenbreg form A = (a;5) € RY*N s called upper

(lower) Hessenbreg if a;; =0 for ¢ > j+1 (j > i+ 1).
Lemma 4.2 VA € RV*Y | there exists an orthogonal ma-

triz Q, s.t. QT AQ is upper Hessenberg.
Proof: We will prove for k = 1,--- ;N — 1, 3Qy €

NxN - T Hy, BF
R is orthogonal, s.t. Q; AQy = oA ) where
k k
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H, € R*¥* is upper Hessenberg, A, € ROV-RxWN=k)

By, Cr, € RY™7F with €y = (0 ), e € RV R,
This is clearly true for k = 1. We have Hy = (a11),

a1 ai2 a22 aznN
Cy = , B = s Ar =
aN1 aiN anN2 aGNN
Suppose it is true for some k > 1. For k + 1, let
o= e=(1 0 0)" e RV F and Q =
I 0 =t if ¢ £ é
= ‘C _el !
(0 I - 2ﬁAT>’ where @ { 0 ' , otherwise
Set  Qr+1 = QrQ QF 1 AQk+1 =
aofae = (M Pe -
k Cr Ag
Hy, BI(I - 2aaT) 0eD
(I —26a7)C), (I — 2aaT)Ax(I — 26a7) )

Corollary 4.3 If AT = A, QTAQ is symmetric tri-
diagonal.

4.1 QR method

Theorem 4.4 (QR factorization) VA € RY*YN | there
exists an orthogonal matriz Q and an upper triangular
matriz R, s.t. A= QR.

Proof: We show that for k = 1,---,N — 1, 3Qy, or-
thogonal, s.t. A = Qx Rk, where R = (}?)k f}k>, Ry, is
k
upper triangular.
For £ = 1, let A = (a f)), where a =

(a11 B aNl)T. Let é = (1 0 O)T S RN and
a_e  ifg#eé

o= ama oeFe 0 = T — 26" and
0 , otherwise

Ry = (|a|é Rl) = @1 A. Therefore, A = Q1R;.
1 0
> = .
For k > 1, set Qx+1 (0 7 2uAkuAkT) Qk
One of the best method for computing eigenvalues and
eigenvectors is the so-called @ R-hmethod, which is based
on QR decomposition.

QED

QR method Given A € RV*Y | construct a sequence
{A;};2, as follow:

1. Ag = A.

2. Decomposite A; = Q; R;, where @; is orthogonal and
R; is upper triangular.

3. Set Ai+1 = RiQi-

Observe A1 = QTA;Qi = R;A;R;' (if A™! exists,
then Ri_l exists). A;y1 ~ A; ~ A. Hessenberg form
and symmetric triangular form are preserved. A°
Qo Qi—1Ri—1--- Ro (relation to power method).

A; — Ao, where Ay is diagonal if AT = A. In the case
Ae CV*N A’ is upper triangular, where A = U*A._ U
with U unitary by Schur’s lemma of linear algebra.



In the real case,

A1 % . *
Ama *
(751 U1 *
Ay = )
—U1 U1 *
* *
Umy  Umy
—Umy  Ums
where Aj,---,\,, are real eigenvalues and wu; =+
W1, -+, U, T 10, are complex eigenvalues. A is unique

up to permutations.

Shifted-Q R method The QR method can be improved
by shifting. Al — UiI = Qsz and Ai+1 — O'iI = RzQz

4.2 Iso-spectral flows
Let J(t) € RY*YN be continuous and Q(t) € RV*Y with
Q) =1, s.t.

dQ(t

0 _ e (4.6)

detQ(t) = det(Q(0))eda T
vt Tr(J (£)) = 0.

detQ(t) = 1 if

Let Hy € RN*YN and H(t) = Q(t)HoQ(t)~!. Note that
sp(H(t)) = sp(Hop), i.e. this is “iso-spectral”. dlg—?) =
J(HQ) HoQ(t) ™" — Q(t)HoQ(t) ™' J(¢). Hence

dH (t)
= J(t)H(t) — H(t)J(t). (4.7)

If H satisfies equation 4.7, then so does H* and H~.

AT _ _JTHT 4 HTJT. 1t JT = —J, then HT satisfies

equation 4.7. JH — HJ is symmetric if HT =H.

Proof: Since @ satisfies equation 4.6, =QTJT =

—QTJ and - = —Q 1O~ = —- 1J. Q1(0) =

QT(0) = I. Therefore, Q~1(t) = QT (t). When JT = —J,

then (JH — HJ)T = JHT — HTJ. QED
We will consider symmetric cases: find J(H), s.t.

H(t) — diagonal as t — oo.

We have to identify a mapping RV*Y — RV H —
J(H) with J(H)T = —J(H), s.t. H(0) = Hy, H and J
satisfy equation 4.7 and H(t) — “simple” as ¢ — oco. In
particular, when HI = Hy, then H(t)T = H(t) for every
t and H(t) — diagonal as t — oc.

Example: Let H = D+ L+ L™, where D is diagonal and
L is strictly lower triangular. Set J = L — LT. Then,

dH

—r = 2LL" = L'L)+ LD = DL+ DL" — L D. (4.8)
where LD — DL is strictly lower triangular
and DL” LTD is strictly upper triangu-
lar. Assume Hp has been reduced to tridiago-
bo aq
nal. For H = |@ B L LTL =
aN-—1
an—1 bn—1
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2
an-—1

2
ajy_q 0

LLT — LTL is diagonal. Hence, the trldlagonal form is
preserved by equation 4.8 with dD = 2(LLT - LTL),
=LD—-DL,
db, _ _ _ _
{ m =2(af — a? ) forj=0,---,N—1 (4.9)
T =aj(bj1 )fOl”j—l ,N—1

with a9 = ay = 0. The only stationary (fixed) points
of equation 4.9 are when it is diagonal, i.e. a1 = --- =
any—1 = 0. This will be asymptotically stable provided
bp < -+ <bn—_1. If Vj,a; # 0 for Hp, then the eigenvalues
of Hy are simple.

Example: For H = (bo a), dbo _ 942 dhr _ 942

a b dt dt
and 92 = q(bg — b1). Let s = 2 and ¢ = bzbo,
Then, Zi =0, g‘; = 2a? and z‘; = —2ac. The solution is

___.co+rtanh(2rt) _ agsech(2rt)
S(t) = S0, € (t) - Tr(jrco tanh(2rt) and a(t) - T’I"th[:‘)o tanh(2rt)’

where 7 = /a3 + . (Remarks: This is “better” than

QR method. For A = (Z?jg _S::)Zo) (reflection),

A=QR=Q=Aand R=1.)

Theorem 4.5 Let Hy be symmetric tridiagonal and
bo @

satisfy equation 4.9.
aN-1
an—1 by_1
Then, H(t) — diagonal as t — oo.

Proof:  Let s, = Z?Zol b; be the m™ partial trace.
d;g”” = —2d%2, < 0 for m = 1,---,N — 1. One can

show that < (Z;V:_Ol b+ 22; 1 aj) = 0. Hence, a;(t)
and b;(t) are bounded = s,,(t) are bounded. Therefore,

im0 Sm(t) = 80 exists. Moreover, lims oo Sm(t +
h) = s uniformly in b > 0. limg,oobi(t + h) =

limy oo (Smg1(t + h) — sm(t + h)) = §20, — 52 def boo

uniformly in h > 0.
= aJ f bj—1(

)2dt’ =

By equation 4.9, a;(t') £7)=b; (¢")at"

Combine this with ft+h
$m/(t)). Therefore,

t+h
t1i>r£o h/
a(t
= 1.
tirgo h /t
> tlim am (t)?
= 0

t+h t, " " "
%/ len b1 () by (¢t g0
t

_ / 2] b1 (R ) =brn (R VAR 1y
h 0

—2(sm(t + h) —

ezft bm,l(t”)fbm(t”)dt”dt/



1 (" e v
R _/ 221 =bp)h gt

h 0

o205~ b3
2063, — bR
> 1

QED
More generally, unitary iso-spectral flows have the form
48 — JH—HJ,where J = L—L", f(H) = D+L+L" and
f is any function analytic in a neighbourhood of sp(Hj).
There is an amazing fact: H(t) = Q(t)T HyQ(t), where
etf(Ho) — Q(t)R(t), Q(t) is orthogonal and R(t) is strictly
upper triangular with positive diagonal. Consider f(z) =
log(z), HI = Q@)R(t). Set t = 1, Hy = Q(1)R(1).
H() = Q()THoyQ(1) = R(1)Q(1). (For tridiagonal,
Toda Lattice.)

Theorem 4.6 (Gershgorin circle theorem) Let A =
di

D—W and D = . Then, |A—d;| < |W].
dn

Let A= D —tW for t € [0,1]. Then, |\ — d;| < ¢ |[W].
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