1. 4.3 Problem 1

 a. False.
 Let \(f(x) = x^3 \), \(f(x) \) is strictly increasing, but \(f'(0) = 0 \)

 b. True.
 Since \(f \) is nondecreasing, we have \(f(x) \leq f(y) \) if \(x < y \).
 So \(\frac{f(x) - f(x_0)}{x - x_0} \geq 0 \) for all \(x, x_0 \in \mathbb{R} \)
 By Lemma 2.21, \(\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \geq 0 \)
 \(f'(x_0) \geq 0 \) for all points \(x_0 \) in \(\mathbb{R} \)

 c. True.
 Since \(f(0) \geq f(x) \) for all \(x \in [-1, 1] \),
 \(\frac{f(x) - f(0)}{x - 0} \leq 0 \) for \(x > 0 \)
 So \(\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} \leq 0 \)
 \(\frac{f(x) - f(0)}{x - 0} \geq 0 \) for \(x < 0 \)
 So \(\lim_{x \to 0^-} \frac{f(x) - f(0)}{x - 0} \geq 0 \)
 Since derivative exists, both limits are equal.
 \(f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = 0 \)

 d. False
 Let \(f(x) = x \)
 \(f(1) \geq f(x) \) for all \(x \in [-1, 1] \)
 but \(f'(1) = 1 \neq 0 \)

2. 4.3 Problem 4

 \(f'(x) = 3x^2 - 3 = 3(x^2 - 1) < 0 \) for \(0 < x < 1 \)
 \(\Rightarrow f(x) > f(y) \) for all \(0 < x < y < 1 \)
 If \(f(x) \) has two solutions in \((0, 1) \), then we would have \(f(x) = f(y) = 0 \) for some \(0 < x < y < 1 \), which contradicts the previous statement.

3. 4.3 Problem 7

 You can use Rolle’s Theorem as follows.
 \(f'(x) = nx^{n-1} + a \)
 \(f''(x) = n(n-1)x^{n-2} > 0 \) for all \(x \in \mathbb{R} \) since \(n \) is even \(\Rightarrow f' \) is strictly increasing.
 If \(f \) has three or more zeros,
 \(\exists a, b, c \) such that \(f(a) = f(b) = f(c) = 0 \).
 Then by Rolle’s Theorem \(\exists x \in (a, b) \) and \(y \in (b, c) \)
 such that \(f'(x) = 0 \) and \(f'(y) = 0 \)
 But \(f' \) cannot have two distinct zeros since \(f' \) is strictly increasing.
 Therefore, \(f \) has at most two zeros.

 If \(n \) is odd, there could be one or three solutions depending on the values of \(a, b \).
 If \(a > 0 \), then \(f'(x) > 0 \) for all \(x \), \(f(x) \) is strictly increasing. So \(f(x) \) has exactly one solution in this case.
 If \(a = 0 \), then \(f(x) = x^n + b \) is strictly increasing, \(f(x) \) has only one solution.
 If \(a < 0 \) then \(f(x) \) is increasing in the intervals \((-\infty, -(\frac{a}{n})^{\frac{1}{n-1}}) \) and \(((\frac{a}{n})^{\frac{1}{n-1}}, \infty) \),
 decreasing in the interval \(-(\frac{a}{n})^{\frac{1}{n-1}}, (\frac{a}{n})^{\frac{1}{n-1}}) \).
 So depending on \(b \), \(f(x) \) can have one or three solutions.
4. 4.3 Problem 11
Suppose the contrary. (Suppose \(f \) has \(n + 1 \) or more solutions)
Then \(\exists a_1 < a_2 < \cdots < a_{n+1} \) such that
\[
\begin{align*}
f(a_1) &= f'(a_2) = \cdots = f(a_{n+1}) = 0
\end{align*}
\]
Then by Rolle’s theorem, there exists \(x_1, x_2, \ldots, x_n \)
such that \(a_1 < x_1 < a_2 < x_2 < a_3 < \cdots < a_n < x_n < x_{n+1} \) and
\[
\begin{align*}
f'(x_1) &= f'(x_2) = \cdots = f'(x_n) = 0,
\end{align*}
\]
but this contradicts to the fact that \(f' \) has at most \(n - 1 \) zeros.
So \(f \) can have at most \(n \) solutions (zeros).

5. 4.4 Problem 3

a. \(f''(t) = 2t, \ g'(t) = 3t^2 \)
\[
\begin{align*}
f(1)-f(0) &= 0, \quad g(1)-g(0) = ?
f'(c) &= 0, \quad g'(c) = ?
\end{align*}
\]
so if \(c = \frac{2}{3}, \) we have
\[
\begin{align*}
f(1)-f(0) &= f'(c)(1-0), \quad \Rightarrow c = \frac{1}{\sqrt{3}}
\end{align*}
\]
There is no \(c \) that satisfies both equations.

b. If \(f(1) - f(0) = f'(c)(1-0), \) then \(f'(c) = 1, \Rightarrow c = \frac{1}{\sqrt{3}} \)
If \(g(1) - g(0) = g'(0)(1-0), \) then \(g'(c) = 1, \Rightarrow c = \frac{1}{\sqrt{3}} \)

6. 4.4 Problem 5
By Theorem 4.24, and the condition \(f(0) = f'(0) = \cdots = f^{(n-1)}(0) = 0 \)
for any \(x \neq 0, \) there is a point \(z \) strictly between \(x \) and \(0 \) such that
\[
\begin{align*}
f(x) &= \frac{f^{(n)}(z)}{n!}(x)^n
\end{align*}
\]
Since \(f^{(n)} \) is bounded, \(\exists N \) such that \(|f^{(n)}(x)| < N \) for all \(x \in (-1, 1) \)
\[
\begin{align*}
|f(x)| &= |\frac{f^{(n)}(z)}{n!}(x)^n| \leq M|x|^n \quad \text{where} \ M = \frac{N}{n!}.
\end{align*}
\]

7. 4.4 Problem 7

solution 1
Let \(g(h) = f(x_0 + h) - 2f(x_0) + f(x_0 - h), \) then
\[
\begin{align*}
g'(h) &= f'(x_0 + h) - f'(x_0 - h) \
g''(h) &= f''(x_0 + h) + f''(x_0 - h) \
g(0) &= 0, \ g'(0) = 0
\end{align*}
\]
By theorem 4.24, or Lagrange Remainder Theorem,
for each \(h \) there is a \(z = z(h) \in (0, h) \) such that
\[
\begin{align*}
g(h) &= \frac{g''(z)}{2!}h^2 \
\Rightarrow f(x_0 + h) - 2f(x_0) + f(x_0 - h) &= g(h) = \frac{g''(z)}{2!}h^2 \
\Rightarrow \lim_{h \to 0} f(x_0 + h) - 2f(x_0) + f(x_0 - h) &= \lim_{h \to 0} \frac{g''(z)}{2} = \lim_{h \to 0} \frac{f''(x_0 + z) + f''(x_0 - z)}{2} = f''(x_0)
\end{align*}
\]
The last equality is true because \(z(h) \to 0 \) as \(h \to 0. \)

solution 2
Since \(\lim_{h \to 0} f(x_0 + h) - 2f(x_0) + f(x_0 - h) = 0 \) and
\(\lim_{h \to 0} h^2 = 0, \)
by L’hopital’s rule,
\[
\begin{align*}
\lim_{h \to 0} f(x_0 + h) - 2f(x_0) + f(x_0 - h) &= \lim_{h \to 0} f'(x_0 + h) - f'(x_0 - h) \
\text{again we have,} \ &\lim_{h \to 0} f'(x_0 + h) - f'(x_0 - h) = 0 \text{ and}
\end{align*}
\]
lim_{h \to 0} 2h = 0
By L’hopital’s rule
\[\Rightarrow \lim_{h \to 0} \frac{f'(x_0+h) - f'(x_0-h)}{2h} = \lim_{h \to 0} \frac{f''(x_0+h) + f''(x_0-h)}{2} = f''(x_0) \]
\[\Rightarrow \lim_{h \to 0} \frac{f(x_0+h) - 2f(x_0) + f(x_0-h)}{h^2} = \frac{f''(x_0) + f''(x_0)}{2} = f''(x_0) \]

8. 8.1 Problem 2

a. \(f(x) = \int_0^x \frac{1}{1+t^2} dt \)
\[f'(x) = \frac{1}{1+x^2} \]
\[f''(x) = \frac{-2x}{(1+x^2)^2} \]
\[f'''(x) = \frac{-2}{(1+x^2)^2} + \frac{8x}{(1+x^2)^3} \]
\[p_3(x) = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \frac{f'''(0)}{3!} x^3 \]
\[= x - \frac{2}{3!} x^3 \]
\[= x - \frac{1}{3} x^3 \]

b. \(f(x) = \sin x \)
\[f'(x) = \cos x \]
\[f''(x) = -\sin x \]
\[f'''(x) = -\cos x \]
\[p_3(x) = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \frac{f'''(0)}{3!} x^3 \]
\[= x - \frac{1}{3!} x^3 \]
\[= x - \frac{1}{6} x^3 \]

c. \(f(x) = \sin x + x^{200} \)
\[f'(x) = \cos x + 200x^{199} \]
\[f''(x) = -\sin x + (200)(199)x^{198} \]
\[f'''(x) = -\cos x + (200)(199)(198)x^{197} \]
\[p_3(x) = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \frac{f'''(0)}{3!} x^3 \]
\[= x - \frac{1}{3!} x^3 \]
\[= x - \frac{1}{6} x^3 \]

d. \(f(x) = \sqrt{2-x} \)
\[f'(x) = \frac{-1}{2(2-x)^{\frac{3}{2}}} \]
\[f''(x) = -\frac{1}{4(2-x)^{\frac{5}{2}}} \]
\[f'''(x) = -\frac{3}{8(2-x)^2} \]

\[
p_3(x) = f(1) + \frac{f'(1)}{1!}(x-1) + \frac{f''(1)}{2!}(x-1)^2 + \frac{f'''(1)}{3!}(x-1)^3
\]
\[
= 1 - \frac{1}{2}(x-1) - \frac{1}{2!} \cdot \frac{1}{4}(x-1)^2 - \frac{1}{3!} \cdot \frac{3}{8}(x-1)^3
\]
\[
= 1 - \frac{1}{2}(x-1) - \frac{1}{8}(x-1)^2 - \frac{1}{16}(x-1)^3
\]

9. 8.1 Problem 4
Since \(p_3(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 \)
we know that \(f(0) = 1, f'(0) = 4, f''(0) = -2 \)
Since \(f \) has three derivatives, \(\Rightarrow f, f', \) and \(f'' \) are continuous.
\(\exists \delta_1 > 0, \delta_2 > 0, \) and \(\delta_3 > 0 \) such that
\[
|f(x) - f(0)| < \frac{1}{2} \text{ for } |x| < \delta_1
\]
\[
|f'(x) - f'(0)| < \frac{1}{2} \text{ for } |x| < \delta_2
\]
\[
|f''(x) - f''(0)| < \frac{1}{2} \text{ for } |x| < \delta_3
\]
\(\Rightarrow \text{ for } |x| < \delta = \min\{\delta_1, \delta_2, \delta_3\} \)
\[
f(x) > f(0) - \frac{1}{2} = \frac{1}{2} > 0
\]
\[
f'(x) > f'(0) - \frac{1}{2} = 4 - \frac{1}{2} > 0
\]
\[
f''(x) < f''(0) + \frac{1}{2} = -2 + \frac{1}{2} < 0
\]
Hence \(f \) is positive for \(|x| < \delta, \)
\(f' > 0 \text{ for } |x| < \delta, \) which implies \(f \) is strictly increasing for \(|x| < \delta \)
\(f'' < 0 \text{ for } |x| < \delta, \) which implies \(f' \) is strictly decreasing for \(|x| < \delta. \)

10. 8.2 Problem 2
\[
f(x) = (1 + x)^{\frac{1}{3}}
\]
\[
f'(x) = \frac{1}{3}(1 + x)^{-\frac{2}{3}}
\]
\[
f''(x) = \frac{2}{9}(1 + x)^{-\frac{5}{3}}
\]
\[
f'''(x) = \frac{10}{27}(1 + x)^{-\frac{8}{3}}
\]
By the Lagrange remainder theorem, for each \(x > 0 \) there exists \(c_x \in (0, x) \) such that
\[
f(x) = f(0) + f'(0)x + \frac{f''(c_x)}{2!}x^2
\]
\[
f''(c_x)x^2 = -\frac{2}{9}(1 + c_x)^{-\frac{5}{3}}x^2 < 0 \text{ for each } x > 0
\]
\(\Rightarrow \) \(f(x) < f(0) + f'(0)x = 1 + \frac{1}{3} \)

Again by the Lagrange remainder theorem, for each \(x > 0 \) there exists \(d_x \in (0, x) \) such that
\[
f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(d_x)}{3!}x^3
\]
\[
f'''(d_x)x^3 = \frac{10}{27}(1 + d_x)^{-\frac{8}{3}}x^3 > 0 \text{ for each } x > 0
\]
\(\Rightarrow \) \(f(x) > f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 = 1 + \frac{5}{3} \frac{x^2}{3} \)
\[
\Rightarrow 1 + \frac{5}{3} - \frac{x^2}{9} < (1 + x)^{\frac{1}{3}} < 1 + \frac{5}{3} \text{ for } x > 0
\]

11. 8.2 Problem 8
\((\Rightarrow)\)
Suppose that \(x_0 \) is a root of order \(k \) of the polynomial \(p \)
then \(p(x) = (x - x_0)^k r(x), \) where \(r(x_0) \neq 0 \)
Differentiating directly,
\[p'(x) = k(x - x_0)^{k-1}r(x) + (x - x_0)^k r'(x) \]
\[p''(x) = k(k-1)(x - x_0)^{k-2}r(x) + 2k(x - x_0)^{k-1}r'(x) + (x - x_0)^k r''(x) \]
\[\vdots \]
\[p^{(k-1)}(x) = \sum_{i=0}^{k-1} \binom{k-1}{i} r^{(i)}(x) \]
\[p^{(k)}(x) = \sum_{i=0}^{k} \binom{k}{i} r^{(i)}(x) \]

For \(p(x) \), \(p'(x) \), to \(p^{(k-1)}(x) \), all the terms are multiples of \((x - x_0)\), so \(p(x_0) = p'(x_0) = \cdots = p^{(k-1)}(x_0) = 0 \)
for \(p^{(k)}(x) \), all terms except the term \(k!r(x) \) are multiples of \((x - x_0)\).
So \(p^{(k)}(x_0) = k!r(x_0) \neq 0 \).

(\(\Leftarrow \))

Suppose \(p(x) \) is a polynomial of degree \(n \).
Then the \(n \)th Taylor polynomial for \(p \) at \(x_0 \) is \(p(x) \) itself.

\[p(x) = \sum_{l=0}^{n} \frac{p^{(l)}(x_0)}{l!} (x - x_0)^l \]

Since \(p(x_0) = p'(x_0) = \cdots = p^{(k-1)}(x_0) = 0 \),
\[p(x) = \sum_{l=k}^{n} \frac{p^{(l)}(x_0)}{l!} (x - x_0)^l = (x - x_0)^k \sum_{l=0}^{n-k} \frac{p^{(l+k)}(x_0)}{(l+k)!} (x - x_0)^l \]

let \(r(x) = \sum_{l=0}^{n-k} \frac{p^{(l+k)}(x_0)}{(l+k)!} (x - x_0)^l \)
then we know that \(r(x_0) = p^{(k)}(x_0) \neq 0 \)
Therefore we have \(p(x) = (x - x_0)^k r(x) \), where \(r(x_0) \neq 0 \)
So \(x_0 \) is a root of \(p \) with order \(k \).

12. 8.2 Problem 11

a. Since \(f^{(n+1)}(x) \) is continuous and \(f^{(n+1)}(x_0) > 0 \),
there exists \(\delta > 0 \) such that \(f^{(n+1)}(x) > 0 \) for \(x \) in \(|x_0 - x| < \delta\).
By the Lagrange remainder theorem, for each \(x \neq x_0 \) with \(|x - x_0| < \delta\) there is a \(c_x \) strictly between \(x_0 \) and \(x \) satisfying
\[f(x) = f(x_0) + f'(x_0)(x - x_0) + \cdots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + \frac{f^{(n+1)}(c_x)}{(n+1)!} (x - x_0)^{n+1} \]
Since \(f^{(k)}(x) = 0 \) for \(1 \leq k \leq n \),
\[f(x) = f(x_0) + \frac{f^{(n+1)}(c_x)}{(n+1)!} (x - x_0)^{n+1} \]

For \(|x - x_0| < \delta\), we have \(|x_0 - c_x| < |x_0 - x| < \delta\), so we have \(f^{(n+1)}(c_x) > 0 \),
also \(n + 1 \) is even gives \((x - x_0)^{n+1} > 0\)
\[\Rightarrow \frac{f^{(n+1)}(c_x)}{(n+1)!} (x - x_0)^{n+1} > 0 \]
\[\Rightarrow f(x) = f(x_0) + \frac{f^{(n+1)}(c_x)}{(n+1)!} (x - x_0)^{n+1} > f(x_0) \Rightarrow x_0 \text{ is a local minimizer.} \]

b. Since \(f^{(n+1)}(x) \) is continuous and \(f^{(n+1)}(x_0) < 0 \),
there exists \(\delta > 0 \) such that \(f^{(n+1)}(x) < 0 \) for \(x \) in \(|x_0 - x| < \delta\).
By the Lagrange remainder theorem, for each \(x \neq 0 \) there is a \(c_x \) strictly between \(x_0 \) and \(x \) satisfying
\[f(x) = f(x_0) + f'(x_0)(x - x_0) + \cdots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + \frac{f^{(n+1)}(c_x)}{(n+1)!} (x - x_0)^{n+1} \]
Since \(f^{(k)}(x) = 0 \) for \(1 \leq k \leq n \),
\[f(x) = f(x_0) + \frac{f^{(n+1)}(c_x)}{(n+1)!} (x - x_0)^{n+1} \]

For \(|x - x_0| < \delta\), we have \(|x_0 - c_x| < |x_0 - x| < \delta\), so we have \(f^{(n+1)}(c_x) < 0 \),
also \(n + 1 \) is even gives \((x - x_0)^{n+1} > 0\)
\[\Rightarrow \frac{f^{(n+1)}(c_x)}{(n+1)!} (x - x_0)^{n+1} > 0 \]
\[\Rightarrow f(x) = f(x_0) + f'(x_0)(x - x_0) + \cdots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(c_x)}{(n+1)!}(x - x_0)^{n+1} \]

\(f(x) \Rightarrow x_0 \) is a local maximizer.

c. Suppose \(f^{(n+1)}(x_0) > 0 \),
since \(f^{(n+1)}(x) \) is continuous,
there exists \(\delta > 0 \) such that \(f^{(n+1)}(x) > 0 \) for \(x \) in \(|x_0 - x| < \delta \).
By the Lagrange remainder theorem, for each \(x \neq 0 \) there is a \(c_x \) strictly between \(x_0 \) and \(x \) satisfying
\[f(x) = f(x_0) + f'(x_0)(x - x_0) + \cdots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(c_x)}{(n+1)!}(x - x_0)^{n+1} \]
Since \(f^{(k)}(x) = 0 \) for \(1 \leq k \leq n \),
\[f(x) = f(x_0) + \frac{f^{(n+1)}(c_x)}{(n+1)!}(x - x_0)^{n+1} \]
For \(|x - x_0| < \delta \), we have \(|x_0 - c_x| < |x_0 - x| < \delta \), so we have \(f^{(n+1)}(c_x) > 0 \)
Since \(n + 1 \) is odd, for \(x > x_0 \),
\[f(x) = f(x_0) + \frac{f^{(n+1)}(c_x)}{(n+1)!}(x - x_0)^{n+1} > f(x_0) \]
for \(x < x_0 \),
\[f(x) = f(x_0) + \frac{f^{(n+1)}(c_x)}{(n+1)!}(x - x_0)^{n+1} < f(x_0) \]
\(\Rightarrow x_0 \) is not local minimizer nor a local maximizer.
The case where \(f^{(n+1)}(x_0) < 0 \) is similar.

13. 8.2 Problem 12

a. By the Lagrange remainder theorem, for each \(x \neq 0 \), there exists \(c_h \) strictly between \(x_0 \) and \(x_0 + h \), such that
\[f(x_0 + h) = f(x_0) + f'(x_0)h + \frac{f''(c_h)}{2!}h^2 \]
Since \(f''(x) > 0 \), \(f'(x) \) is strictly increasing and is one-to-one, so \(c_h \) is unique.
let \(\theta(h) = \frac{x_0 - x}{h} \), clearly, \(0 < \theta(h) < 1 \), and
\[f(x_0 + h) = f(x_0) + f'(x_0)h + \frac{f''(x_0 + \theta(h)h)}{2!}h^2 \]

b. By the Lagrange remainder theorem, for each \(h \neq 0 \) there exists \(d_h \) strictly between \(x_0 \) and \(x_0 + h \) such that
\[f(x_0 + h) = f(x_0) + f'(x_0)h + \frac{f''(x_0)}{2!}h^2 + \frac{f'''(d_h)}{3!}h^3 \]
So with the equation from (a.), we have
\[\frac{f'''(x_0 + \theta(h)h)}{3!}h^2 = \frac{f''(x_0)h^2}{2!} + \frac{f'''(d_h)}{3!}h^3 \]
Since \(h \neq 0 \)
\[\Rightarrow \frac{f'''(x_0 + \theta(h)h)}{3!} - \frac{f'''(x_0)}{3!}h \]
\[\Rightarrow \lim_{h \to 0} \left(\frac{f'''(x_0 + \theta(h)h)}{3!} - \frac{f'''(x_0)}{3!} \right) = \lim_{h \to 0} \frac{f'''(d_h)}{3!} = \frac{f'''(x_0)}{3!} > 0 \]
\[\Rightarrow \left(\lim_{h \to 0} \theta(h) \right) \left(\lim_{h \to 0} \frac{f''(x_0 + \theta(h)h) - f''(x_0)}{\theta(h)h} \right) = \left(\lim_{h \to 0} \theta(h) \right) f''(x_0) = \frac{f'''(x_0)}{3!} > 0 \]
\[\Rightarrow \lim_{h \to 0} \theta(h) = \frac{1}{3} \]

14. 8.3 Problem 1

a. \(f(x) = \sin x \)
\[f'(x) = \cos x \]

;
\[|f^{(n)}(x)| \leq 1 \text{ for all } n, \text{ and all } x \]
By theorem 8.14,
\[\sin x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1} \]
So we know that for every \(x \), the Taylor series converges.

b. \(f(x) = \cos x \)
\[f'(x) = -\sin x \]
\[f''(x) = \cos x \]
\[f^{(n)}(x) = \cos x \]
By theorem 8.14,
\[\cos x = \sum_{k=0}^{\infty} \frac{(-1)^{(k+1)}}{(2k)!} (x - \pi)^{2k} \]
So we know that for every \(x \), the Taylor series converges.