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1. UNIFORM CONTINUITY

Uniform continuity is a very useful concept. Here we introduce it in
the context of real-valued functions with domains in R.

Definition 1.1. Let D C R. A function f : D — R is said to be
uniformly continuous over D provided that for every € > 0 there ezists
0 > 0 such that for every x,y € D one has

[z —y| <6 = [f(z) = fy)l <e.

This is a stronger concept than that of continuity over D. Indeed,
a function f : D — R is continuous over D provided for every y € D
and every € > 0 there exists > 0 such that for every x € D one has

v —yl<o = [f(z) = fy)l <e.

Here 6 depends on y and € (6 = d,,), while in Definition 1.1 of uniform
continuity ¢ depends only on € (§ = d.). In other words, when f is
uniformly continuous over D a . can be found that works uniformly
for every y € D — hence, the terminology. We have obviously proved
the following.

Proposition 1.1. Let D C R. Let f : D — R be uniformly continuous
over D. Then f is continuous over D.

Remark: There is an important difference between continuity and
uniform continuity. Continuity is defined to be a property of a function
at a point. A function is then said to be continuous over a set if it is
continuous at each point in the set. Uniform continuity is defined to
be a property of a function over a set. It makes no sense to talk about
a function being uniformly continuous at a single point.

1.1. Some Uniformly Continuous Functions. We now show that
there are many uniformly continuous functions. Recall that a function
f : D — R is Lipschitz continuous over D provided there exists an
L > 0 such that for every x,y € D one has

|f(x) = f(y)| < Llz —y|.
The following should be pretty clear.

Proposition 1.2. Let D C R. Let f: D — R be Lipschitz continuous

over D. Then f is uniformly continuous over D.
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Proof: Let ¢ > 0. Pick 6 > 0 so that Ld < €. Then for every x,y € D
z—yl<d = |f(@)=fW|<Llz—y|l<Ld<e.
O

There many uniformly continuous functions because there are many
Lipschitz continuous functions. Recall we have shown that if D is either
either (a,b), [a,b), (a,b] or [a,b] for some a < b while f : D — R is
continuous over D and differentiable over (a,b) with f’ bounded then
f is Lipschitz continuous over D with

L =sup{|f'(z)| : z € (a,b)}.

Hence, every such function is uniformly continuous.

While there are many uniformly continuous functions, there are also
many functions that are not uniformly continuous.

Examples: The functions f : R, — R given by

fw=2 @)=, f<x>=sin<1),

X

are not uniformly continuous. We will give one approach to showing
this in the next section.

Notice here that the derivatives in the above examples are all un-
bounded over R, :

1 1 1
! _ ! _ / —
)= f@=2, fe)=-geos(1),
By Propostion 1.2 this must be the case for all differentiable functions
defined over open intervals that are not uniformly continuous. However,

as the following exercise shows, having an unbounded derivative does
not imply that a differentiable function is not uniformly continuous.

Exercise: Show that the function f : Ry — R given by f(z) = T3 is
uniformly continous over R, . Hint: First establish the inequality

}y%—x%‘gw—xﬁ for every z,y € R, .

Exercise. Let D C R. A function f : D — R is said to be Holder
continuous of order a € (0, 1] if there exists a C' € Ry such that for
every x,y € D one has

[f(z) = fy)l < Cla —yl|*.

Show that if f : D — R is Hoélder continuous of order « for some
a € (0, 1] then it is uniformly continuous over D.
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1.2. Sequence Characterization of Uniform Continuity. The fol-
lowing theorem gives a characterization of uniform continuity in terms
of sequences that is handy for showing that certain functions are not
uniformly continuous.

Theorem 1.1. Let D C R. Then f : D — R is uniformly continuous
over D if and only if for every {x, }nen, {Yn}neny C D one has

nh_{Iolo(xn - yn) =0 = nh_{go (f(xn) - f(yn)) =0.
Remark: This characterization is taken as the definition of uniform
continuity in the text.

Remark: You can use this characterization to show that a given func-
tion f : D — R is not uniformly continuous by starting with a sequence
{2Zn}nen such that z, — 0 as n — oo. Next, you seek a sequence
{Zn}nen C D such that {x,, + 2, }neny C D and

Upon setting y,, = x,,+2,, you will have then found sequences {z, },en,
{Yn}nen C D such that

lim (2, — y,) =0 and lim (f(:cn) — f(yn)) #0.
Theorem 1.1 then implies the function f is not uniformly continuous
over D.
Example: The function f : Ry — R given by f(z) = 1/x is not
uniformly continuous. Let {z,}n,en € Ry such that z, — 0 as n — oo.

Then for every {x,},en C Ry one has {x, + 2, }neny C Ry and
1 1 Zn
flzn) = flan+2,) = — — =

T  TptzZn Tp(Ta+zm)

If we choose x,, = z, for every n € N then

f(xn)—f(ﬁn%-zn):%#O as n — 00 .

Hence, f cannot be uniformly continuous over R, by Theorem 1.1.
Example: The function f : R, — R given by f(x) = 22 is not
uniformly continuous. Let {z,}n,en € Ry such that z, — 0 as n — oo.
Then for every {x,},en C Ry one has {x, + 2, }neny C Ry and
f(xn) - f(xn + Zn) = 1‘5 - (xn + Zn)2 = —2&p2p — 23 .
If we choose z,, = 1/z, for every n € N then
f(xn)_f(l’n—i‘zn):—Q—Zf%»O as n — 00.

Hence, f cannot be uniformly continuous over R, by Theorem 1.1.
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Exercise: Show the function f: R, — R given by f(z) = sin(1/x) is
not uniformly continuous. Hint: Proceed as in the first example above,
but choose a particular {z, },en to simplify things.

Now let us turn to the proof of Theorem 1.1. The proof is similar
to the proof of the characterization of continuity at a point in terms of
convergent sequences.

Proof: (=) Let {2, }nen: {yn}tnen C D such that

lim (z, —yn) =0.

n—oo

We need to show that

lim (f(z,) — f(yn)) = 0.

n—oo
Let € > 0. Because f is uniformly continuous over D there exists § > 0
such that for every x,y € D one has

e —yl<d = [f(2) = fy)l <e.

Because (z, —y,) — 0 as n — oo, we know |x,, — y,| < 0 ultimately as
n — oo. Because |z, — y,| < d implies |f(z,) — f(yn)| < €, it follows
that |f(x,) — f(yn)| < € ultimately as n — oco. Because ¢ > 0 was
arbitrary, we have shown that (f(z,) — f(y»)) — 0 as n — oo.

(<=) Suppose f is not uniformly continuous over D. Then there
exist €, > 0 such that for every > 0 there exists x,y € D such that

[z -yl <o and  [f(z) - f(y)| = €.

Hence, for every n € N there exists z,,, ¥y, € D such that

1
‘xn_yn| < on and ‘f(xn)_f(yn)‘ > €.

Clearly, {z, }nen, {Un}tnen C D such that

lim (z, —yn) =0 and lim (f(zn) — f(yn)) #0.
But this contradicts the part of our hypothesis that requires that
(f(xn) — f(yn)) — 0 as n — oo. Therefore f must be uniformly
continuous over D. O
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1.3. Sequential Compactness and Uniform Continuity. The fol-
lowing theorem shows that if D is closed and bounded then continuity
implies uniform continuity. What lies behind this result is the fact that
D is sequentially compact when it is closed and bounded.

Theorem 1.2. Let D C R be closed and bounded. Let f: D — R be
continuous. Then f is uniformly continuous over D.

Proof: We will establish the uniform continuity of f by using the
characterization of Theorem 1.1. Let {x, }nen, {¥n}nen C D such that
lim (z, —y,) =0.

We need to show that

Suppose not. Then there exists €, > 0 such that

|f(0) = f(yn)| = € frequently .
Hence, there exists subsequences {, }ken, {Un, }ren C D such that

and
(1) ‘f(xnk) - f(ynk)} > €, for every k € N.

Because D is sequentially compact, the subsequence {x,, }ren has a
further subsequence {xnkl }en that converges to some z, € D. Because

llilglo (y"’“l B x"’“l) =0,
we see that {yn, }en also converges with
F i, = it P, + 1 (o, =, ) = 20 = 2
Because f is continuous at x, € D, we know that
tim (f(@,) = Fum)) = Flo.) = Flaz) = 0.
But this contradicts our supposition, which by (1) implies that
‘f(xnkl) — f(ynkl)‘ > €, for every [ € N.

Therefore
whereby f is uniformly continuous by Theorem 1.1. O

The conclusion of the above theorem can still hold for some cases
where D is closed but unbounded. For example, if D = Z then every
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function is uniformly continuous. This is easily seen from the defini-
tion by taking 6 < 1. However, the next proposition shows that the
hypothesis D is closed cannot be dropped.

Proposition 1.3. Let D C R. If D is not closed then there exists a
function f : D — R that is continuous over D, but that is not uniformly
continuous over D.

Proof: Because D is not closed there exists a limit point z, of D that
is not in D. Consider the function f : D — R defined for every x € D
by f(z) = 1/(x — x,). It should be clear to you that this function is
continuous over D. We will show that it is not uniformly continuous
over D by showing that for every § > 0 there exists x,y € D such that

v -yl <o, and  [f(z) = fly)|=1.

Because z, is a limit point of D there exists a sequence {z, }pen C D
such that =, — x, as n — oco. Let § > 0 be arbitrary. Let m € N such
that

min{d, 1}
n>m — |xn—x*|<#.
Then for every k € N one has
)
|xm+k _xm‘ < |'Tm+k —J}*‘ + ‘xm —ZC*‘ < 5 _'_5 :57
while 1
This last inequality implies that for every k € N one has
Tm — Tm+k Tm — Tm+k
F @) = o) = o =kl p b = I
Tt — T] [T — @] T — 4
Because
lim |xm - $m+k| -1
k=00 |y — Ty ’
we may pick a k € N large enough so that
‘xm - xm+k| > 1
|Tm — x4 2
Then for this k we have
m ~ 4m 1
Zih—2m| <0, and [ f(@mer)—f(@m)] > 2% >25=1.
Lm — Tk

Because 6 > 0 was arbitrary, we can conclude that f is not uniformly
continuous over D. 0



