
Second In-Class Exam Solutions

Math 246, Spring 2008, Professor David Levermore

(1) [6] Give the interval of existence for the solution of the initial-value problem

d3z

dt3
+

et

2 − t

dz

dt
= tan(t) , z(π) = z′(π) = z′′(π) = 0 .

Solution. The coefficient and forcing are both continuous over the interval (2, 3π

2
),

which contains the initial time t = π. The coefficient is not defined at t = 2 while
the forcing is not defined at t = 3π

2
. The interval of existence is therefore (2, 3π

2
).

(2) [9] Solve the initial-value problem

d2y

dt2
+ 9y = 3t , y(0) = 0 , y′(0) = 1 .

Solution. This is a constant coefficient, inhomogeneous, linear equation. Its char-
acteristic polynomial is

P (z) = z2 + 9 = z2 + 32 .

This has the conjugate pair of roots ±i3, which yields a general solution of the
associated homogeneous problem

y
H

(t) = c1 cos(3t) + c2 sin(3t) .

The forcing 3t has degree d = 1 and characteristic r + is = 0, which is a root of P (z)
of multiplicity m = 0. A particular solution y

P
(t) can be found by the method of

undetermined coefficients using either direct substitution (as in the book) or KEY
identity evaluation (as in the lectures). Alternatively, one can solve the problem with
Laplace transform.

KEY Indentity Evaluations. Because m+ d = 1, you need the KEY identity and
its first derivative

L(ezt) = P (z)ezt = (z2 + 9)ezt , L(t ezt) = (z2 + 9)t ezt + 2z ezt .

Evaluate these at z = 0 to find L(1) = 9 and L(t) = 9t. Dividing the second of these
equations by 3 yields L(1

3
t) = 3t, which implies y

P
(t) = 1

3
t.

Direct Substitution. Because m = 0 and m+d = 1, you seek a particular solution
of the form

y
P
(t) = A0t + A1 .

Because y′

P
(t) = A0 and y′′

P
(t) = 0, one sees that

Ly
P
(t) = y′′

P
(t) + 9yP (t) = 9(A0t + A1) = 9A0t + 9A1 .

Setting Ly
P
(t) = 9A0t+9A1 = 3t, we see that 9A0 = 3 and 9A1 = 0, whereby A0 = 1

3

and A1 = 0. Hence, y
P
(t) = 1

3
t.

1
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Imposing the Initial Conditions. By either approach one finds y
P
(t) = 1

3
t, which

yields the general solution

y(t) = c1 cos(3t) + c2 sin(3t) + 1
3
t .

Because
y′(t) = −3c1 sin(3t) + 3c2 cos(3t) + 1

3
,

when the initial conditions are imposed, one finds that

y(0) = c1 = 0 , y′(0) = 3c2 + 1
3

= 1 .

These are solved to find c1 = 0 and c2 = 2
9
. The solution of the initial-value problem

is therefore
y(t) = 2

9
sin(3t) + 1

3
t .

Laplace Transform. The Laplace transform of the initial-value problem is

L[y′′](s) + 9L[y](s) = 3L[t](s) = 3
1

s2
,

where
L[y](s) = Y (s) ,

L[y′′](s) = s2Y (s) − sy(0) − y′(0) = s2Y (s) − 1 .

Hence,

(s2 + 9)Y (s) = 1 +
3

s2
,

whereby

Y (s) =
1

s2 + 9
+

3

s2(s2 + 9)
.

A partial fraction decomposition yields

3

s2(s2 + 9)
=

1
3

s2
−

1
3

s2 + 9
,

whereby

Y (s) =
2
3

s2 + 9
+

1
3

s2
.

You see from the table on the last page that

L[sin(3t)](s) =
3

s2 + 9
, and L[t] =

1

s2
,

whereby

Y (s) = 2
9
L[sin(3t)](s) + 1

3
L[t](s) = L

[

2
9
sin(3t) + 1

3
t
]

(s) .

The solution of the initial-value problem is therefore

y(t) = L−1[Y ](t) = 2
9
sin(3t) + 1

3
t .
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(3) [9] Let D =
d

dt
. Give a general real solution of the equation

D2y − 2Dy + 5y = 10 cos(t) .

Solution. This is a constant coefficient, inhomogeneous, linear equation. Its char-
acteristic polynomial is

P (z) = z2 − 2z + 5 = (z − 1)2 + 4 = (z − 1)2 + 22 .

This has the conjugate pair of roots 1 ± i2, which yields a general solution of the
associated homogeneous problem

y
H

(t) = c1e
t cos(2t) + c2e

t sin(2t) .

The forcing 10 cos(t) has degree d = 0 and characteristic r+ is = i, which is a root of
P (z) of multiplicity m = 0. A particular solution y

P
(t) can be found by the method

of undetermined coefficients using either direct substitution (as in the book) or KEY
identity evaluation (as in the lectures).

KEY Indentity Evaluations. Because m + d = 0, you only need to evaluate the
KEY identity at z = i, which yields

L(eit) = P (i)eit = (i2 − 2i + 5)eit = (4 − i2)eit .

Because the forcing has the form 10 cos(t) = 10 Re(eit), we write

L

(

10eit

4 − i2

)

= 10eit ,

which implies that

y
P
(t) = Re

(

5eit

2 − i

)

= Re

(

5eit

2 − i

2 + i

2 + i

)

= Re

(

5(2 + i)eit

22 + 12

)

= Re
(

(2 + i)eit
)

= 2 cos(t) − sin(t) .

A general solution of the equation is therefore

y(t) = c1e
t cos(2t) + c2e

t sin(2t) + 2 cos(t) − sin(t) .

Direct Substitution. Because m = d = 0, you seek a particular solution of the
form

y
P
(t) = A cos(t) + B sin(t) .

Because

y′

P
(t) = −A sin(t) + B cos(t) , y′′

P
(t) = −A cos(t) − B sin(t) ,

one sees that

Ly
P
(t) = y′′

P
(t) − 2y′

P
(t) + 5yP (t) = (4A − 2B) cos(t) + (2A + 4B) sin(t) .

Setting Ly
P
(t) = 10 cos(t), we see that

4A − 2B = 10 , 2A + 4B = 0 ,

whereby A = 2 and B = −1. Hence, y
P
(t) = 2 cos(t) − sin(t). A general solution of

the equation is therefore

y(t) = c1e
t cos(2t) + c2e

t sin(2t) + 2 cos(t) − sin(t) .
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(4) [9] What answer will be produced by the following MATLAB commands?

>> ode = ’D2y + 4*Dy + 8*y = 16*exp(–2*t)’;
>> dsolve(ode, ’t’)

ans =

Solution. The commands ask MATLAB to give a general solution of the equation

D2y + 4Dy + 8y = 16e−2t , where D =
d

dt
.

MATLAB will produce the answer

exp(–2t)*sin(2*t)*C2 + exp(–2t)*cos(2*t)*C1 + 4*exp(–2*t)

This can be seen as follows. This is a constant coefficient, inhomogeneous, linear
equation. The characteristic polynomial is

P (z) = z2 + 4z + 8 = (z + 2)2 + 4 = (z + 2)2 + 22 .

Its roots are the conjugate pair −2 ± i2. A general solution of the associated homo-
geneous problem is

y
H

(t) = c1e
−2t cos(2t) + c2e

−2t sin(2t) .

The forcing 16e−2t has degree d = 0 and characteristic r+ is = −2, which is a root of
P (z) of multiplicity m = 0. A particular solution y

P
(t) can be found by the method

of undetermined coefficients using either direct substitution (as in the book) or KEY
identity evaluation (as in the lectures).

KEY Indentity Evaluations. Because m + d = 0, you only need to evaluate the
KEY identity at the characteristic z = −2, which yields

L(e−2t) = P (−2)e−2t =
(

(−2)2 + 4(−2) + 8
)

e−2t = 4e−2t .

Multiplying this by 4 yields L(4e−2t) = 16e−2t, which implies y
P
(t) = 4e−2t.

Direct Substitution. Because m = d = 0 and the characteristic is 0, you seek a
particular solution of the form

y
P
(t) = Ae−2t .

Because
y′

P
(t) = −2Ae−2t , y′′

P
(t) = 4Ae−2t ,

one sees that

Ly
P
(t) = y′′

P
(t) + 4y′

P
(t) + 8y

P
(t)

= [4Ae−2t] + 4[−2Ae−2t] + 8[Ae−2t] = 4Ae−2t .

Setting Ly
P
(t) = 4Ae−2t = 16e−2t, we see that A = 4. Hence, y

P
(t) = 4e−2t.

By either approach you find y
P
(t) = 4e−2t. A general solution is therefore

y(t) = c1e
−2t cos(2t) + c2e

−2t sin(2t) + 4e−2t .

Up to notational differences, this is the answer that MATLAB produces.
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(5) [8] Let L be a linear ordinary differential operator with constant coefficients. Suppose
that all the roots of its characteristic polynomial (listed with their multiplicities) are
−2 + i3, −2 + i3, −2 − i3, −2 − i3, i5, −i5, −7, −7, 0, 0, 0.
(a) Give the order of L.

Solution. There are 11 roots listed above, so the degree of the characteristic
polynomial is 11, whereby the order of L is 11.

(b) Give a general real solution of the homogeneous equation Ly = 0.

Solution. A general solution is

y(t) = c1e
−2t cos(3t) + c2e

−2t sin(3t) + c3t e−2t cos(3t) + c4t e−2t sin(3t)

= c5 cos(5t) + c6 sin(5t) + c7e
−7t + c8t e−7t + c9 + c10t + c11t

2 .

The reasoning is as follows:
• the double conjugate pair −2 ± i3 yields

e−2t cos(3t) , e−2t sin(3t) , t e−2t cos(3t) , and t e−2t sin(3t) ;

• the single conjugate pair ±i5 yields cos(5t) and sin(5t);
• the double real root −7 yields e−7t and t e−7t;
• the triple real root 0 yields 1, t, and t2.

(6) [9] The functions x2 and x3 are solutions of the homogeneous equation

x2 d2y

dx2
− 4x

dy

dx
+ 6y = 0 over x > 0 .

(You do not have to check that this is true!)
(a) Compute their Wronskian.

Solution. The Wronskian is

W [x2, x3](x) = det

(

x2 x3

2x 3x2

)

= 3x4 − 2x4 = x4 .

(b) Give a general solution of the equation

x2 d2y

dx2
− 4x

dy

dx
+ 6y = 4x4e2x over x > 0 .

You may express the solution in terms of definite integrals.

Solution. Because W [x2, x3](x) = x4 > 0 over x > 0, the functions x2 and x3 are
linearly independent. A general solution of the associated homogeneous problem is

y
H

(x) = c1x
2 + c2x

3 .

Because this problem does not have constant coefficients, you must use the method
of variation of parameters to find a particular solution y

P
(x). First, divide by x2 to

bring the equation into its normal form

d2y

dx2
− 4

x

dy

dx
+

6

x2
y = 4x2e2x over x > 0 .
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Seek a solution in the form

y = u1(x)x2 + u2(x)x3 .

where u′

1(x) and u′

2(x) satisfy

u′

1(x)x2 + u′

2(x)x3 = 0 ,

u′

1(x)2x + u′

2(x)3x2 = 4x2e2x .

Solve this system to find

u′

1(x) = −4x e2x , u′

2(x) = 4e2x .

Integrate these equations to find

u1(x) = c1 + (1 − 2x)e2x , u2(x) = c2 + 2e2x .

A general solution is therefore

y = c1x
2 + c2x

3 + (1 − 2x)e2xx2 + 2e2xx3 = c1x
2 + c2x

3 + x2e2x .

(7) [8] The vertical displacement of a mass on a spring is given by

h(t) = 3 cos(8t) − 4 sin(8t) .

Express this in the form h(t) = A cos(ωt− δ) with A > 0 and 0 ≤ δ < 2π, identifying
the period, amplitude, and phase of the oscillation. (The phase may be expressed in
terms of an inverse trig function.)

Solution. By compairing

A cos(ωt − δ) = A cos(δ) cos(ωt) + A sin(δ) sin(ωt)

with h(t) = 3 cos(8t) − 4 sin(8t), we see that ω = 8 and that

A cos(δ) = 3 , A sin(δ) = −4 .

Therefore the period T is given by

T =
2π

ω
=

2π

8
=

π

4
,

while the amplitude A is given by

A =
√

32 + 42 =
√

9 + 16 =
√

25 = 5 .

Because cos(δ) = 3
5

> 0 while sin(δ) = −4
5

< 0, the phase δ lies in the fourth quadrant

(3π

2
< δ < 2π) and satisfies any one of the formulas

sin(δ) = −4
5
, cos(δ) = 3

5
, tan(δ) = −4

3
.

It is therefore given by any one of the following formulas

δ = 2π + sin−1
(

− 4
5

)

, δ = 2π − cos−1
(

3
5

)

, δ = 2π + tan−1
(

− 4
3

)

.
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(8) [9] When a mass of 2 kilograms is hung vertically from a spring, at rest it stretches
the spring .2 m. (Gravitational acceleration is g = 9.8 m/sec2.) At t = 0 the mass is
displaced .1 m above its rest position and is released with a downward initial velocity
of .3 m/sec. Assume that the spring force is proportional to displacement, that there
is no drag force, and that the mass is driven by an external force of Fext(t) = 10 cos(ωt)
Newtons (1 Newton = 1 kg m/sec2), where up is taken to be positive.
(a) Formulate an initial-value problem that governs the motion of the mass for t > 0.

(DO NOT solve this initial-value problem, just write it down!)

Solution. Let h(t) be the displacement of the mass from its equilibrium (rest)
position at time t in centimeters, with upward displacements being positive. The
governing initial-value problem then has the form

m
d2h

dt2
+ kh = Fext(t) , h(0) = .1 , h′(0) = −.3 ,

where m is the mass and k is the spring constant. The problem says that m = 2
kilograms. The spring constant is obtained by balancing the weight of the mass
(mg = 2 · 9.8 Newtons) with the force applied by the spring when it is stetched
.2 m. This gives k .2 = 2 · 9.8, or

k =
2 · 9.8

.2
=

2 · 98

2
= 98 Newtons/m .

Because Fext(t) = 10 cos(ωt), the governing initial-value problem is therefore

2
d2h

dt2
+ 98h = 10 cos(ωt) , h(0) = .1 , h′(0) = −.3 .

(b) What is the natural frequency of this spring?

Solution. The natural frequency of the spring is given by

ωo =

√

k

m
=

√

98

2
=

√
49 = 7 1/sec .

(c) At what value of the driving frequency ω does resonance occur?

Solution. Resonance occurs when the driving frequency ω equals the natural
fequency of the spring ωo. Given the answer to part (b), resonance occurs when

ω = ωo = 7 1/sec .
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(9) [8] Compute the Laplace transform of f(t) = u(t− 2) e3t from its definition. (Here u
is the unit step function.)

Solution. The definition of Laplace transform gives

L[f ](s) = lim
T→∞

∫

T

0

e−stu(t − 2) e3t dt = lim
T→∞

∫

T

2

e(3−s)t dt .

This limit diverges to +∞ for s ≤ 3 because in that case
∫

T

2

e(3−s)t dt ≥
∫

T

2

dt = T − 2 ,

which clearly diverges to +∞ as T → ∞.
For s > 3 an integration by parts shows that

∫

T

2

e(3−s)t dt =
e(3−s)t

3 − s

∣

∣

∣

∣

T

2

=
e(3−s)T

3 − s
− e(3−s)2

3 − s
.

Hence, for s > 3 one has that

L[f ](s) = lim
T→∞

(

e−(s−3)2

s − 3
− e−(s−3)T

s − 3

)

=
e−(s−3)2

s − 3
− lim

T→∞

e−(s−3)T

s − 3

=
e−(2s−6)

s − 3
.

(10) [9] Find the Laplace transform Y (s) of the solution y(t) of the initial-value problem

d2y

dt2
+ 6

dy

dt
+ 25y = f(t) , y(0) = 1 , y′(0) = −3 ,

where

f(t) =

{

sin(2t) for 0 ≤ t < π ,

(t − π)2 for t ≥ π .

You may refer to the table on the last page. DO NOT take the inverse Laplace
transform to find y(t), just solve for Y (s)!

Solution. The Laplace transform of the initial-value problem is

L[y′′](s) + 6L[y′](s) + 25L[y](s) = L[f ](s) ,

where
L[y](s) = Y (s) ,

L[y′](s) = sY (s) − y(0) = sY (s) − 1 ,

L[y′′](s) = s2Y (s) − sy(0) − y′(0) = s2Y (s) − s + 3 .

To compute L[f ](s), first write f as

f(t) =
(

1 − u(t − π)
)

sin(2t) + u(t− π)(t − π)2

= sin(2t) − u(t − π) sin(2t) + u(t − π)(t − π)2

= sin(2t) − u(t − π) sin
(

2(t − π)
)

+ u(t − π)(t − 2π)2 .
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Referring to the table on the last page, item 5 with c = π, item 3 with b = 2, and
item 1 with n = 2 then show that

L[f ](s) = L[sin(2t)](s) − L
[

u(t − 2π) sin
(

2(t − π)
)]

(s) + L
[

u(t − π)(t − π)2
]

(s)

= L[sin(2t)](s) − e−πsL[sin(2t)](s) + e−πsL[t2](s)

=
(

1 − e−πs
) 2

s2 + 22
+ e−πs

2

s3
.

The Laplace transform of the initial-value problem then becomes
(

s2Y (s) − s + 3
)

+ 6
(

sY (s) − 1
)

+ 25Y (s) =
(

1 − e−πs
) 2

s2 + 4
+ e−πs

2

s3
,

which becomes

(s2 + 6s + 25)Y (s) − s + 3 − 6 =
(

1 − e−πs
) 2

s2 + 4
+ e−πs

2

s3
.

Hence, Y (s) is given by

Y (s) =
1

s2 + 6s + 25

(

s + 3 +
(

1 − e−πs
) 2

s2 + 4
+ e−πs

2

s3

)

.

(11) [16] Find the inverse Laplace transforms of the following functions. You may refer to
the table on the last page.

(a) F (s) =
8

s2 − 2s − 3
,

Solution. The denominator factors as (s − 3)(s + 1), so the partial fraction
decomposition is

8

s2 − 2s − 3
=

8

(s − 3)(s + 1)
=

2

s − 3
− 2

s + 1
.

Referring to the table on the last page, item 1 with n = 0 gives L[1](s) = 1/s.
Item 4 with a = 3 and f(t) = 1, and with a = −2 and f(t) = 1, then gives

L[e3t](s) =
1

s − 3
, L[e−t](s) =

1

s + 1
,

whereby

8

s2 − 2s − 3
= 2L[e3t](s) − 2L[e−t](s) = L

[

2e3t − 2e−t
]

(s) .

You therefore conclude that

L−1

[

8

s2 − 2s − 3

]

(t) = 2e3t − 2e−t .
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(b) F (s) =
4e−πs

s2 − 6s + 25
.

Solution. Complete the square in the denominator to get (s−3)2+42. Referring
to the table on the last page, item 3 with b = 4 gives

L[sin(4t)](s) =
4

s2 + 42
.

Item 4 with a = 3 and f(t) = sin(4t) then gives

L[e3t sin(4t)](s) =
4

(s − 3)2 + 42
.

Item 5 with c = π and f(t) = e3t sin(4t) then gives

L
[

u(t − π)e3(t−π) sin
(

4(t − π)
)]

(s) = e−πs
4

(s − 3)2 + 42
.

You therefore conclude that

L−1

[

e−πs
4

s2 − 6s + 25

]

(t) = u(t − π)e3(t−π) sin(4t − 4π)

= u(t − π)e3(t−π) sin(4t) .

A Short Table of Laplace Transforms

L[tn](s) =
n!

sn+1
for s > 0 .

L[cos(bt)](s) =
s

s2 + b2
for s > 0 .

L[sin(bt)](s) =
b

s2 + b2
for s > 0 .

L[eatf(t)](s) = F (s − a) where F (s) = L[f(t)](s) .

L[u(t− c)f(t − c)](s) = e−csF (s) where F (s) = L[f(t)](s)

and u is the unit step function .


