Eigen Methods

Math 246, Spring 2008, Professor David Levermore

Eigenvalues and Eigenvectors. Let **A** be a real $n \times n$ matrix. Recall that a number λ (possibly complex) is an *eigenvalue* of **A** if there exists a nonzero vector **v** (possibly complex) such that

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v} \,.$$

Each such vector is an eigenvector associated with λ , and (λ, \mathbf{v}) is an eigenpair of \mathbf{A} .

Fact 1: If (λ, \mathbf{v}) is an eigenpair of \mathbf{A} then so is $(\lambda, \alpha \mathbf{v})$ for every complex $\alpha \neq 0$. In other words, if \mathbf{v} is an eigenvector associated with an eigenvalue λ of \mathbf{A} then so is $\alpha \mathbf{v}$ for every complex $\alpha \neq 0$. In particular, eigenvectors are not unique.

Reason. Because (λ, \mathbf{v}) is an eigenpair of **A** you know that (1) holds. It follows that

$$\mathbf{A}(\alpha \mathbf{v}) = \alpha \mathbf{A} \mathbf{v} = \alpha \lambda \mathbf{v} = \lambda(\alpha \mathbf{v}).$$

Because the scalar α and vector \mathbf{v} are nonzero, the vector $\alpha \mathbf{v}$ is also nonzero. Therefore $(\lambda, \alpha \mathbf{v})$ is also an eigenpair of \mathbf{A} .

Recall that the characteristic polynomial of **A** is defined by

(2)
$$p_{\mathbf{A}}(z) = \det(z\mathbf{I} - \mathbf{A}).$$

It has the form

$$p_{\mathbf{A}}(z) = z^n + \pi_1 z^{n-1} + \pi_2 z^{n-2} + \dots + \pi_{n-1} z + \pi_n$$

where the coefficients $\pi_1, \pi_2, \dots, \pi_n$ are real. In other words, it is a real monic polynomial of degree n. One can show that in general

$$\pi_1 = -\operatorname{tr}(\mathbf{A}), \qquad \pi_n = (-1)^n \det(\mathbf{A}).$$

In particular, when n=2 one has

$$p_{\mathbf{A}}(z) = z^2 - \operatorname{tr}(\mathbf{A})z + \det(\mathbf{A}).$$

Because $\det(z\mathbf{I} - \mathbf{A}) = (-1)^n \det(\mathbf{A} - z\mathbf{I})$, this definition of $p_{\mathbf{A}}(z)$ coincides with the book's definition when n is even, and is its negative when n is odd. Both conventions are common. We have chosen the convention that makes $p_{\mathbf{A}}(z)$ monic. What matters most about $p_{\mathbf{A}}(z)$ is its roots and their multiplicity, which are the same for both conventions.

Fact 2: A number λ is an eigenvalue of **A** if and only if $p_{\mathbf{A}}(\lambda) = 0$. In other words, the eigenvalues of **A** are the roots of $p_{\mathbf{A}}(z)$.

Reason. If λ is an eigenvalue of **A** then by (1) there exists a nonzero vector **v** such that

$$(\lambda \mathbf{I} - \mathbf{A})\mathbf{v} = \lambda \mathbf{v} - \mathbf{A}\mathbf{v} = 0.$$

It follows that $p_{\mathbf{A}}(\lambda) = \det(\lambda \mathbf{I} - \mathbf{A}) = 0.$

Conversely, if $p_{\mathbf{A}}(\lambda) = \det(\lambda \mathbf{I} - \mathbf{A}) = 0$ then there exists a nonzero vector \mathbf{v} such that $(\lambda \mathbf{I} - \mathbf{A})\mathbf{v} = 0$. It follows that

$$\lambda \mathbf{v} - \mathbf{A}\mathbf{v} = (\lambda \mathbf{I} - \mathbf{A})\mathbf{v} = 0,$$

whereby λ and \mathbf{v} satisfy (1), which implies λ is an eigenvalue of \mathbf{A} .

Fact 2 shows that the eigenvalues of a $n \times n$ matrix **A** can be found if you can find all the roots of the characteristic polynomial of **A**. You can then find all the eigenvectors associated with each eigenvalue by finding a general nonzero solution of (1).

You can quickly find the eigenvectors for any 2×2 matrix **A** with help from the Cayley-Hamilton Theorem, which states that $p_{\mathbf{A}}(\mathbf{A}) = 0$. The eigenvalues λ_1 and λ_2 are the roots of $p_{\mathbf{A}}(z)$, so $p_{\mathbf{A}}(z) = (z - \lambda_1)(z - \lambda_2)$. Hence, by the Cayley-Hamilton Theorem

(3)
$$0 = p_{\mathbf{A}}(\mathbf{A}) = (\mathbf{A} - \lambda_1 \mathbf{I})(\mathbf{A} - \lambda_2 \mathbf{I}) = (\mathbf{A} - \lambda_2 \mathbf{I})(\mathbf{A} - \lambda_1 \mathbf{I}).$$

It follows that every nonzero column of $\mathbf{A} - \lambda_2 \mathbf{I}$ is an eigenvector associated with λ_1 , and that every nonzero column of $\mathbf{A} - \lambda_1 \mathbf{I}$ is an eigenvector associated with λ_2 .

Example. Find the eigenpairs of $\mathbf{A} = \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix}$.

Solution. The characteristic polynomial of **A** is

$$p_{\mathbf{A}}(z) = z^2 - 6z + 5 = (z - 1)(z - 5)$$
.

By Fact 2 the eigenvalues of **A** are 1 and 5. Because

$$\mathbf{A} - \mathbf{I} = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}, \qquad \mathbf{A} - 5\mathbf{I} = \begin{pmatrix} -2 & 2 \\ 2 & -2 \end{pmatrix},$$

Every column of $\mathbf{A} - 5\mathbf{I}$ has the form

$$\alpha \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 for some $\alpha \neq 0$,

while every column of A - I has the form

$$\alpha \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 for some $\alpha \neq 0$.

It follows from (3) that the eigenpairs of **A** are

$$\left(1, \begin{pmatrix} 1 \\ -1 \end{pmatrix}\right), \qquad \left(5, \begin{pmatrix} 1 \\ 1 \end{pmatrix}\right).$$

Example. Find the eigenpairs of $\mathbf{A} = \begin{pmatrix} 3 & 2 \\ -2 & 3 \end{pmatrix}$.

Solution. The characteristic polynomial of **A** is

$$p_{\mathbf{A}}(z) = z^2 - 6z + 13 = (z - 3)^2 + 4 = (z - 3)^2 + 2^2$$
.

By Fact 2 the eigenvalues of **A** are 3 + i2 and 3 - i2. Because

$$\mathbf{A} - (3+i2)\mathbf{I} = \begin{pmatrix} -i2 & 2 \\ -2 & -i2 \end{pmatrix}, \qquad \mathbf{A} - (3-i2)\mathbf{I} = \begin{pmatrix} i2 & 2 \\ -2 & i2 \end{pmatrix}.$$

Every column of $\mathbf{A} - (3 - i2)\mathbf{I}$ has the form

$$\alpha \begin{pmatrix} 1 \\ i \end{pmatrix}$$
 for some $\alpha \neq 0$,

while every column of $\mathbf{A} - (3+i2)\mathbf{I}$ has the form

$$\alpha \begin{pmatrix} 1 \\ -i \end{pmatrix}$$
 for some $\alpha \neq 0$.

It follows from (3) that the eigenpairs of \mathbf{A} are

$$\left(3+i2, \begin{pmatrix}1\\i\end{pmatrix}\right), \qquad \left(3-i2, \begin{pmatrix}1\\-i\end{pmatrix}\right).$$

Notice that in the above example the eigenvectors associated with 3 - i2 are complex conjugates to those associated with 3 + i2. This illustrates is a particular instance of the following general fact.

Fact 3: If (λ, \mathbf{v}) is an eigenpair of the real matrix **A** then so is $(\overline{\lambda}, \overline{\mathbf{v}})$.

Reason. Because (λ, \mathbf{v}) is an eigenpair of \mathbf{A} you know by (1) that $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$. Because \mathbf{A} is real, the complex conjugate of this equation is

$$\mathbf{A}\overline{\mathbf{v}} = \overline{\lambda}\overline{\mathbf{v}}$$
,

where $\overline{\mathbf{v}}$ is nonzero because \mathbf{v} is nonzero. It follows that $(\overline{\lambda}, \overline{\mathbf{v}})$ is an eigenpair of \mathbf{A} .

Both examples given above illustrate particular instances of the following general facts.

Fact 4: Let λ be an eigenvalue of the real matrix **A**. If λ is real then it has a real eigenvector. If λ is not real then none of its eigenvectors are real.

Reason. Let **v** be any eigenvector associated with λ , so that (λ, \mathbf{v}) is an eigenpair of **A**. Let $\lambda = \mu + i\nu$ and $\mathbf{v} = \mathbf{u} + i\mathbf{w}$ where μ and ν are real numbers and \mathbf{u} and \mathbf{w} are real vectors. One then has

$$\mathbf{A}\mathbf{u} + i\mathbf{A}\mathbf{w} = \mathbf{A}\mathbf{v} = \lambda\mathbf{v} = (\mu + i\nu)(\mathbf{u} + i\mathbf{w}) = (\mu\mathbf{u} - \nu\mathbf{w}) + i(\mu\mathbf{w} + \nu\mathbf{u}),$$

which is equivalent to

$$\mathbf{A}\mathbf{u} - \mu\mathbf{u} = -\nu\mathbf{w}$$
, and $\mathbf{A}\mathbf{w} - \mu\mathbf{w} = \nu\mathbf{u}$.

If $\nu = 0$ then **u** and **w** will be real eigenvectors associated with λ whenever they are nonzero. But at least one of **u** and **w** must be nonzero because $\mathbf{v} = \mathbf{u} + i\mathbf{w}$ is nonzero. Conversely, if $\nu \neq 0$ and $\mathbf{w} = 0$ then the second equation above implies $\mathbf{u} = 0$ too, which contradicts the fact that at least one of **u** and **w** must be nonzero. Hence, if $\nu \neq 0$ then $\mathbf{w} \neq 0$.

Solutions of First-Order Systems. We are now ready to use eigenvalues and eigenvectors to construct solutions of first-order differential systems with a constant coefficient matrix. The system we study is

(4)
$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{A}\mathbf{x}\,,$$

where $\mathbf{x}(t)$ is a vector and \mathbf{A} is a real $n \times n$ matrix. We begin with the following basic fact.

Fact 5: If (λ, \mathbf{v}) is an eigenpair of **A** then a solution of (4) is

(5)
$$\mathbf{x}(t) = e^{\lambda t} \mathbf{v} .$$

Reason. By direct calculation we see that

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} (e^{\lambda t}\mathbf{v}) = e^{\lambda t} \lambda \mathbf{v} = e^{\lambda t} \mathbf{A} \mathbf{v} = \mathbf{A} (e^{\lambda t} \mathbf{v}) = \mathbf{A} \mathbf{x},$$

whereby $\mathbf{x}(t)$ given by (5) solves (4).

If (λ, \mathbf{v}) is a real eigenpair of \mathbf{A} then recipe (5) will yield a real solution of (4). But if λ is an eigenvalue of \mathbf{A} that is not real then recipe (5) will not yield a real solution. However, if we also use the solution associated with the conjugate eigenpair $(\overline{\lambda}, \overline{\mathbf{v}})$ then we can construct two real solutions.

Fact 6: Let (λ, \mathbf{v}) be an eigenpair of \mathbf{A} with $\lambda = \mu + i\nu$ and $\mathbf{v} = \mathbf{u} + i\mathbf{w}$ where μ and ν are real numbers while \mathbf{u} and \mathbf{w} are real vectors. Then two real solutions of (4) are

(6)
$$\mathbf{x}_{1}(t) = \operatorname{Re}(e^{\lambda t}\mathbf{v}) = e^{\mu t}(\mathbf{u}\cos(\nu t) - \mathbf{w}\sin(\nu t)),$$
$$\mathbf{x}_{2}(t) = \operatorname{Im}(e^{\lambda t}\mathbf{v}) = e^{\mu t}(\mathbf{w}\cos(\nu t) + \mathbf{u}\sin(\nu t)).$$

Reason. Because (λ, \mathbf{v}) is an eigenpair of \mathbf{A} , by Fact 3 so is $(\overline{\lambda}, \overline{\mathbf{v}})$. By recipe (5) two solutions of (4) are $e^{\lambda t}\mathbf{v}$ and $e^{\overline{\lambda}t}\overline{\mathbf{v}}$, which are complex conjugates of each other. Because equation (4) is linear, it follows that two real solutions of (4) are given by

$$\mathbf{x}_1(t) = \operatorname{Re}(e^{\lambda t}\mathbf{v}) = \frac{e^{\lambda t}\mathbf{v} + e^{\overline{\lambda}t}\overline{\mathbf{v}}}{2}, \quad \mathbf{x}_2(t) = \operatorname{Im}(e^{\lambda t}\mathbf{v}) = \frac{e^{\lambda t}\mathbf{v} - e^{\overline{\lambda}t}\overline{\mathbf{v}}}{i2}.$$

Because $\lambda = \mu + i\nu$ and $\mathbf{v} = \mathbf{u} + i\mathbf{w}$ we see that

$$e^{\lambda t} \mathbf{v} = e^{\mu t} (\cos(\nu t) + i\sin(\nu t)) (\mathbf{u} + i\mathbf{v})$$

= $e^{\mu t} [(\mathbf{u}\cos(\nu t) - \mathbf{w}\sin(\nu t)) + i(\mathbf{w}\cos(\nu t) + \mathbf{u}\sin(\nu t))],$

whereby $\mathbf{x}_1(t)$ and $\mathbf{x}_2(t)$ are read off from the real and imaginary parts, yielding (6). **Example.** Find two linearly independent real solutions of

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{A}\mathbf{x}$$
, where $\mathbf{A} = \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix}$.

Solution. By a previous example we know that **A** has the real eigenpairs

$$\left(1, \begin{pmatrix} 1 \\ -1 \end{pmatrix}\right), \qquad \left(5, \begin{pmatrix} 1 \\ 1 \end{pmatrix}\right).$$

By recipe (5) the equation has the real solutions

$$\mathbf{x}_1(t) = e^t \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \quad \mathbf{x}_2(t) = e^{5t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

These solutions are linearly independent because

$$W[\mathbf{x}_1, \mathbf{x}_2](0) = \det\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} = 2 \neq 0.$$

Example. Find two linearly independent real solutions of

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{A}\mathbf{x}$$
, where $\mathbf{A} = \begin{pmatrix} 3 & 2 \\ -2 & 3 \end{pmatrix}$.

Solution. By a previous example we know that **A** has the conjugate eigenpairs

$$\left(3+i2, \begin{pmatrix}1\\i\end{pmatrix}\right), \qquad \left(3-i2, \begin{pmatrix}1\\-i\end{pmatrix}\right).$$

Because

$$e^{(3+i2)t} \begin{pmatrix} 1 \\ i \end{pmatrix} = e^{3t} \left(\cos(2t) + i \sin(2t) \right) \begin{pmatrix} 1 \\ i \end{pmatrix} = e^{3t} \begin{pmatrix} \cos(2t) + i \sin(2t) \\ -\sin(2t) + i \cos(2t) \end{pmatrix} ,$$

by recipe (6) the equation has the real solutions

$$\mathbf{x}_1(t) = e^{3t} \begin{pmatrix} \cos(2t) \\ -\sin(2t) \end{pmatrix}, \quad \mathbf{x}_2(t) = e^{3t} \begin{pmatrix} \sin(2t) \\ \cos(2t) \end{pmatrix}.$$

These solutions are linearly independent because

$$W[\mathbf{x}_1, \mathbf{x}_2](0) = \det\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 1 \neq 0.$$

Matrix Exponentials. If recipe (5) yields n linearly independent solutions of the first-order system (4) then they can be used to construct the matrix exponential $e^{t\mathbf{A}}$. The key to this construction is the following fact from linear algebra.

Fact 7: If a real $n \times n$ matrix **A** has n eigenpairs, $(\lambda_1, \mathbf{v}_1)$, $(\lambda_2, \mathbf{v}_2)$, \cdots , $(\lambda_n, \mathbf{v}_n)$, such that the eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ are linearly independent then

$$\mathbf{A} = \mathbf{V}\mathbf{D}\mathbf{V}^{-1} \quad .$$

where V is the $n \times n$ matrix whose columns are the vectors $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ — i.e.

(8)
$$\mathbf{V} = \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{pmatrix},$$

while **D** is the $n \times n$ diagonal matrix

(9)
$$\mathbf{D} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix}.$$

Reason. Underlying this result is the fact that

(10)
$$\mathbf{AV} = \mathbf{A} \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{pmatrix} = \begin{pmatrix} \mathbf{A}\mathbf{v}_1 & \mathbf{A}\mathbf{v}_2 & \cdots & \mathbf{A}\mathbf{v}_n \end{pmatrix} \\ = \begin{pmatrix} \lambda_1 \mathbf{v}_1 & \lambda_2 \mathbf{v}_2 & \cdots & \lambda_n \mathbf{v}_n \end{pmatrix} \\ = \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix} = \mathbf{VD}.$$

Once we show that V is inverible then (7) follows upon multiplying the above relation on the left by V^{-1} .

We claim that $\det(\mathbf{V}) \neq 0$ because the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are linearly independent. Suppose otherwise. Because $\det(\mathbf{V}) = 0$ there exists a nonzero vector \mathbf{c} such that $\mathbf{V}\mathbf{c} = 0$. This means that

$$0 = \mathbf{V}\mathbf{c} = \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} = c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_n\mathbf{v}_n.$$

Because vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are linearly independent, this implies $c_1 = c_2 = \dots = c_n = 0$, which contradicts the fact \mathbf{c} is nonzero. Therefore $\det(\mathbf{V}) \neq 0$. Hence, the matrix \mathbf{V} is invertible and (7) follows upon multiplying relation (10) on the left by \mathbf{V}^{-1} .

We call a real $n \times n$ matrix \mathbf{A} diagonalizable when there exists an invertible matrix \mathbf{V} and a diagonal matrix \mathbf{D} such that $\mathbf{A} = \mathbf{V}\mathbf{D}\mathbf{V}^{-1}$. To diagonalize \mathbf{A} means to find such a \mathbf{V} and \mathbf{D} . Fact 7 states that \mathbf{A} is diagonalizable when it has n linearly independent eigenvectors. The converse of this statement is also true.

Fact 8: If a real $n \times n$ matrix **A** is diagonalizable then it has n linearly independent eigenvectors.

Reason. Because **A** is diagonalizable it has the form $\mathbf{A} = \mathbf{V}\mathbf{D}\mathbf{V}^{-1}$ where the matrix **V** is invertible and the matrix **D** is diagonal.

Let the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be the columns of \mathbf{V} . We claim these vectors are linearly independent. Indeed, if $0 = c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_n\mathbf{v}_n$ then because $\mathbf{V} = \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{pmatrix}$ we see that

$$0 = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n = \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} = \mathbf{V} \mathbf{c}.$$

Because V is invertible, this implies that $\mathbf{c} = 0$. The vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are therefore linearly independent.

Because $\mathbf{V} = (\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_n)$ and because $\mathbf{A} = \mathbf{V}\mathbf{D}\mathbf{V}^{-1}$ where \mathbf{D} has the form (9), we see that

$$(\mathbf{A}\mathbf{v}_1 \quad \mathbf{A}\mathbf{v}_2 \quad \cdots \quad \mathbf{A}\mathbf{v}_n) = \mathbf{A} \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{pmatrix}$$

$$= \mathbf{A}\mathbf{V} = \mathbf{V}\mathbf{D}\mathbf{V}^{-1}\mathbf{V} = \mathbf{V}\mathbf{D}$$

$$= \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix}$$

$$= \begin{pmatrix} \lambda_1\mathbf{v}_1 & \lambda_2\mathbf{v}_2 & \cdots & \lambda_n\mathbf{v}_n \end{pmatrix} .$$

Because the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are linearly independent, they are all nonzero. It then follows from the above relation that $(\lambda_1, \mathbf{v}_1), (\lambda_2, \mathbf{v}_2), \dots, (\lambda_n, \mathbf{v}_n)$ are eigenpairs of \mathbf{A} , such that the eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are linearly independent.

Example. Show that $\mathbf{A} = \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix}$ is diagonalizable, and diagonalize it.

Solution. By a previous example we know that A has the real eigenpairs

$$\left(1, \begin{pmatrix} 1 \\ -1 \end{pmatrix}\right), \qquad \left(5, \begin{pmatrix} 1 \\ 1 \end{pmatrix}\right).$$

Because we also know the eigenvectors are linearly independent, \mathbf{A} is diagonalizable. Then (8) and (9) yield

$$\mathbf{V} = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} , \qquad \mathbf{D} = \begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix} .$$

Because $det(\mathbf{V}) = 2$, one has

$$\mathbf{V}^{-1} = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} .$$

It follows from (7) that **A** is diagonalized as

$$\mathbf{A} = \mathbf{V}\mathbf{D}\mathbf{V}^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}.$$

We are now ready to give a construction of the matrix exponential $e^{t\mathbf{A}}$.

Fact 9: If the real $n \times n$ matrix **A** has n eigenpairs, $(\lambda_1, \mathbf{v}_1), (\lambda_2, \mathbf{v}_2), \dots, (\lambda_n, \mathbf{v}_n)$, such that the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are linearly independent then

$$e^{t\mathbf{A}} = \mathbf{V}e^{t\mathbf{D}}\mathbf{V}^{-1}.$$

where **V** and **D** are the $n \times n$ matrices given by (8) and (9).

Reason. Set $\Phi(t) = \mathbf{V}e^{t\mathbf{D}}\mathbf{V}^{-1}$. It then follows that

$$\frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{\Phi}(t) = \frac{\mathrm{d}}{\mathrm{d}t}\big(\mathbf{V}e^{t\mathbf{D}}\mathbf{V}^{-1}\big) = \mathbf{V}\frac{\mathrm{d}}{\mathrm{d}t}e^{t\mathbf{D}}\mathbf{V}^{-1} = \mathbf{V}\mathbf{D}e^{t\mathbf{D}}\mathbf{V}^{-1} = \mathbf{A}\mathbf{V}e^{t\mathbf{D}}\mathbf{V}^{-1} = \mathbf{A}\boldsymbol{\Phi}(t)\,,$$

whereby the matrix-valued function $\Phi(t)$ satisfies

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{\Phi}(t) = \mathbf{A}\mathbf{\Phi}(t).$$

Moreover, because $e^{0\mathbf{D}} = \mathbf{I}$ we see that $\mathbf{\Phi}(t)$ also satisfies the initial condition

$$\Phi(0) = Ve^{0D}V^{-1} = VIV^{-1} = VV^{-1} = I.$$

It follows that $\Phi(t) = e^{t\mathbf{A}}$, whereby (11) follows.

Formula (11) is the book's method for computing $e^{t\mathbf{A}}$ when \mathbf{A} is diagonalizable. Because not every matrix is diagonalizable, it cannot always be applied. When it can be applied, most of the work needed to apply it goes into computing \mathbf{V} and \mathbf{V}^{-1} . The matrix $e^{t\mathbf{D}}$ is simply given by

(12)
$$e^{t\mathbf{D}} = \begin{pmatrix} e^{\lambda_1 t} & 0 & \cdots & 0 \\ 0 & e^{\lambda_2 t} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & e^{\lambda_n t} \end{pmatrix}.$$

Once you have $\mathbf{V}, \mathbf{V}^{-1}$, and $e^{t\mathbf{D}}$, formula (11) requires two matrix multiplications.

Example. Compute $e^{t\mathbf{A}}$ for $\mathbf{A} = \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix}$.

Solution. By a previous example we know that A has the real eigenpairs

$$\left(1, \begin{pmatrix} 1 \\ -1 \end{pmatrix}\right), \qquad \left(5, \begin{pmatrix} 1 \\ 1 \end{pmatrix}\right),$$

and that A is diagonalizable. By (8) and (9) we also know that

$$\mathbf{V} = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \qquad \mathbf{D} = \begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix}, \qquad \mathbf{V}^{-1} = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}.$$

By formulas (11) and (12) we therefore have

$$e^{t\mathbf{A}} = \mathbf{V}e^{t\mathbf{D}}\mathbf{V}^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} e^{t} & 0 \\ 0 & e^{5t} \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} e^{t} & -e^{t} \\ e^{5t} & e^{5t} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} e^{5t} + e^{t} & e^{5t} - e^{t} \\ e^{5t} - e^{t} & e^{5t} + e^{t} \end{pmatrix}.$$

Example. Compute $e^{t\mathbf{A}}$ for $\mathbf{A} = \begin{pmatrix} 3 & 2 \\ -2 & 3 \end{pmatrix}$.

Solution. By a previous example we know that **A** has the conjugate eigenpairs

$$\left(3+i2, \begin{pmatrix}1\\i\end{pmatrix}\right), \qquad \left(3-i2, \begin{pmatrix}1\\-i\end{pmatrix}\right).$$

By (8) and (9) we know that

$$\mathbf{V} = \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix}, \qquad \mathbf{D} = \begin{pmatrix} 3+i2 & 0 \\ 0 & 3-i2 \end{pmatrix}.$$

Because $\det(\mathbf{V}) = -i2$, we have

$$\mathbf{V}^{-1} = \frac{1}{-i2} \begin{pmatrix} -i & -1 \\ -i & 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & -i \\ 1 & i \end{pmatrix} .$$

By formula (12) we have

$$e^{t\mathbf{D}} = \begin{pmatrix} e^{(3+i2)t} & 0\\ 0 & e^{(3-i2)t} \end{pmatrix} = e^{3t} \begin{pmatrix} e^{i2t} & 0\\ 0 & e^{-i2t} \end{pmatrix}.$$

By formula (11) we therefore have

$$\begin{split} e^{t\mathbf{A}} &= \mathbf{V}e^{t\mathbf{D}}\mathbf{V}^{-1} = \frac{e^{3t}}{2} \begin{pmatrix} 1 & 1\\ i & -i \end{pmatrix} \begin{pmatrix} e^{i2t} & 0\\ 0 & e^{-i2t} \end{pmatrix} \begin{pmatrix} 1 & -i\\ 1 & i \end{pmatrix} \\ &= \frac{e^{3t}}{2} \begin{pmatrix} 1 & 1\\ i & -i \end{pmatrix} \begin{pmatrix} e^{i2t} & -ie^{i2t}\\ e^{-i2t} & ie^{-i2t} \end{pmatrix} = \frac{e^{3t}}{2} \begin{pmatrix} e^{i2t} + e^{-i2t} & -ie^{i2t} + ie^{-i2t}\\ ie^{i2t} - ie^{-i2t} & e^{i2t} + e^{-i2t} \end{pmatrix} \\ &= \frac{e^{3t}}{2} \begin{pmatrix} 2\cos(2t) & 2\sin(2t)\\ -2\sin(2t) & 2\cos(2t) \end{pmatrix} = e^{3t} \begin{pmatrix} \cos(2t) & \sin(2t)\\ -\sin(2t) & \cos(2t) \end{pmatrix}. \end{split}$$

Remark. Because **A** is real, $e^{t\mathbf{A}}$ must be real. As the above example illustrates, the matrices **V** and **D** may not be real, but will always combine in formula (11) to yield the real result. **Remark.** While not every matrix is diagonalizable, most matrices are. Here we give four criteria that insure a real $n \times n$ matrix **A** is diagonalizable.

- \bullet If **A** has *n* distinct eigenvalues then it is diagonalizable.
- If **A** is symmetric ($\mathbf{A}^T = \mathbf{A}$) then its eigenvalues are real ($\overline{\lambda} = \lambda$), and it will have n real eigenvectors \mathbf{v}_j that can be normalized so that $\mathbf{v}_j^T \mathbf{v}_k = \delta_{jk}$. With this normalization $\mathbf{V}^{-1} = \mathbf{V}^T$.
- If **A** is skew-symmetric ($\mathbf{A}^T = -\mathbf{A}$) then its eigenvalues are imaginary ($\overline{\lambda_j} = -\lambda_j$), and it will have n eigenvectors \mathbf{v}_j that can be normalized so that $\mathbf{v}_j^* \mathbf{v}_k = \delta_{jk}$. With this normalization $\mathbf{V}^{-1} = \mathbf{V}^*$.
- If **A** is normal $(\mathbf{A}^T \mathbf{A} = \mathbf{A} \mathbf{A}^T)$ then it will have n eigenvectors \mathbf{v}_j that can be normalized so that $\mathbf{v}_j^* \mathbf{v}_k = \delta_{jk}$. With this normalization $\mathbf{V}^{-1} = \mathbf{V}^*$.

If A is either symmetric or skew-symmetric then it is normal. Both of the examples we have worked have distinct eigenvalues. The first example is symmetric. The second is normal.