(1) [4] Determine the order of the given differential equation; also state whether the equation is linear or nonlinear:
 (a) \(t^2 \frac{d^2 y}{dt^2} + t \frac{dy}{dt} - 4y = t^3 \)
 Solution: second-order, linear
 (b) \(\frac{d^3 v}{dt^3} + v \frac{dv}{dt} + 4v = \cos(t) \)
 Solution: third-order, nonlinear

(2) [6] Solve the given initial-value problems:
 (a) \(\frac{dy}{dx} = e^x, \quad y(0) = -2 \)
 Solution: This problem is separable. Its separated form is
 \[2y \, dy = e^x \, dx. \]
 Integrating both sides yields
 \[y^2 = e^x + c. \]
 Applying the initial condition gives
 \((-2)^2 = e^0 + c,
 which implies \(c = 4 - 1 = 3 \). The solution is therefore
 \[y = -\sqrt{e^x + 3}, \quad \text{for every } x, \]
 where the negative root is taken to satisfy the initial condition.
 (b) \(t \frac{dz}{dt} = 5t^2 - 3z, \quad z(1) = 5 \)
 Solution: This problem is linear. Its normal form is
 \[\frac{dz}{dt} + \frac{3}{t} \, z = 5t. \]
 An integrating factor is \(e^{A(t)} \) where \(A'(t) = 3/t \). Setting \(A(t) = 3 \log(t) \), we find
 that \(e^{A(t)} = t^3 \). Hence, the problem has the integrating factor form
 \[\frac{d}{dt} \left(t^3 \, z \right) = t^3 \cdot 5t = 5t^4. \]
 Integrating both sides yields
 \[t^3 \, z = t^5 + c. \]
 Applying the initial condition gives
 \[1^3 \cdot 5 = 1^5 + c, \]
 which implies \(c = 5 - 1 = 4 \). The solution is therefore
 \[z = t^2 + \frac{4}{t^3}, \quad \text{for every } t > 0. \]