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7. Variable Coefficient Nonhomogeneous Case

7.1: Introduction. We now return to study nonhomogeneous linear equations for the
general case of with variable coefficients that was begun in Section 4.1. An nth order
nonhomogeneous linear ODE has the normal form

L(t)y = f(t) , (7.1)

where the differential operator L(t) has the normal form

L(t) =
dn

dtn
+ a1(t)

dn−1

dtn−1
+ · · · + an−1(t)

d

dt
+ an(t) . (7.2)

We will assume throughout this section that the coefficients a1, a2, · · · , an and the forcing
f are continuous over an interval (tL, tR), so that Therorem 1.1 can be applied.

Recall the following strategy for constructing general solutions of the nonhomogeneous
equation (7.1) that we developed in Section 4.1.

(1) Find a general solution YH(t) of the associated homogeneous equation L(t)y = 0.

(2) Find a particular solution YP (t) of equation (7.1).

(3) Then YH(t) + YP (t) is a general solution of (7.1).

If you can find a fundamental set Y1(t), Y2(t), · · · , Yn(t) of solutions to the associated
homogeneous equation L(t)y = 0 then a general solution of that equation is given by

YH(t) = c1Y1(t) + c2Y2(t) + · · ·+ cnYn(t) .

In the ensuing sections we will explore two methods to construct a particular solution YP (t)
of equation (7.1) from f(t) and the fundamental set Y1(t), Y2(t), · · · , Yn(t). One method is
called variation of parameters, while the other is called the general Green function method,
which is an extension of the Green function method presented in Section 4.3 for constant
coefficient equations to the case of variable coefficient equations. We will see that these
methods are essentially equivalent. What lies behind them is the following.

Important Fact: If you know a general solution of the associated homogeneous
equation L(t)y = 0 then you can always reduce the construction of a general
solution of (7.1) to the problem of finding n primitives.

Because at this point you only know how to find general solutions of homogeneous equations
with constant coefficients, problems you will be given will generally fall into one of two
categories. Either (1) the operator L(t) will have variable coefficients and you will be
given a fundamental set of solutions for the associated homogeneous equation, or (2) the
operator L(t) will have constant coefficients (i.e. L(t) = L) and you will be expected to
find a fundamental set of solutions for the associated homogeneous equation. In the later
case the general Green function method reduces to the method presented in Section 4.3.
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7.2: Variation of Parameters: Second Order Case. We begin by deriving the
method of variation of parameters for second order equations that are in the normal form

L(t)y =
d2y

dt2
+ a1(t)

dy

dt
+ a2(t)y = f(t) . (7.3)

Suppose you know that Y1(t) and Y2(t) are linearly independent solutions of the associated
homogeneous equation L(t)y = 0. A general solution of the associated homogeneous
equation is therefore given by

YH(t) = c1Y1(t) + c2Y2(t) . (7.4)

The idea of the method of variation of parameters is to seek solutions of (7.3) in the form

y = u1(t)Y1(t) + u2(t)Y2(t) . (7.5)

In other words you simply replace the arbitrary constants c1 and c2 in (7.5) with unknown
functions u1(t) and u2(t). These functions are the varying parameters referred to in the
title of the method. These two functions will be governed by a system of two equations,
one of which is derived by requiring that (7.3) is satisfied, and the other of which is chosen
to simplify the resulting system.

Let us see how this is done. Differentiating (7.5) yields

dy

dt
= u1(t)Y

′

1(t) + u2(t)Y
′

2(t) + u′

1(t)Y1(t) + u′

2(t)Y2(t) . (7.6)

We now choose to impose the condition

u′

1(t)Y1(t) + u′

2(t)Y2(t) = 0 , (7.7)

whereby (7.6) simplifies to

dy

dt
= u1(t)Y

′

1(t) + u2(t)Y
′

2(t) . (7.8)

Differentiating (7.8) then yields

d2y

dt2
= u1(t)Y

′′

1 (t) + u2(t)Y
′′

2 (t) + u′

1(t)Y
′

1(t) + u′

2(t)Y
′

2(t) . (7.9)

Now substituting (7.5), (7.8), and (7.9) into (7.3), grouping the terms that multiply u1(t),
u′

1(t), u2(t), and u′

2(t), and using the fact that L(t)Y1(t) = 0 and L(t)Y2(t) = 0, we obtain

f(t) = L(t)y =
d2y

dt2
+ a1(t)

dy

dt
+ a2(t)y

=
[

u1(t)Y
′′

1 (t) + u2(t)Y
′′

2 (t) + u′

1(t)Y
′

1(t) + u′

2(t)Y
′

2(t)
]

+ a1(t)
[

u1(t)Y
′

1(t) + u2(t)Y
′

2(t)
]

+ a2(t)
[

u1(t)Y1(t) + u2(t)Y2(t)
]

= u1(t)
[

Y ′′

1 (t) + a1(t)Y
′

1(t) + a2(t)Y1(t)
]

+ u′

1(t)Y
′

1(t)

+ u2(t)
[

Y ′′

2 (t) + a1(t)Y
′

2(t) + a2(t)Y2(t)
]

+ u′

2(t)Y
′

2(t)

= u1(t)
[

L(t)Y1(t)
]

+ u′

1(t)Y
′

1(t) + u2(t)
[

L(t)Y2(t)
]

+ u′

2(t)Y
′

2(t)

= u′

1(t)Y
′

1(t) + u′

2(t)Y
′

2(t) .

(7.10)
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The resulting system that governs u1(t) and u2(t) is thereby given by (7.7) and (7.10):

u′

1(t)Y1(t) + u′

2(t)Y2(t) = 0 ,

u′

1(t)Y
′

1(t) + u′

2(t)Y
′

2(t) = f(t) .
(7.11)

This is a linear system of two algebraic equations for u′

1(t) and u′

2(t). Because

(

Y1(t)Y
′

2(t) − Y2(t)Y
′

1(t)
)

= W [Y1, Y2](t) 6= 0 ,

one can always solve this system to find

u′

1(t) = −
Y2(t)f(t)

W [Y1, Y2](t)
, u′

2(t) =
Y1(t)f(t)

W [Y1, Y2](t)
,

or equivalently

u1(t) = −

∫

Y2(t)f(t)

W [Y1, Y2](t)
dt , u2(t) =

∫

Y1(t)f(t)

W [Y1, Y2](t)
dt . (7.12)

Letting u1P (t) and u2P (t) be any primitives of the respective right-hand sides above, one
sees that

u1(t) = c1 + u1P (t) , u2(t) = c2 + u2P (t) ,

whereby (7.5) yields the general solution

y = c1Y1(t) + u1P (t)Y1(t) + c2Y2(t) + u2P (t)Y2(t) .

Notice that this decomposes as y = YH(t) + YP (t) where

YH(t) = c1Y1(t) + c2Y2(t) , YP (t) = u1P (t)Y1(t) + u2P (t)Y2(t) . (7.13)

There are two approaches to applying variation of parameters. One mentioned in the
book is to memorize the formulas (7.12). I am not a fan of this approach for a couple
of reasons. First, students often confuse which of the two formulas gets the minus sign.
Second, and more importantly, these formulas do not cleanly generalize to the higher
order case. The other approach is to construct the linear system (7.11), which can then
be rather easily solved for u′

1(t) and u′

2(t). The work it takes to solve this system is about
the same work as it takes to generate the integrands in (7.12). The linear system (7.11)
is symmetric in u′

1(t) and u′

2(t), so is less subject to sign errors. Moreover, it also has a
clean generalization to the higher order case. Whichever approach you take, you will be
led to the same two integrals.

Given Y1(t) and Y2(t), a fundamental set of solutions to the associated homogeneous
equation, you proceed as follows.
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1) Write the form of the solution you seek:

y = u1(t)Y1(t) + u2(t)Y2(t) .

2) Write the linear algebraic system for u′

1(t) and u′

2(t):

u′

1(t)Y1(t) + u′

2(t)Y2(t) = 0 ,

u′

1(t)Y
′

1(t) + u′

2(t)Y
′

2(t) = f(t) .

The form of the left-hand sides of this system mimics the form of the solution you
seek. The first equation simply replaces u1(t) and u2(t) with u′

1(t) and u′

2(t), while the
second also replaces Y1(t) and Y2(t) with Y ′

1(t) and Y ′

2(t). The f(t) on the right-hand
side will be correct only if you have written the equation L(t)y = f(t) in normal form!

3) Solve the linear algebraic system to find explicit expressions for u′

1(t) and u′

2(t). This
is always very easy to do, especially if you start with the first equation.

4) Find primitives u1P (t) and u2P (t) of these expressions. If you cannot find a primitive
analytically then express that primitive in terms of a definite integral. One then has

u1(t) = c1 + u1P (t) , u2(t) = c2 + u2P (t) ,

where c1 and c2 are the arbitrary constants of integration.

5) Upon placing this result into the form of the solution that you wrote down in step 1,
you will obtain the general solution y = YH(t) + YP (t), where

YH(t) = c1Y1(t) + c2Y2(t) , YP (t) = u1P (t)Y1(t) + u2P (t)Y2(t) .

For initial-value problems you must determine c1 and c2 from the initial conditions.

Example: Find a general solution of

d2y

dt2
+ y = sec(t) .

Before presenting the solution, notice that while this equation has constant coefficients,
the forcing is not of the form that would allow you to use the method of undetermined
coefficients. You should be able to recognize this right away. While you can use the Green
function method to solve this problem, here we will solve it using variation of parameters.

Solution: Because this problem has constant coefficients, it is easily found that

YH(t) = c1 cos(t) + c2 sin(t) .

Hence, we will seek a solution of the form

y = u1(t) cos(t) + u2(t) sin(t) ,
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where
u′

1(t) cos(t) + u′

2(t) sin(t) = 0 ,

−u′

1(t) sin(t) + u′

2(t) cos(t) = sec(t) .

Solving this system by any means you choose yields

u′

1(t) = −
sin(t)

cos(t)
, u′

2(t) = 1 .

These can be integrated analytically to obtain

u1(t) = c1 + log(| cos(t)|) , u2(t) = c2 + t .

Therefore a general solution is

y = c1 cos(t) + c2 sin(t) + log(| cos(t)|) cos(t) + t sin(t) .

Remark: The primitives u1(t) and u2(t) that we had to find above are the same ones
needed to evaluate the integrals that arise when you solve this problem with the Green
function method. This will always be the case.

Example: Given that t and t2 − 1 are a fundamental set of solutions of the associated
homogeneous equation, find a general solution of

(1 + t2)
d2y

dt2
− 2t

dy

dt
+ 2y = (1 + t2)2et .

Before presenting the solution, you should be able to recognize that this equation has
nonconstant coefficients, and thereby see that you must use either variation of parameters
or a general Green function to solve this problem. You should also notice that this equation
is not in normal form, so you should bring it into the normal form

d2y

dt2
−

2t

1 + t2
dy

dt
+

2

1 + t2
y = (1 + t2)et .

Solution: Because t and t2 − 1 are a fundamental set of solutions of the associated
homogeneous equation, we have

YH(t) = c1t + c2(t
2 − 1) .

Hence, we will seek a solution of the form

y = u1(t)t + u2(t)(t
2 − 1) ,
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where
u′

1(t)t + u′

2(t)(t
2 − 1) = 0 ,

u′

1(t)1 + u′

2(t)2t = (1 + t2)et .

Solving this system by any means you choose yields

u′

1(t) = −(t2 − 1)et , u′

2(t) = tet .

These can be integrated analytically “by parts” to obtain

u1(t) = c1 − (t − 1)2et , u2(t) = c2 + (t − 1)et .

Therefore a general solution is

y = c1t + c2(t
2 − 1) − (t − 1)2ett + (t − 1)et(t2 − 1)

= c1t + c2(t
2 − 1) + (t − 1)2et .

7.3: Variation of Parameters: Higher Order Case. The method of variation of
parameters extends to higher order linear equations in the normal form

L(t)y =
dny

dtn
+ a1(t)

dn−1y

dtn−1
+ · · ·+ an−1(t)

dy

dt
+ an(t)y = f(t) . (7.14)

While this material was not covered in class and you will not be tested on it, a summary
is given here for the sake of completeness.

Suppose you know that Y1(t), Y2(t), · · · , Yn(t) are linearly independent solutions of
the associated homogeneous equation L(t)y = 0. A general solution of the associated
homogeneous equation is therefore given by

YH(t) = c1Y1(t) + c2Y2(t) + · · ·+ cnYn(t) .

The idea of the method of variation of parameters is to seek solutions of (7.14) in the form

y = u1(t)Y1(t) + u2(t)Y2(t) + · · · + un(t)Yn(t) , (7.15)

where u′

1(t), u
′

2(t), · · · , u′

n
(t) satisfy the linear algebraic system

u′

1(t)Y1(t) + u′

2(t)Y2(t) + · · ·+ u′

n
(t)Yn(t) = 0 ,

u′

1(t)Y
′

1(t) + u′

2(t)Y
′

2(t) + · · ·+ u′

n
(t)Y ′

n
(t) = 0 ,

...

u′

1(t)Y
(n−2)
1 (t) + u′

2(t)Y
(n−2)
2 (t) + · · ·+ u′

n
(t)Y (n−2)

n
(t) = 0 ,

u′

1(t)Y
(n−1)
1 (t) + u′

2(t)Y
(n−1)
2 (t) + · · ·+ u′

n
(t)Y (n−1)

n
(t) = f(t) .

(7.16)
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Because

det









Y1(t) Y2(t) · · · Yn(t)
Y ′

1(t) Y ′

2(t) · · · Y ′

n(t)
...

...
. . .

...
Y

(n−1)
1 (t) Y

(n−1)
2 (t) · · · Y

(n−1)
n (t)









= W [Y1, Y2, · · · , Yn](t) 6= 0 ,

the linear algebraic system (7.16) may be solved (by any method you choose) to find
explicit expressions for u′

1(t), u′

2(t), · · · , u′

n
(t). For example, when n = 3 you find

u′

1(t) =
W [Y2, Y3](t)f(t)

W [Y1, Y2, Y3](t)
, u′

2(t) =
W [Y3, Y1](t)f(t)

W [Y1, Y2, Y3](t)
, u′

3(t) =
W [Y1, Y2](t)f(t)

W [Y1, Y2, Y3](t)
.

Find primitives u1P (t), u2P (t), · · · , unP (t) of these expressions. If you cannot find a
primitive analytically then express that primitive in terms of a definite integral. One then
has

u1(t) = c1 + u1P (t) , u2(t) = c2 + u2P (t) , · · · un(t) = cn + unP (t) ,

where c1, c2, · · · , cn are the arbitrary constants of integration. The general solution given
by (7.15) is therefore y = YH(t) + YP (t), where

YH(t) = c1Y1(t) + c2Y2(t) + · · ·+ cnYn(t) ,

YP (t) = u1P (t)Y1(t) + u2P (t)Y2(t) + · · ·+ unP (t)Yn(t) .

For initial-value problems you must determine c1, c2, · · · , cn from the initial conditions.

7.4: General Green Functions: Second Order Case. We now derive a Green function
for second order equations that are in the normal form

L(t)y =
d2y

dt2
+ a1(t)

dy

dt
+ a2(t)y = f(t) . (7.17)

Suppose you know that Y1(t) and Y2(t) are linearly independent solutions of the associated
homogeneous equation L(t)y = 0. The starting point of our derivation will be the particular
solution YP (t) given in (7.13) — namely,

YP (t) = u1P (t)Y1(t) + u2P (t)Y2(t) ,

where u1P (t) and u2P (t) are primitives that satisfy

u′

1P
(t) = −

Y2(s)f(s)

W [Y1, Y2](s)
, u′

2P
(t) =

Y1(s)f(s)

W [Y1, Y2](s)
.

If we express u1P (t) and u2P (t) as the definite integrals

u1P (t) = −

∫ t

tI

Y2(s)f(s)

W [Y1, Y2](s)
ds , u2P (t) =

∫ t

tI

Y1(s)f(s)

W [Y1, Y2](s)
ds , (7.18)
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where tI is any initial time inside the interval (tL, tR), then the particular solution YP (t)
can be expressed as

YP (t) =

∫

t

tI

G(t, s)f(s) ds , (7.19)

where G(t, s) is given by

G(t, s) =
Y1(s)Y2(t) − Y1(t)Y2(s)

W [Y1, Y2](s)
=

det

(

Y1(s) Y2(s)
Y1(t) Y2(t)

)

det

(

Y1(s) Y2(s)
Y ′

1(s) Y ′

2(s)

) . (7.20)

The method thereby reduces the problem of finding a particular solution YP (t) for any
forcing f(t) to that of evaluating the integral in (7.19), which by formula (7.20) is equivalent
to evaluating the two definite integrals in (7.18). Of course, evaluating these integrals
explicitly can be quite difficult or impossible. You may have to leave your answer in
terms of one or both of these definite integrals. Formulas (7.19) and (7.20) have natural
generalizations to higher order equations with variable coefficients.

We will see that (7.19) is an extension of the Green function formula (4.12) from Sec-
tion 4.3 to second order equations with variable coefficients. As with that formula, (7.19)
generates the unique particular solution YP (t) of (7.17) that satifies the initial conditions

YP (tI) = 0 , Y ′

P
(tI) = 0 . (7.21)

We therefore call G(t, s) the Green function for the operator L(t).

Before justifying the foregoing claims, let us illustrate how to construct and use this
Green function.

Example: Given that t and t2 − 1 are a fundamental set of solutions of the associated
homogeneous equation, find a particular solution of

(1 + t2)
d2y

dt2
− 2t

dy

dt
+ 2y = (1 + t2)2et .

Solution: You should first bring this equation into its normal form

d2y

dt2
−

2t

1 + t2
dy

dt
+

2

1 + t2
y = (1 + t2)et .

Because t and t2 − 1 are a fundamental set of solutions of the associated homogeneous
equation, the Green function G(t, s) is given by (7.20) as

G(t, s) =

det

(

s s2 − 1
t t2 − 1

)

det

(

s s2 − 1
1 2s

) =
(t2 − 1)s − t(s2 − 1)

2s2 − (s2 − 1)
=

(t2 − 1)s − t(s2 − 1)

s2 + 1
.
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Then formula (7.19) with tI = 1 and f(s) = (1 + s2)es yields

YP (t) = (t2 − 1)

∫ t

1

ses ds − t

∫ t

1

(s2 − 1)es ds .

Notice that the same two integrals that arose when we treated this equation by variation
of parameters on page 7. As was done there, a little integration-by-parts shows that

∫

t

1

ses ds = (t − 1)et ,

∫

t

1

(s2 − 1)es ds = (t − 1)2et .

The particular solution is therefore

YP (t) = (t2 − 1)(t − 1)et − t(t − 1)2et = (t − 1)2et .

It is clear that this solution satisfies YP (1) = Y ′

P
(1) = 0. Had we chosen a different value

for the initial time tI we would have obtained a different particular solution YP (t).

Next we show that formula (7.19) generates the unique particular solution YP (t) of
(7.17) that satifies the initial conditions (7.21). It is clear from (7.19) that YP (tI) = 0.
To show that Y ′

P
(tI) = 0 we will use the fact from multivariable calculus that for any

continuously differentiable K(t, s) one has

d

dt

∫

t

tI

K(t, s) ds = K(t, t) +

∫

t

tI

∂tK(t, s) ds .

We see from (7.20) that G(t, t) = 0. Upon differentiating (7.19) with respect to t and using
the above calculus fact, we see that

Y ′

P (t) = G(t, t)f(t) +

∫

t

tI

∂tG(t, s)f(s) ds =

∫

t

tI

∂tG(t, s)f(s) ds .

It follows that Y ′

P
(tI) = 0, thereby showing that YP (t) satifies the initial conditions (7.21).

The Green function G(t, s) is defined by (7.20) whenever t and s are both in the interval
(tL, tR) overwhich Y1 and Y2 exist. At first it might seem that G(t, s) must depend upon
the fundamental set of solutions that is used to construct it. We now show that this is not
the case. Let us fix s and consider G(t, s) as a function of t. It is clear from (7.20) that
G(t, s) is a linear combination of Y1(t) and Y2(t). Because Y1(t) and Y2(t) are solutions of
the associated homogeneous equation L(t)y = 0, it follows that G(t, s) is too — namely,
that L(t)G(t, s) = 0. It is also clear from (7.20) that G(t, s)

∣

∣

t=s
= 0. By differentiating

(7.20) with respect to t we obtain

∂tG(t, s) =
Y1(s)Y

′

2(t) − Y ′

1(t)Y2(s)

W [Y1, Y2](s)
=

det

(

Y1(s) Y2(s)
Y ′

1(t) Y ′

2(t)

)

det

(

Y1(s) Y2(s)
Y ′

1(s) Y ′

2(s)

) . (7.22)
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It is clear from this that ∂tG(t, s)
∣

∣

t=s
= 1. Collecting these facts we see for every s that

G(t, s) as a function of t satisfies the initial-value problem

L(t)G(t, s) = 0 , G(t, s)
∣

∣

t=s
= 0 , ∂tG(t, s)

∣

∣

t=s
= 1 . (7.23)

This is really a family of initial-value problems — one for each s in which s plays the role
of the initial time. The uniqueness theorem implies that G(t, s) is uniquely determined by
this family of initial-value problems. Thus, G(t, s) depends only upon the operator L(t).
In particular, it does not depend upon which fundamental set of solutions, Y1 and Y2, was
used to construct it.

When L(t) has constant coefficients then it is easy to check that the family of initial-
value problems (7.23) is satisfied by G(t, s) = g(t − s), where g(t) is the Green function
that was defined by the initial-value problem (4.13) in Section 4.3. Formula (7.19) thereby
extends the Green function formula (4.12) from Section 4.3 to second order equations with
variable coefficients.

When L(t) has constant coefficients the fastest way to compute the Green function is
to solve the single initial-value problem (4.13) from Section 4.3. When L(t) has variable
coefficients you first have to find a fundamental set of solutions, Y1(t) and Y2(t), to the
associated homogeneous equation. You can then construct the Green function either by
formula (7.20) or by solving the family of initial-value problems (7.23). The later approach
goes as follows. Because L(t)G(t, s) = 0 for every s we know that there exist C1(s) and
C2(s) such that

G(t, s) = Y1(t)C1(s) + Y2(t)C2(s) . (7.24)

The initial conditions of (7.23) then imply that

0 = G(t, s)
∣

∣

t=s
= Y1(s)C1(s) + Y2(s)C2(s) ,

1 = ∂tG(t, s)
∣

∣

t=s
= Y ′

1(s)C1(s) + Y ′

2(s)C2(s) .

The solution of this linear algebraic system is

C1(s) = −
Y2(s)

Y1(s)Y ′

2(s) − Y ′

1(s)Y2(s)
, C2(s) =

Y1(s)

Y1(s)Y ′

2(s) − Y ′

1(s)Y2(s)
,

which when plugged into (7.24) yields (7.20).

Example: Given that t and t2 − 1 are a fundamental set of solutions of the associated
homogeneous equation, find a particular solution of

(1 + t2)
d2y

dt2
− 2t

dy

dt
+ 2y = (1 + t2)2et .

Solution: You should first bring this equation into its normal form

L(t)y =
d2y

dt2
−

2t

1 + t2
dy

dt
+

2

1 + t2
y = (1 + t2)et .
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Because t and t2 − 1 are a fundamental set of solutions of the associated homogeneous
equation, by (7.24) the Green function has the form

G(t, s) = t C1(s) + (t2 − 1) C2(s) ,

where the initial conditions of (7.23) imply

0 = G(t, s)
∣

∣

t=s
= s C1(s) + (s2 − 1) C2(s) ,

1 = ∂tG(t, s)
∣

∣

t=s
= 1 C1(s) + 2s C2(s) .

These may be solved to obtain

C1(s) = −
s2 − 1

s2 + 1
, C2(s) =

s

s2 + 1
,

whereby

G(t, s) = −t
s2 − 1

s2 + 1
+ (t2 − 1)

s

s2 + 1
=

(t2 − 1)s − t(s2 − 1)

s2 + 1
.

You then compute yP (t) by formula (7.19) as before.

7.5: General Green Functions: Higher Order Case. This method can be used to
construct a particular solution of an nth order nonhomogeneous linear ODE in the normal
form (7.1). Specifically, a particular solution of (7.1) is given by

YP (t) =

∫

t

tI

G(t, s)f(s) ds , (7.25)

where tI is an initial time and G(t, s) is given by

G(t, s) =
1

W [Y1, Y2, · · · , Yn](s)
det













Y1(s) Y2(s) · · · Yn(s)
Y ′

1(s) Y ′

2(s) · · · Y ′

n
(s)

...
...

...
...

Y
(n−2)
1 (s) Y

(n−2)
2 (s) · · · Y

(n−2)
n (s)

Y1(t) Y2(t) · · · Yn(t)













.

The function G is called the Green function associated with the operator L(t). It can also
be determined as the solution of the family of initial-value problems

L(t)G(t, s) = 0 , G(t, s)
∣

∣

t=s
= · · · = ∂n−2

t
G(t, s)

∣

∣

t=s
= 0 , ∂n−1

t
G(t, s)

∣

∣

t=s
= 1 .

The method thereby reduces the problem of finding a particular solution YP (t) for any
forcing f(t) to that of evaluating the integral in (7.25). However, evaluating this integral
explicitly can be quite difficult or impossible. At worst, you can leave your answer in terms
of definite integrals.


