Remark. This was the hardest final exam I have ever given to a Math 410 class, mostly due to its length. It was a challenge to an exceptional class. Many in the class rose to the challenge, with about two thirds earning an A or B. Every problem was done correctly by at least one student, although no student did them all correctly. I do not plan to give a Math 410 final exam that is this hard again. — D.L.

1. [10] Let \(\{x_n\}_{n \in \mathbb{N}} \) be a sequence in \(\mathbb{R} \). Give negations of each of the following assertions.

(a) For every \(\epsilon > 0 \) there exists an \(n_\epsilon \in \mathbb{N} \) such that
\[
m, n > n_\epsilon \implies |x_m - x_n| < \epsilon .
\]

Solution. There exists an \(\epsilon > 0 \) such that for every \(N \in \mathbb{N} \) there exists \(m, n \in \mathbb{N} \) such that
\[
m, n > N \quad \text{and} \quad |x_m - x_n| \geq \epsilon .
\]

(b) \(\lim_{n \to \infty} x_n = \infty \).

Solution. There are several acceptable answers. The shortest is
\[
\lim \inf_{n \to \infty} x_n < \infty .
\]

This could be expanded as
\[
\exists M > 0 \quad \text{such that} \quad x_n \leq M \quad \text{frequently as} \quad n \to \infty ,
\]
which could be expanded further as
\[
\exists M > 0 \quad \text{such that} \quad \forall m \in \mathbb{N} \quad \exists n > m \quad \text{such that} \quad x_n \leq M .
\]

You can also obtain the last two answers by first expressing \(\lim_{n \to \infty} x_n = \infty \) either as
\[
\forall M > 0 \quad x_n > M \quad \text{eventually as} \quad n \to \infty ,
\]
or as
\[
\forall M > 0 \quad \exists m \in \mathbb{N} \quad \text{such that} \quad \forall n > m \quad x_n > M ,
\]
and then simply negating.

2. [10] Let \(\{a_k\}_{k \in \mathbb{N}} \) be a nondecreasing sequence in \(\mathbb{R} \). Show that it converges if it has a converging subsequence.

Solution. Let \(\{a_{n_k}\}_{k \in \mathbb{N}} \) be a converging subsequence of \(\{a_k\}_{k \in \mathbb{N}} \). Because every subsequence of a nondecreasing sequence is also nondecreasing, the Monotonic Sequence Theorem states that the convergence of \(\{a_{n_k}\}_{k \in \mathbb{N}} \) implies that
\[
\lim_{k \to \infty} a_{n_k} = \sup \{a_{n_k} : k \in \mathbb{N}\} < \infty .
\]

Because for every \(k \in \mathbb{N} \) we have \(k \leq n_k \), the fact \(\{a_k\}_{k \in \mathbb{N}} \) is nondecreasing implies that
\[
a_k \leq a_{n_k} \leq \sup \{a_{n_k} : k \in \mathbb{N}\} < \infty .
\]

The nondecreasing sequence \(\{a_k\}_{k \in \mathbb{N}} \) is thereby bounded above, and therefore converges by the Monotonic Sequence Theorem. \(\square \)
3. [20] State whether each of the following statements is true or false. Give a proof when true and a counterexample when false.

(a) If the interval \((a, b)\) is bounded, \(f : (a, b) \to \mathbb{R}\) is differentiable, and \(f' : (a, b) \to \mathbb{R}\) is bounded over \((a, b)\) then the function \(f\) is bounded over \((a, b)\).

Solution. This statement is true. First notice that because \(f : (a, b) \to \mathbb{R}\) is differentiable the Mean-Value Theorem implies that for every \(x, y \in (a, b)\) there exists \(p \in (a, b)\) between \(x\) and \(y\) such that
\[
f(x) - f(y) = f'(p)(x - y).
\]
Because \(f' : (a, b) \to \mathbb{R}\) is bounded this implies that for every \(x, y \in (a, b)\) one has
\[
|f(x) - f(y)| = M|x - y|,
\]
where \(M = \sup\{|f'(x)| : x \in (a, b)\}\). In other words, \(f\) is Lipschitz continuous over \((a, b)\). This was a theorem from the notes that you could have just cited.
Finally, any function that is Lipschitz continuous over a bounded subset of \(\mathbb{R}\) is also bounded. Indeed, pick any \(c \in (a, b)\). Then for every \(x \in (a, b)\) one has the bound
\[
|f(x)| \leq |f(c)| + |f(x) - f(c)| \leq |f(c)| + M|x - c| \leq |f(c)| + M(b - a).
\]
More generally, any function that is uniformly continuous over a bounded subset of \(\mathbb{R}\) is also bounded.

(b) If \(\{f_n\}_{n=1}^\infty\) is a sequence of functions such that each \(f_n : [a, b] \to \mathbb{R}\) is differentiable over \([a, b]\), and \(f_n \to f\) uniformly over \([a, b]\) where \(f : [a, b] \to \mathbb{R}\) is differentiable over \([a, b]\), then
\[
\lim_{n \to \infty} f_n'(x) = f'(x) \quad \text{for every } x \in [a, b].
\]

Solution. This statement is false. There are many counterexamples. A simple one is
\[
f_n(x) = \frac{1}{n} e^{-nx} \to 0 = f(x) \quad \text{uniformly over } [0, 1] \text{ because } |f_n(x)| \leq \frac{1}{n},
\]
but
\[
f_n'(0) = -e^{-nx} \bigg|_{x=0} = -1 \neq 0 = f'(0).
\]
A more dramatic counterexample is
\[
f_n(x) = \frac{1}{2^n} \sin(2^nx) \to 0 = f(x) \quad \text{uniformly over } \mathbb{R} \text{ because } |f_n(x)| \leq \frac{1}{2^n},
\]
but if \(x = 2^{-k}m\pi\) for some \(k, m \in \mathbb{N}\) then
\[
f_n'(x) = \cos(2^{-k}m\pi) \to 1 \neq 0 = f'(x).
\]
Because the set of all points having the form \(2^{-k}m\pi\) for some \(k, m \in \mathbb{N}\) is dense in \(\mathbb{R}\), this example works when the functions \(f_n\) and \(f\) are restricted to any interval \([a, b] \subset \mathbb{R}\) with \(a < b\). □
4. [20] Let \(f : (a, b) \to \mathbb{R} \) be differentiable at a point \(c \in (a, b) \) with \(f'(c) > 0 \). Show that there exists a \(\delta > 0 \) such that

\[
\begin{align*}
 x \in (c - \delta, c) \subset (a, b) & \implies f(x) < f(c), \\
 x \in (c, c + \delta) \subset (a, b) & \implies f(c) < f(x),
\end{align*}
\]

Remark. It is very incorrect to assert that \(f \) is decreasing in an interval containing \(c \). You are being asked to prove the “Transversality Lemma” from the notes.

Solution. Because \(f \) is differentiable at \(c \), we have

\[
\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = f'(c).
\]

Because \(f'(c) > 0 \) the \(\epsilon, \delta \) characterization of this limit with \(\epsilon = f'(c) \) implies that there exists \(\delta > 0 \) such that \((c - \delta, c + \delta) \subset (a, b)\) and

\[
0 < |x - c| < \delta \implies \left| \frac{f(x) - f(c)}{x - c} - f'(c) \right| < f'(c) \iff 0 < \frac{f(x) - f(c)}{x - c} < 2f'(c).
\]

Hence,

\[
\begin{align*}
 x \in (c - \delta, c) & \implies f(x) - f(c) = \frac{f(x) - f(c)}{x - c}(x - c) < 0 \\
 & \implies f(x) < f(c), \\
 x \in (c, c + \delta) & \implies f(x) - f(c) = \frac{f(x) - f(c)}{x - c}(x - c) > 0 \\
 & \implies f(x) > f(c).
\end{align*}
\]

\(\square \)

5. [20] Let \(f(x) = \log(1 + x^2) \) for every \(x \in \mathbb{R} \). Show that

\[
f(x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^{2k}
\]

for every \(x \in [-1, 1] \),

and that the series diverges for all other \(x \in \mathbb{R} \).

Partial Solution. It is easy to show that the series converges for every \(x \in [-1, 1] \) and diverges otherwise.

The convergence when \(|x| \leq 1 \) is best handled by the Alternating Series Test. Indeed, because the sequence

\[
\left\{ \frac{1}{k} x^{2k} \right\}_{k=1}^{\infty}
\]

is decreasing and positive,

and because

\[
\lim_{k \to \infty} \frac{1}{k} x^{2k} = 0,
\]

the Alternating Series Test shows that

\[
\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k} x^{2k}
\]

converges.
The divergence when \(|x| > 1\) follows from the Divergence Test because in that case
\[
\lim_{k \to \infty} \frac{1}{k} x^{2k} = \infty \neq 0.
\]
However, this is not a complete solution to the problem because these arguments do not show that when the series converges, it converges to \(f(x)\).

Solution. Because \(x^2 \in [0, \infty)\) for every \(x \in \mathbb{R}\), the problem reduces to showing that
\[
\log(1 + y) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} y^k \quad \text{for every } y \in [0, 1],
\]
and that the series diverges for every \(y \in (1, \infty)\). The assertions will then follow upon setting \(y = x^2\) into these results.

Let \(g(y) = \log(1 + y)\). By direct computation you see that
\[
g'(y) = \frac{1}{1 + y}, \quad g''(y) = \frac{-1}{(1 + y)^2}, \quad g'''(y) = \frac{2}{(1 + y)^3}, \quad g''''(y) = \frac{-6}{(1 + y)^4}.
\]
This should suggest to you that for every \(k \in \mathbb{Z}_+\) one has
\[
g^{(k)}(y) = (-1)^{k+1} \frac{(k - 1)!}{(1 + y)^k},
\]
which is easily verified by induction. Because \(g(0) = 0\) while \(g^{(k)}(0) = (-1)^{k+1}(k - 1)!\) for every \(k \in \mathbb{Z}_+\), the Lagrange Remainder Theorem implies that for every \(y > 0\) there exists \(p \in (0, y)\) such that
\[
g(y) = \sum_{k=0}^{n} \frac{1}{k!} g^{(k)}(0) y^k + \frac{1}{(n + 1)!} g^{(n+1)}(p) y^{n+1}
\]
\[
= \sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} y^k + \frac{(-1)^n}{n + 1} \frac{1}{(1 + p)^{n+1}} y^{n+1}.
\]
Because \(g(y) = \log(1 + y)\) while \(p \in (0, y)\), it follows that
\[
\left| \log(1 + y) - \sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} y^k \right| = \frac{1}{n + 1} \frac{1}{(1 + p)^{n+1}} y^{n+1} < \frac{1}{n + 1} y^{n+1}.
\]
For every \(y \in [0, 1]\) we thereby obtain the uniform estimate
\[
\left| \log(1 + y) - \sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} y^k \right| < \frac{1}{n + 1}.
\]
Hence,
\[
\log(1 + y) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} y^k \quad \text{uniformly over } y \in [0, 1].
\]
The fact that the series diverges for every \(y > 1\) follows from the Divergence Test because in that case
\[
\lim_{k \to \infty} \frac{1}{k} y^k = \infty \neq 0.
\]
The assertions follow by setting \(y = x^2\) into the above results. □
6. [20] Determine all \(a \in \mathbb{R} \) for which the following formal infinite series converge. Give your reasoning.

(a) \(\sum_{n=2}^{\infty} \frac{a^n}{3^n \log(n)} \)

Solution. The series converges for every \(a \in [-3, 3) \) and diverges otherwise.

The cases \(|a| < 3 \) and \(|a| > 3 \) are best handled by the Ratio Test. Let \(b_n = a^n/(3^n \log(n)) \). Because

\[
\lim_{n \to \infty} \frac{|b_{n+1}|}{|b_n|} = \lim_{n \to \infty} \frac{\log(n+1)}{\log(n)} \frac{|a|}{3} = \frac{|a|}{3},
\]

the Ratio Test then implies that this series converges absolutely for \(|a| < 3 \) and diverges for \(|a| > 3 \).

The case \(a = -3 \) is best handled by the Alternating Series Test. Indeed, because the sequence

\[
\left\{ \frac{1}{\log(n)} \right\}_{n=2}^{\infty}
\]

is decreasing and positive, and because

\[
\lim_{n \to \infty} \frac{1}{\log(n)} = 0,
\]

the Alternating Series Test shows that

\[
\sum_{n=2}^{\infty} (-1)^n \frac{1}{\log(n)}
\]

converges.

The case \(a = 3 \) is best handled by Limit Comparison Test, say with the harmonic series. Indeed, because

\[
\lim_{n \to \infty} \frac{\log(n)}{n} = 0,
\]

and because the harmonic series

\[
\sum_{n=2}^{\infty} \frac{1}{n}
\]

diverges,

the Limit Comparison Test shows that

\[
\sum_{n=2}^{\infty} \frac{1}{\log(n)}
\]

diverges.

Alternatively, one could treat this case with the Direct Comparison Test, the Integral Test, or the Cauchy \(2^k \) Test. \(\square \)

(b) \(\sum_{k=1}^{\infty} \left(\frac{k}{k^4 + 1} \right)^a \)

Solution. The series converges for every \(a \in (\frac{1}{3}, \infty) \) and diverges otherwise.
This is best handled by Limit Comparison Test. Because
\[\frac{k}{k^4 + 1} \sim \frac{1}{k^3} \quad \text{as} \quad k \to \infty, \]
one sees that the original series should be compared with the p-series
\[\sum_{k=1}^{\infty} \frac{1}{k^{3a}}. \]
Indeed, because for every \(a \in \mathbb{R} \) one has
\[\lim_{k \to \infty} \left(\frac{k}{k^4 + 1} \right)^a = \lim_{k \to \infty} \left(\frac{k^4}{k^4 + 1} \right)^a = 1, \]
the Limit Comparison Test then implies that
\[\sum_{k=1}^{\infty} \left(\frac{k}{k^4 + 1} \right)^a \text{ converges } \iff \sum_{k=1}^{\infty} \frac{1}{k^{3a}} \text{ converges}. \]
Because \(p = 3a \) for the p-series, that series converges for \(a \in (\frac{1}{3}, \infty) \) and diverges otherwise. The same is therefore true for the original series. \(\square \)

7. [20] Let \(f : [a, b] \to \mathbb{R} \) and \(g : [a, b] \to \mathbb{R} \) be Riemann integrable over \([a, b]\). Show that \(f + g \) is Riemann integrable over \([a, b]\).

Solution. The shortest route to a proof uses the Lebesgue Theorem. Let \(D_f, D_g, \) and \(D_{f+g} \) denote the points in \([a, b]\) at which \(f, g, \) and \(f + g \) respectively are discontinuous. It is clear that \(D_{f+g} \subset D_f \cup D_g \) because \(f + g \) is continuous at every point where both \(f \) and \(g \) are continuous. Because \(f \) and \(g \) are Riemann integrable over \([a, b]\), one direction of the Lebesgue Theorem implies that \(D_f \) and \(D_g \) have measure zero. Because the union of two measure zero sets also has measure zero, and because any subset of a measure zero set also has measure zero, it follows that \(D_{f+g} \subset D_f \cup D_g \) has measure zero. The other direction of the Lebesgue Theorem then implies that \(f + g \) is Riemann integrable over \([a, b]\). \(\square \)

Alternative Solution. Let \(\epsilon > 0 \). Because \(f \) and \(g \) are Riemann integrable over \([a,b]\), the Darboux Theorem implies that there exist partitions \(P^I_\epsilon \) and \(P^g_\epsilon \) of \([a,b]\) such that
\[0 \leq U(f, P^I_\epsilon) - L(f, P^I_\epsilon) < \frac{\epsilon}{2}, \quad 0 \leq U(g, P^g_\epsilon) - L(f, P^g_\epsilon) < \frac{\epsilon}{2}. \]
Set \(P_\epsilon = P^I_\epsilon \vee P^g_\epsilon \). Then
\[U(f + g, P_\epsilon) \leq U(f, P_\epsilon) + U(g, P_\epsilon) \leq U(f, P^I_\epsilon) + U(g, P^g_\epsilon), \]
\[L(f + g, P_\epsilon) \geq L(f, P_\epsilon) + L(g, P_\epsilon) \geq L(f, P^I_\epsilon) + L(g, P^g_\epsilon). \]
Upon combining the above inequalities you find that
\[0 \leq U(f + g, P_\epsilon) - L(f + g, P_\epsilon) \]
\[\leq U(f, P^I_\epsilon) - L(f, P^I_\epsilon) + U(g, P^g_\epsilon) - L(g, P^g_\epsilon) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \]
Because such a \(P_\epsilon \) can be found for every \(\epsilon > 0 \), the Darboux Theorem implies that \(f + g \) is Riemann integrable. \(\square \)
Remark. The second solution gives a lot more. It is just a few steps away from showing that the integral of \(f + g \) is the sum of the integrals of \(f \) and \(g \).

8. [20] A function \(f : [a, b] \to \mathbb{R} \) is said to be Hölder continuous of order \(\alpha \in (0, 1] \) if there exists a \(C \in \mathbb{R}_+ \) such that for every \(x, y \in [a, b] \) one has

\[
|f(x) - f(y)| < C |x - y|^\alpha.
\]

Let \(f : [a, b] \to \mathbb{R} \) be Hölder continuous of order \(\alpha \in (0, 1] \).

(a) Show that \(f \) is uniformly continuous over \([a, b] \).

Solution. Let \(\epsilon > 0 \). Set \(\delta = (\epsilon/C)^{1/\alpha} \). Then for every \(x, y \in [a, b] \) we have

\[
|x - y| < \delta \implies |f(x) - f(y)| < C |x - y|^\alpha < C \delta^\alpha = \epsilon.
\]

Hence, \(f \) is uniformly continuous over \([a, b] \). \(\square \)

(b) Show that for every partition \(P \) of \([a, b] \) one has

\[
0 \leq U(f, P) - L(f, P) < |P|^\alpha C (b - a).
\]

Solution. Let \(P = [x_0, x_1, \ldots, x_n] \) be any partition of \([a, b] \). Then

\[
0 \leq U(f, P) - L(f, P) = \sum_{k=1}^{n} (\overline{m}_k - \underline{m}_k)(x_k - x_{k-1}),
\]

where

\[
\overline{m}_k = \sup \{ f(x) : x \in [x_{k-1}, x_k] \}, \quad \underline{m}_k = \inf \{ f(x) : x \in [x_{k-1}, x_k] \}.
\]

Because \(f \) is continuous over each \([x_{k-1}, x_k] \), by the Extreme-Value Theorem there exists points \(\overline{x}_k, \underline{x}_k \in [x_{k-1}, x_k] \) such that \(\overline{m}_k = f(\overline{x}_k) \) and \(\underline{m}_k = f(\underline{x}_k) \). The Hölder continuity of \(f \) gives

\[
0 \leq U(f, P) - L(f, P) = \sum_{k=1}^{n} (f(\overline{x}_k) - f(\underline{x}_k))(x_k - x_{k-1})
\]

\[
\leq C \sum_{k=1}^{n} |\overline{x}_k - \underline{x}_k|^\alpha (x_k - x_{k-1}).
\]

Because \(\overline{x}_k, \underline{x}_k \in [x_{k-1}, x_k] \) you have

\[
|\overline{x}_k - \underline{x}_k| \leq x_k - x_{k-1} \leq \max \{ x_m - x_{m-1} : m = 1, \ldots, n \} \equiv |P|,
\]

whereby

\[
0 \leq U(f, P) - L(f, P) \leq C \sum_{k=1}^{n} |P|^\alpha (x_k - x_{k-1})
\]

\[
= C |P|^\alpha \sum_{k=1}^{n} (x_k - x_{k-1}) = C |P|^\alpha (b - a).
\]

\(\square \)
9. Let \(\{g_n\}_{n \in \mathbb{N}} \) be a sequence of real-valued functions over \(D \subset \mathbb{R} \), and \(\{M_n\}_{n \in \mathbb{N}} \) be a sequence of real numbers such that \(|g_n(x)| \leq M_n \) for every \(x \in D \) and \(n \in \mathbb{N} \). Show that

\[
\sum_{n=0}^{\infty} M_n < \infty \implies \sum_{n=0}^{\infty} g_n(x) \text{ converges uniformly over } D.
\]

Remark: You are being asked to prove the Weierstrass M-Test.

Solution. The Absolute Comparison Test states that

\[
\sum_{n=0}^{\infty} M_n < \infty \implies \sum_{n=0}^{\infty} g_n(x) \text{ converges absolutely for every } x \in D.
\]

You must show that this pointwise convergence is uniform. Equivalently, if you introduce

\[
f_n(x) = \sum_{k=0}^{n} g_k(x), \quad f(x) = \sum_{k=0}^{\infty} g_k(x),
\]

then you must show that \(f_n \to f \) uniformly over \(D \).

Let \(\epsilon > 0 \). Because \(\sum_{k=0}^{\infty} M_k < \infty \) there exists \(n_\epsilon \in \mathbb{N} \) such that

\[
n > n_\epsilon \implies \sum_{k=n+1}^{\infty} M_k < \epsilon.
\]

Then for every \(n > n_\epsilon \) and every \(x \in D \) one has

\[
|f_n(x) - f(x)| = \left| \sum_{k=1}^{n} g_k(x) - \sum_{k=1}^{\infty} g_k(x) \right| = \left| \sum_{k=n+1}^{\infty} g_k(x) \right| \\
\leq \sum_{k=n+1}^{\infty} |g_k(x)| \leq \sum_{k=n+1}^{\infty} M_k < \epsilon.
\]

Hence, \(f_n \to f \) uniformly over \(D \).

10. For each \(n \in \mathbb{Z}_+ \) define \(f_n : [0, 1] \to \mathbb{R} \) by \(f_n(x) = n^2 xe^{-nx} \).

(a) Sketch the graph of a typical \(f_n \) over \([0, 1]\).

Solution. Because \(f'_n(x) = n^2(1-nx)e^{-nx} \) is positive over \([0, \frac{1}{n}]\) and negative over \((\frac{1}{n}, 1]\) for any \(n > 1 \) your sketch should show that:

- the value of \(f_n(x) \) increases over \([0, \frac{1}{n}]\) from \(f_n(0) = 0 \) at \(x = 0 \) to a maximum of \(f_n(\frac{1}{n}) = \frac{n}{e} \) at \(x = \frac{1}{n} \);
- the value of \(f_n(x) \) decreases over \((\frac{1}{n}, 1]\) from its maximum of \(f_n(\frac{1}{n}) = \frac{n}{e} \) at \(x = \frac{1}{n} \) to \(f_n(1) = n^2e^{-n} \) at \(x = 1 \).

This shows that as \(n \) increases the maximum value of \(f_n \) increases as \(\frac{n}{e} \) while its location moves closer to \(x = 0 \). This understanding is helpful for the rest of the problem.
(b) Show that $f_n \to 0$ pointwise over $[0, 1]$.

Solution. Because $f_n(0) = 0$ for every $n \in \mathbb{N}$, the convergence of $\{f_n(x)\}$ when $x = 0$ is obvious. Now consider the sequence $\{f_n(x)\}$ for $x \in (0, 1]$. By l’Hôpital applied twice to the $\frac{\infty}{\infty}$ indeterminant form we see that

$$
\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{n^2 x}{e^{nx}} = \lim_{n \to \infty} \frac{2nx}{xe^{nx}} = \lim_{n \to \infty} \frac{2x}{x^2e^{nx}} = 0.
$$

Notice that the above derivatives are taken with respect to the variable n, which we consider extended to all \mathbb{R} when applying l’Hôpital. Alternatively, rather than applying l’Hôpital you could argue that the limit vanishes because $e^{nx} \to \infty$ faster than $n^2x \to \infty$ when $x > 0$. □

(c) Show that the limit in part (b) is not uniform over $[0, 1]$.

Solution. You must show that there exists $\epsilon > 0$ such that for every $m \in \mathbb{N}$ there exists $n > m$ and $x \in [0, 1]$ such that $f_n(x) \geq \epsilon$. This is easy to do. In fact, for any $\epsilon > 0$ one has for every $n > \epsilon e$ that $f_n\left(\frac{1}{n}\right) = \frac{\epsilon}{e} > \epsilon$. □

(d) For every $\delta > 0$ show that $f_n \to 0$ uniformly over $[\delta, 1]$.

Solution. Let $\epsilon > 0$. You must show there exists $n_\epsilon \in \mathbb{N}$ such that for every $n > n_\epsilon$ and $x \in [\delta, 1]$ one has $0 < f_n(x) < \epsilon$. Here are two approaches to doing this.

First Approach. First notice that for every $x \in [\delta, 1]$ and $n > 0$ one has the inequalities

$$
0 < f_n(x) = n^2 xe^{-nx} < x^2 e^{-n\delta}.
$$

Either by noticing that $x^2 e^{-n\delta} = f_n(\delta)/\delta$ and using the pointwise convergence of assertion (b), or by arguing as in the proof of assertion (b) one sees that

$$
\lim_{n \to \infty} x^2 e^{-n\delta} = 0.
$$

Hence, there exists $n_\epsilon \in \mathbb{N}$ such that for every $n > n_\epsilon$ one has $x^2 e^{-n\delta} < \epsilon$. It follows that for every $n > n_\epsilon$ and $x \in [\delta, 1]$ one has

$$
0 < f_n(x) \leq x^2 e^{-n\delta} < \epsilon.
$$

Therefore $f_n \to 0$ uniformly over $[\delta, 1]$. □

Second Approach. First notice from part (a) that if $\frac{1}{n} < \delta$ then f_n is decreasing over $[\delta, 1]$. Hence, for every $n > 1/\delta$ and $x \in [\delta, 1]$ one has

$$
0 < f_n(x) \leq f_n(\delta).
$$

By the pointwise convergence of assertion (b) applied to the point $x = \delta$ there exists $n_\epsilon \in \mathbb{N}$ such that $n_\epsilon > 1/\delta$ and that for every $n > n_\epsilon$ one has $f_n(\delta) < \epsilon$. It follows that for every $n > n_\epsilon$ and $x \in [\delta, 1]$ one has

$$
0 < f_n(x) \leq f_n(\delta) < \epsilon.
$$

Therefore $f_n \to 0$ uniformly over $[\delta, 1]$. □
(e) Show that
\[\lim_{n \to \infty} \int_0^1 f_n = 1. \]

Solution. One integration by parts \((u = nx, v = -e^{-nx})\) yields
\[\int_0^1 f_n = \int_0^1 n^2 x e^{-nx} \, dx = -n x e^{-nx} \bigg|_0^1 + \int_0^1 e^{-nx} n \, dx = -ne^{-n} - e^{-nx} \bigg|_0^1 = -ne^{-n} - e^{-n} + 1 = 1 - \frac{n + 1}{e^n}. \]

By l'Hôpital applied to the \(\frac{\infty}{\infty}\) indeterminant form we see that
\[\lim_{n \to \infty} \frac{n + 1}{e^n} = \lim_{n \to \infty} \frac{1}{e^n} = 0. \]

Hence,
\[\lim_{n \to \infty} \int_0^1 f_n = 1 - \lim_{n \to \infty} \frac{n + 1}{e^n} = 1. \]

(f) Let \(g : [0, 1] \to \mathbb{R}\) be continuous. Show that
\[\lim_{n \to \infty} \int_0^1 f_n g = g(0). \]

Solution. Assertion (e) implies that assertion (f) is equivalent to
\[\lim_{n \to \infty} \int_0^1 f_n(x) (g(x) - g(0)) \, dx = 0. \]

But this will follow once we show that for every \(\epsilon > 0\)
\[\limsup_{n \to \infty} \int_0^1 f_n(x) \left| g(x) - g(0) \right| \, dx \leq \epsilon. \]

Let \(\epsilon > 0\). Because \(g\) is continuous at 0, there exists \(\delta > 0\) such that
\[x \in [0, \delta) \implies \left| g(x) - g(0) \right| < \epsilon. \]

Because \(g\) is continuous over \([0, 1]\), by the Extreme-Value Theorem it is bounded over \([0, 1]\). Let \(M = \sup\{|g(x)| : x \in [0, 1]\}\). Then for every \(n \in \mathbb{N}\)
\[\int_0^1 f_n(x) \left| g(x) - g(0) \right| \, dx = \int_0^\delta f_n(x) \left| g(x) - g(0) \right| \, dx + \int_\delta^1 f_n(x) \left| g(x) - g(0) \right| \, dx \leq \int_0^\delta f_n(x) \epsilon \, dx + \int_\delta^1 f_n(x) 2M \, dx \leq \epsilon \int_0^1 f_n(x) \, dx + 2M \int_\delta^1 f_n(x) \, dx. \]

Assertion (e) and the uniform convergence of assertion (d) imply that
\[\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = 1, \quad \lim_{n \to \infty} \int_\delta^1 f_n(x) \, dx = 0. \]
whereby the previous inequality implies that
\[
\limsup_{n \to \infty} \int_0^1 f_n(x) |g(x) - g(0)| \, dx \leq \epsilon \lim_{n \to \infty} \int_0^1 f_n(x) \, dx + 2M \lim_{n \to \infty} \int_\delta^1 f_n(x) \, dx = \epsilon.
\]
But as argued above, because this holds for every \(\epsilon > 0 \), assertion (f) follows. \(\square \)