(1) [6] Compute the average value of \(r(x) = 6x^{\frac{1}{2}} \) over the interval from \(x = 1 \) to \(x = 9 \). Simplify your answer.

Solution. The average value is given by

\[
\frac{1}{9 - 1} \int_1^9 6x^{\frac{1}{2}} \, dx.
\]

Because \(4x^{\frac{3}{2}} \) is an antiderivative of \(6x^{\frac{1}{2}} \), you find that

\[
\frac{1}{9 - 1} \int_1^9 6x^{\frac{1}{2}} \, dx = \frac{1}{8} \left(4x^{\frac{3}{2}} \right) \bigg|_1^9 = \frac{1}{2} \left(x^{\frac{3}{2}} \right) \bigg|_1^9 = \frac{1}{2} \left(9^{\frac{3}{2}} - 1^{\frac{3}{2}} \right) = \frac{1}{2} \left(27 - 1 \right) = \frac{26}{2} = 13.
\]

(2) [4] Consider the function \(g(x, y) = 2x^2 - y \).

(a) Compute \(g(1, 3) \).

(b) Give the equation of the level curve of \(g(x, y) \) that contains the point \((1, 3) \).

Solution (a). \(g(1, 3) = 2 \cdot 1^2 - 3 = 2 - 3 = -1 \).

Solution (b). The equation of the level curve will be \(g(x, y) = g(1, 3) \), which is given by

\(2x^2 - y = -1 \).

Remark. Notice that this can be written as \(y = 2x^2 + 1 \), which is the equation of a parabola that could have been easily sketched had you been asked to do so.