1. Prove the divergence assertion of Proposition 3.11 in the notes.
2. Prove Proposition 3.12 in the notes.
3. Consider the set
 \[\left\{ x \in \mathbb{R} : \sum_{n=0}^{\infty} \frac{(4n)! (2n)!}{n! (3n)!} x^n \text{ converges} \right\} . \]
 Use the ratio test to prove that this set is an interval and find its endpoints.
4. Determine all \(x, p \in \mathbb{R} \) for which the Fourier \(p \)-series
 \[\sum_{k=1}^{\infty} \frac{\sin(kx)}{k^p} \]
 converges.
5. Let \(X \) be a field. Use the field axioms to show that if \(x, y \in X \) then \((x^{-1} y)^{-1} = y^{-1} x\).
6. Let \(X \) be a field. Use the field axioms to show that if \(x, y \in X \) then \((-x)(-y) = xy\).
7. Let \(A \) and \(B \) be closed subsets of \(\mathbb{R} \). Show that \(A \cap B \) and \(A \cup B \) are closed.
8. Consider the real sequence \(\{b_k\}_{k \in \mathbb{N}} \) given by
 \[b_k = (-1)^k \left(3 + \frac{1}{(k+1)^2} \right) \]
 for every \(k \in \mathbb{N} \),
 where \(\mathbb{N} = \{0, 1, 2, \cdots\} \).
 (a) Give the first three terms of the subsequence \(\{b_{3k}\}_{k \in \mathbb{N}} \).
 (b) Give the first three terms of the subsequence \(\{b_{2k-1}\}_{k \in \mathbb{N}} \).
 (c) Compute \(\limsup_{k \to \infty} b_k \) and \(\liminf_{k \to \infty} b_k \). Justify your answers.
9. Determine all the values of \(a \in \mathbb{R} \) for which
 \[\sum_{n=2}^{\infty} \frac{1}{\log(n)} a^n \]
 converges.
10. Determine all the values of \(a \in \mathbb{R} \) for which
 \[\sum_{k=0}^{\infty} \left(\frac{2k+3}{k^4+1} \right)^a \]
 converges.
11. Determine all the values of \(a \in \mathbb{R} \) for which
 \[\sum_{m=1}^{\infty} \frac{1}{m^2} (2 + (-1)^m)^m a^m \]
 converges.
12. Let \(\{b_k\}_{k \in \mathbb{N}} \) be a sequence in \(\mathbb{R} \) and let \(A \) be a subset of \(\mathbb{R} \). Write the negations of the following assertions.
 (a) “For every \(m \in \mathbb{R} \) one has \(b_j > m \) frequently as \(j \to \infty \).”
 (b) “Every sequence in \(A \) has a subsequence that converges to a limit in \(A \).”