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7. Mechanical Vibrations

7.1. Spring-Mass Systems. Consider a spring hanging from a support. When an object
of mass m is attached to the free end of the spring, the object will eventually come to rest
at a lower position. Let yo and yr be the vertical rest positions of the free end of the spring
without and with the mass attached. We will assume that the mass is constrained to only
move vertically and want to describe the vertical postition y(t) of the mass as a function
of time t when the mass is initially displaced from yr, or is given some initial velocity, or
is driven by an external force Fext(t).

The forces acting on the mass that we will consider are the gravitational force Fgrav,
the spring force Fspr, the damping or drag force Fdamp, and the external or driving force
Fext. Newton’s law of motion then states that

m
d2y

dt2
= Fgrav + Fspr + Fdamp + Fext . (7.1)

Always be sure you are working in one of the standard systems of units. In MKS units
length is given in meters (m), time in seconds (sec), mass in kilograms (kg), and force in
Newtons (1 Newton = 1 kg m/sec2). In CGS units length is given in centimeters (cm),
time in seconds (sec), mass in grams (g), and force in dynes (1 dyne = 1 g cm/sec2). In
British units length is given in feet (ft), time in seconds (sec), mass in slugs (sl), and force
in pounds (1 lb = 1 sl ft/sec2).

The gravitational force Fgrav is simply the downward weight of the mass. If we assume
a uniform gravitational acceleration g then

Fgrav = −mg , (7.2)

where g = 9.8 m/sec2 in MKS units, g = 980 cm/sec2 in CGS units, and g = 32 ft/sec2 in
British units.

The spring force is modeled by Hooke’s law

Fspr = −k(y − yo) , (7.3)

where k is the so-called spring constant or spring coefficient. This is a fairly good model
provided y − yo does not get too big. When there is no external driving force, the mass
has a rest position yr < yo that satisfies

0 = Fgrav + Fspr at y = yr .

Hence, we have
mg = −k(yr − yo) = k(yo − yr) = k|yr − yo| . (7.4)

Sometimes you will be given |yr − yo| and have to figure out k from this relation.
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The damping force is modeled by

Fdamp = −γ
dy

dt
, (7.5)

where γ ≥ 0 is the so-called damping coefficient. This is not as good a model for damping
force as Hooke’s Law was for the spring force, but we will use it because of its simplicity.
Sometimes you will be given |Fdamp| at a particular speed and have to determine γ from
this relation.

If we place (7.2), (7.3), and (7.5) into Newton’s law of motion (7.1) and neglect the
external driving, we obtain

m
d2y

dt2
+ γ

dy

dt
+ ky = kyo − mg .

We see from (7.4) that kyo − mg = kyr, where yr is the rest position. We thereby have

m
d2y

dt2
+ γ

dy

dt
+ ky = kyr .

This clearly has the particular solution y = yr. If we let y(t) = yr +h(t) then h(t) satisfies
the homogeneous equation

m
d2h

dt2
+ γ

dh

dt
+ kh = 0 .

Here h(t) is simply the displacement of the mass from its rest position yr. If the external
driving is present, this becomes

m
d2h

dt2
+ γ

dh

dt
+ kh = Fext(t) . (7.6)

We will study the motion of this spring-mass system building up its complexity from
simplest case.

7.2. Unforced, Undamped Motion (Fext = 0, γ = 0). In this case (7.6) reduces to

m
d2h

dt2
+ kh = 0 ,

or in normal form
d2h

dt2
+

k

m
h = 0 . (7.7)

Its characteristic polynomial is

p(z) = z2 +
k

m
,
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which has roots ±iωo where

ωo =

√

k

m
. (7.8)

A general solution of equation (7.7) is

h(t) = c1 cos(ωot) + c2 sin(ωot) . (7.9)

For the initial condtions h(0) = h0 and h′(0) = h1 this becomes

h(t) = h0 cos(ωot) + h1

sin(ωot)

ωo

.

Such motion is called simple harmonic motion. It involves the single frequency ωo.

Because ωo is associated with the spring constant k through (7.8), it is called the
natural frequency of the spring. The associated natural period To is therefore

To =
2π

ωo

.

In MKS, CGS, and British units ωo is given in radians/sec, or simply 1/sec because radians
are considered to be nondimensional. Then To is given in sec.

The simple harmonic motion (7.9) is nontrivial whenever either c1 or c2 is nonzero.
In that case we can express it in the so-called applitude-phase form

h(t) = A cos(ωot − δ) ,

where A > 0 is its amplitude and δ in [0, 2π) is its phase. By the cosine addition formula
the above form can be expanded as

h(t) = A cos(δ) cos(ωot) + A sin(δ) sin(ωot) .

Upon comparing this with (7.9) we see that

A cos(δ) = c1 , A sin(δ) = c2 .

This shows that (A, δ) are simply the polar coordinates of the point in the plane whose

cartesian coordinates are (c1, c2). Clearly A =
√

c 2
1 + c 2

2 > 0 while δ satisfies

cos(δ) =
c1

A
, sin(δ) =

c2

A
.

There is a unique δ in [0, 2π) that satisfies these equations.

Example. A mass of 10 grams stretches a spring 5 cm when at rest. At t = 0 the mass
is set in motion from its rest position with a downward velocity of 35 cm/sec. Neglect
damping and external forces.

a) What is the displacement of the mass as a function of time?

b) What is the amplitude, phase, frequency, and period of the motion?

c) At what positive time does the mass first return to its rest position?
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Solution. Because g = 980 cm/sec2, we can find k by setting

k · 5 = mg = 10 · 980 dynes ,

whereby

k =
10 · 980

5
dynes/cm .

Because we are neglecting damping and external forces, the equation of motion takes the
form

m
d2h

dt2
+ k h = 0 ,

which becomes

10
d2h

dt2
+

10 · 980

5
h = 0 .

Bringing this into normal form gives

d2h

dt2
+

980

5
h = 0 ,

which becomes
d2h

dt2
+ 196 h = 0 .

Because ω 2
o = 196, one sees that ωo = 14 1/sec.

A general solution of the equation of motion is therefore

h(t) = c1 cos(14t) + c2 sin(14t) .

The initial conditions are h(0) = 0 and h′(0) = −35 cm/sec. Because

h′(t) = −14c1 sin(14t) + 14c2 cos(14t) ,

the boundary conditions imply that

h(0) = c1 = 0 , h′(0) = 14c2 = −35 ,

which implies c1 = 0 and c2 = −5

2
. From this you can read off the following.

a) The displacement of the mass as a function of time is

h(t) = −5

2
sin(14t) = 5

2
cos(14t − 3π

2
) cm .

b) The amplitude of the motion is 5

2
cm, the phase is 3π

2
, the frequency is 14 1/sec, and

the period is π
7

sec.

c) The positive time at which the mass first returns to its rest position is t = π
14

.
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7.3. Unforced, Damped Motion (Fext = 0, γ > 0). In this case (7.6) reduces to

m
d2h

dt2
+ γ

dh

dt
+ kh = 0 ,

which has the normal form
d2h

dt2
+

γ

m

dh

dt
+

k

m
h = 0 . (7.10)

Its characteristic polynomial is

p(z) = z2 +
γ

m
z +

k

m
.

If we complete the square this has the form

p(z) = (z + µ)2 + ω 2
o − µ2 . (7.11)

where the damping rate µ and the natural frequency ωo are defined by

µ =
γ

2m
, ωo =

√

k

m
.

It is clear there are three cases to consider.

• When 0 < µ < ωo there is a conjugate pair of roots −µ ± iν where

ν =
√

ω 2
o − µ2 . (7.12)

• When µ = ωo there is a real double root −µ, −µ.

• When µ > ωo there is two simple real roots −µ ±
√

µ2 − ω 2
o .

These are called the under damped, critically damped, and over damped cases respectively.
Notice that you do not have to memorize any formulas here because you can simply read
off which case a system is in from the roots of its characteristic polynomial: a conjugate
pair of roots means that the system is under damped; a double real root means that the
system is critically damped; two simple real roots means that the system is over damped.

For the under damped case a general solution is

h(t) = c1e
−µt cos(νt) + c2e

−µt sin(νt) . (7.13)

Whenever either c1 or c2 is nonzero this can be put into the amplitude-phase form

h(t) = Ae−µt cos(νt − δ) ,
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where A =
√

c 2
1 + c 2

2 > 0 and 0 ≤ δ < 2π satisfies

cos(δ) =
c1

A
, sin(δ) =

c2

A
.

The displacement is therefore an exponentially decaying simple harmonic motion with the
time-dependent amplitude Ae−µt, frequency ν, and phase δ. In this context ν given by
(7.12) is called the quasi frequency of the system and the associated period 2π/ν is called
the quasi period. Notice that

ν < ωo ,
2π

ν
> To .

In other words, the quasi frequency is always less than the natural frequency, while the
quasi period is always greater than the natural period.

For the critically damped case a general solution is

h(t) = c1e
−µt + c2t e−µt . (7.14)

The displacement therefore has at most one zero and decays like t e−µt whenever c2 6= 0.

For the over damped case a general solution is

h(t) = c1e
−µ+t + c2e

−µ
−

t , (7.15)

where µ+ and µ− are defined by

µ± = µ ±
√

µ2 − ω 2
o . (7.16)

The subscript + or − simply indicates the sign of the square root taken in the above
formula. Notice that 0 < µ− < µ < µ+. The displacement therefore has at most one zero
and decays like e−µ

−
t whenever c2 6= 0. Because µ− < µ one sees that in this case the

decay of the displacement is slower than in either the under or critically damped cases.

Remark. The spring system is said to be extremely over damped when µ is much greater
than ωo. In that case we can use the approximation

√

µ2 − ω 2
o = µ

√

1 −
ω 2

o

µ2
≈ µ

(

1 −
ω 2

o

2µ2

)

= µ −
ω 2

o

2µ
,

to approximate µ− and µ+ in (7.16) by

µ− ≈
ω 2

o

2µ
, µ+ ≈ 2µ −

ω 2
o

2µ
.

In this regime these decay rates are very different from each other with

µ−

µ+

≈
ω 2

o

4µ2
, which is much less than 1 .
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Remark. This damped spring system is a good model for shock absorbers in a car. When
the shock absorbers are over damped one gets a jarring ride, while when they are under
damped one gets a bouncy ride. Shock absorbers are tuned to be critically damped, which
gives the least jarring and least bouncy ride.

7.4. Forced, Undamped Motion (Fext 6= 0, γ = 0). In this case (7.6) reduces to

m
d2h

dt2
+ kh = Fext(t) .

We will study external forces of the form

Fext(t) = F cos(ωt) .

The equation then has the normal form

d2h

dt2
+ ω 2

o h = a cos(ωt) , (7.17)

where the natural frequency ωo and the driving acceleration a are given by

ωo =

√

k

m
, a =

F

m
.

Equation (7.17) may be solved either by Undetermined Coefficients or by Key Identity
Evaluations. The characteristic polynomial is p(z) = z2 + ω 2

o , which has roots ±iωo.
The forcing has characteristic ±iω, degree d = 0, multiplicity m = 0 when ω 6= ωo, and
multiplicity m = 1 when ω = ωo 6= 0.

For ω 6= ωo, if we impose the inital conditions

h(0) = h0 , and h′(0) = h1 ,

then the solution is found to be

h(t; ω) = h0 cos(ωot) + h1

sin(ωot)

ωo

+ a
cos(ωt) − cos(ωot)

ω 2
o − ω2

. (7.18)

This is not simple harmonic motion because two frequencies are involved. Such motion is
called biharmonic. In general, whenever more than one frequency is involved the motion
is called polyharmonic.

For ω = ωo 6= 0, if we impose the inital conditions

h(0) = h0 , and h′(0) = h1 ,

then the solution is found to be

h(t; ωo) = h0 cos(ωot) + h1

sin(ωot)

ωo

+ a
t sin(ωot)

2ωo

. (7.19)

This is also not simple harmonic motion. In fact, its amplitude grows linearly in t! This
phenomenon of resonance that occurs when the driving frequency ω becomes equal to the
natural frequency ωo of the system. Because the l’Hopital rule implies

lim
ω→ωo

cos(ωt) − cos(ωot)

ω 2
o − ω2

= lim
ω→ωo

−t sin(ωt)

−2ω
=

t sin(ωot)

2ωo

,

we see that formula (7.19) is what you obtain by taking the limit ω → ωo in formula (7.18).
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You can understand the onset of resonance as ω → ωo by using the identity

cos(ωt) − cos(ωot) = −2 sin

(

ω − ωo

2
t

)

sin

(

ω + ωo

2
t

)

,

to re-express formula (7.18) as

h(t; ω) = h0 cos(ωot) + h1

sin(ωot)

ωo

+ Aω(t) sin

(

ω + ωo

2
t

)

,

where

Aω(t) =
2a

ω2 − ω 2
o

sin

(

ω − ωo

2
t

)

.

When ω − ωo is very small compared to ω and ωo then A(t) will be a very slowly varying
function of t compared to sin

(

(ω+ωo)t/2
)

. In that case sin
(

(ω+ωo)t/2
)

will oscillate very
many times during a period over which A(t) oscillates just once. These rapid oscillations
will have an amplitude of |A(t)|, which slowly oscillates between 0 and 2a/(ω2 − ω 2

o ).
This slow oscillation is the phenomenon of beating. The so-called beating frequency is
ω−ωo, which is small, while the so-called beating period is 2π/(ω−ωo), which is large. As
ω → ωo the beating frequency vanishes, the beating period diverges to infinity, while by
the l’Hospital rule we see that

lim
ω→ωo

Aω(t) = lim
ω→ωo

2a sin

(

ω − ωo

2
t

)

ω2 − ω 2
o

= lim
ω→ωo

a cos

(

ω − ωo

2
t

)

t

2ω
=

a t

2ωo

.

This is in accord with the amplitude we found in formula (7.19).

7.5. Forced, Damped Motion (Fext 6= 0, γ > 0). In this case (7.6) reduces to

m
d2h

dt2
+ γ

dh

dt
+ kh = Fext(t) .

We will again study external forces of the form

Fext(t) = F cos(ωt) .

The equation then has the normal form

d2h

dt2
+

γ

m

dh

dt
+

k

m
h =

F

m
cos(ωt) . (7.20)

The associated homogeneous equation is (7.10), which descibes the associated unforced,
damped system.
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Once again we introduce the damping rate µ, the natural frequency ωo, and the driving
acceleration a defined by

µ =
γ

2m
, ωo =

√

k

m
, a =

F

m
. (7.21)

The solution of the associated homogeneous equation hH(t) is then given by either (7.13),
(7.14), or (7.15) depending on whether the associated unforced system is under damped,
critically damped, or over damped. In all of these cases hH(t) decays to zero as t → ∞.

A particular solution hP (t) of (7.20) can be found either by Undetermined Coefficients
or by Key Identity Evaluations. The forcing has characteristic iω, degree d = 0, and
multiplicity m = 0. You find that

hP (t) =
a(ω 2

o − ω2)

(ω 2
o − ω2)2 + 4µ2ω2

cos(ωt) +
a2µω

(ω 2
o − ω2)2 + 4µ2ω2

sin(ωt) ,

where µ, ωo, and a are given by (7.21). This is simple harmonic motion that can be put
into the amplitude-phase form

hP (t) = A cos(ωt − δ) , (7.22)

where

A =
a

√

(ω 2
o − ω2)2 + 4µ2ω2

, δ = cos−1

(

ω 2
o − ω2

√

(ω 2
o − ω2)2 + 4µ2ω2

)

.

Because it is periodic, this particular solution is called the steady solution of the forced,
damped system. A general solution of this system thereby has the form

h(t) = hH(t) + hP (t) ,

where hH(t) decays to zero as t → ∞ and hP (t) is the steady solution given by (7.22). For
this reason hH(t) is called the transient component of the solution, or simply the transient.

Finally, notice that the resonance phenomenon is modified by the presence of damping.
In particular, the solutions will remain bounded for any driving frequency ω. It is clear from
(7.22) that the amplitude of the steady solution will be maximum when (ω 2

o −ω2)2+4µ2ω2

is minimum. When 4µ2 < ω 2
o then this happens when

ω =
√

ω 2
o − 4µ2 ,

while when 4µ2 ≥ ω 2
o then this happens when ω = 0. In either case it happens when ω is

less than the natural frequency.


