
Bose-Einstein Condensation and

the Kompaneets Equation

C. David Levermore
Department of Mathematics and

Institute for Physical Science and Technology
University of Maryland, College Park

lvrmr@math.umd.edu

14 February 2011
Applied PDE RIT
College Park, MD



Outline

1) Photons within a Homogeneous Plasma

2) Kompaneets Equation

3) Bose-Einstein Equilibria

4) Quantum Entropy Structure

5) Classical Analog

6) What is Happening: Bose-Einstein Condensation

7) Results for a Model Problem (with H. Liu and R. Pego)

8) Conclusion



1. Photons within a Homogeneous Plasma

Photons can play a mojor role in the transport of energy within a fully ion-
ized plasma through the processes of emission, absorpsion, and scatter-
ing. At high temperatures the domiant process can be Compton scattering
off free electrons. We will consider a model of only this phenomena for a
spatially homogeneous plasma at a fixed uniform temperature T .

Photons are generally described by a kinetic density f(k, q, t) where k is
the wave vector, q is the position, and t is time. (We will neglect polar-
ization.) The phase space volume measure is dkdq. The momentum and
energy of a photon with wave vector k are ~k and ~|k| respectively. We will
assume the photon kinetic density is spatially uniform and isotropic in k. It
thereby simplifies to the form f(|k|, t).



We introduce the nondimensional radial variable x = ~|k|/kBT , so that
f(x, t). The number and energy of the photon field is then

N [f ] =

∫ ∞

0
f x2 dx , E[f ] =

∫ ∞

0
f x3 dx .

In this setting the evolution of f due to Compton scattering is governed by
a quantum kinetic equation of the form

∂tf =
∫ ∞

0
σ(x, x′)

(

ex′f ′(1 + f) − exf(1 + f ′)
)

x′
2
dx′ ,

where f ′ denotes f(x′, t). Here σ satifies the detailed balance relation
σ(x, x′) = σ(x′, x) over R+ × R+. The first term represents photons
whose energy is changed from x′ to x by collision, while the second repre-
sents photons whose energy is changed from x′ to x. The factors (1 + f)

and (1+ f ′) arise because photons are Bosons, which means they prefer
states already occupied by other photons.



2. Kompaneets Equation

Because the energy exchange of each collision is small, the Fokker-Planck
approximation can be applied to the quantum Boltzmann equation. In non-
relativistic regimes this yields the so-called Kompaneets equation,

∂tf =
1

x2
∂x

[

x4(∂xf + f + f2)
]

, f
∣

∣

∣

t=0
= f in . (1)

Because x is a radial variable, here the divergence has the form x−2∂xx2,
while the diffusion coefficient is x2. Notice that the diffusion coefficent
becomes degenerate (vanishes) at the origin!

The question arises as to whether or not a boundary condition needs to be
imposed either at x = 0 and as x → ∞. The answer to this question will
depend upon the space in which one wants to establish well-posedness!
For now we will proceed formally.



When we consider the evolution of N [f ] we find

d

dt
N [f ] =

∫ ∞

0
∂tf x2 dx

=

∫ ∞

0
∂x

[

x4(∂xf + f + f2)
]

dx

=
[

x4(∂xf + f + f2)
]

∣

∣

∣

∣

∣

∞

0

.

Because the Kompaneets equation (1) describes the evolution of f due to
only a scattering process, the number of photons must be conserved. We
therefore might expect that f should satisfy

[

x4(∂xf + f + f2)
]
∣

∣

∣

x=0
=
[

x4(∂xf + f + f2)
]
∣

∣

∣

x→∞
= 0 .



Similarly, when we consider the evolution of E[f ] we find

d

dt
E[f ] =

∫ ∞

0
∂tf x3 dx

=
∫ ∞

0
x∂x

[

x4(∂xf + f + f2)
]

dx

=
[

x5(∂xf + f + f2)
]

∣

∣

∣

∣

∣

∞

0

−
∫ ∞

0
x4(∂xf + f + f2) dx .

If we expect that energy does not “escape to infinity” then f should also
satisfy

[

x5(∂xf + f + f2)
]
∣

∣

∣

x→∞
= 0 .



3. Bose-Einstein Equilibria

Stationary solutions of the Kompaneets equation (1) satisfy

∂x

[

x4(∂xf + f + f2)
]

= 0 .

The boundary behavior we have already assumed implies that

∂xf + f + f2 = 0 .

Stationary solutions of the Kompaneets equation therefore have the form

f = fµ(x) =
1

ex+µ − 1
for some µ ≥ 0 .

These comprise the family of Bose-Einstein equilibria. The Planckian is
recovered when µ = 0.



It is natural to ask whether every solution of the Kompaneets equation
approaches one of these equilibria as t → ∞. If so, because N [f ] is
conserved, it would be natural to think that the solution associated with
initial data f in would approach fµ determined by

N [f in] = N [fµ] =

∫ ∞

0

1

ex+µ − 1
x2dx .

But N [fµ] is a strictly decreasing function of µ bounded above by N [f0]!
This picture is therefore clearly WRONG for any f in with N [f in] > N [f0],
and might even be wrong for some f in with N [f in] ≤ N [f0].

What went wrong? Do some f not approach an equilibrium? If so, do they
have dynamic long-time behavior or do they become singular? Are our as-
sumptions about the boundary behavior wrong? If so, is N [f ] conserved?



4. Quantum Entropy Structure

Another physical quantity is the quantum entropy (Helmholtz free energy)

H[f ] =
∫ ∞

0
h(f, x) x2 dx ,

where the entropy density is given by

h(f, x) = f log(f) − (1 + f) log(1 + f) + xf .

Because the partial derivatives of h(f, x) with respect to f are

hf(f, x) = log(f) − log(1 + f) + x = log

(

exf

1 + f

)

,

hff(f, x) =
1

f
−

1

1 + f
=

1

f(1 + f)
,

we see that H[f ] is a strictly convex function of f .



Because
δH[f ]

δf
= hf(f, x) and

∂xhf = hff∂xf + 1 =
1

f(1 + f)
(∂xf + f + f2) ,

we see that the Kompaneets equation (1) can be expressed as

∂tf =
1

x2
∂x

[

x4f(1 + f)∂x
δH[f ]

δf

]

.

Except for the factor (1 + f), this looks like the usual optimal transportion
equation associated with the gradient-flow of H[f ]! The factor (1 + f)

as well as the form of h(f, x) arises from the underlying Bose-Einstein
statistics. In other words, they arise from quantum mechanics.

Remark. In the Fermi-Dirac analog the factor (1 + f) becomes (1 − f)

while the entropy density becomes

h(f, x) = f log(f) + (1 − f) log(1 − f) + xf .



When we consider the evolution of H[f ] we find that

d

dt
H[f ] =

∫ ∞

0
hf ∂tf x2 dx

=

∫ ∞

0
hf ∂x

[

x4f(1 + f)∂xhf

]

dx

=

(

hf

[

x4f(1 + f)∂xhf

]

)

∣

∣

∣

∣

∣

∞

0

−
∫ ∞

0
x4f(1 + f)(∂xhf)

2 dx .

We might expect that

hf

[

x4f(1 + f)∂xhf

]

∣

∣

∣

∣

x=0
= hf

[

x4f(1 + f)∂xhf

]

∣

∣

∣

∣

x→∞
= 0 .

When that is the case we obtain the entropy dissipation relation

d

dt
H[f ] = −

∫ ∞

0
x4f(1 + f)(∂xhf)

2 dx .



This dissipation relation would rule out long-time behavior that is either
periodic, quasi-periodic, or almost periodic.

Moreover, for f > 0 one sees that the dissipation vanishes if and only if

∂xhf = ∂x log

(

exf

1 + f

)

= 0 ,

which is if and only if

f = fµ(x) =
1

ex+µ − 1
for some µ ≥ 0 .

This is an analog of the Boltzmann H-Theorem.

However, these assertions can be called into question if the above formal
calculation is not justified and H[f ] does not dissipate.



5. Classical Analog

The analog of the Kompaneets equation for classical statistics is

∂tf =
1

x2
∂x

[

x4(∂xf + f)
]

, f
∣

∣

∣

t=0
= f in .

Because this equation is linear, it can be understood much better than the
Kompaneets equation. Its associated entropy density is

H[f ] =

∫ 1

0
h(f, x)x2dx , where h(f, x) = f log(f) − f + xf .

It has the optimal transportation form

∂tf =
1

x2
∂x

[

x4f∂x
δH[f ]

δf

]

,

where
δH[f ]

δf
= hf(f, x) = log(f) + x = log(exf) .



Its family of equilibria is

fµ(x) = e−x−µ for µ ∈ R .

One can show that this linear initial-value problem is well-posed in the cone
of nonnegative densities f such that

∫ ∞

0
(exf)pe−xx2dx < ∞ for some p ∈ (1,∞) ,

or such that H[f ] < ∞. These solutions

• are smooth over R+ × R+ ,

• are positive over R+ × R+ provided f in 6= 0 ,

• satisfy all the expected boundary conditions ,

• conserve N [f ] and dissipate H[f ] as expected ,

• approach fµ as t → ∞ where N [f in] = N [fµ] .

In particular, no boundary condition needs to be imposed!



6. What is Happening: Bose-Einstein Condensation

The problem clearly arises from the quadratic quantum term. To see what
might be happening, let’s keep only that term. The Kompaneets equation
then becomes

∂tf =
1

x2
∂x

[

x4f2
]

, f
∣

∣

∣

t=0
= f in .

Introducing u = x2f , this becomes the inviscid Burgers equation

∂tu = ∂x

[

u2
]

= 2u∂xu , u
∣

∣

∣

t=0
= uin ,

where uin = x2f in. Its characteristic equations are

ẋ = −2u , u̇ = 0 .

Because u ≥ 0, no boundary condition is needed at the origin. Clearly
any nonzero viscosity solution will develop a nonzero flux of photons into
the origin in finite time. These photons cannot disappear! Rather, they
produce a “delta function” at the origin — a Bose-Einstein condensate.



If we only drop the ∂xf term then the Kompaneets equation becomes

∂tf =
1

x2
∂x

[

x4(f + f2)
]

, f
∣

∣

∣

t=0
= f in .

Again letting u = x2f and uin = x2f in, this becomes

∂tu = ∂x

[

x2u + u2
]

, u
∣

∣

∣

t=0
= uin .

This has the characteristic equations

ẋ = −x2 − 2u , u̇ = 2xu .

The addtional terms hasten the formation of the condensate.

The formation of a Bose-Einstein condensate means that the “expected”
boundary behavior of the solution at the origin breaks down.



Previous analytic studies of the Kompaneets equation studied its classical
solutions before the onset of the condensate:

• R. Caflisch and D.L. (1986)

• D.L. and O. Kavian (1990, unpublished)

• M. Escobedo, M.A. Herrero, and J.J.L. Velazquez (1998)

Approaches that treat the nonlinear term as a perturbation of the linear
ones can show that solutions can “blows up” out of spaces associated with
the linear problem, but are doomed to capture the condensate because
functions in those spaces have the “expected” boundary behavior at the
origin — which breaks down.



7. Results for a Model Problem

In order to better understand the phenomenon, H. Liu, R. Pego, and I have
been studying the Kompaneets equation with the f term dropped, namely

∂tf =
1

x2
∂x

[

x4(∂xf + f2)
]

, f
∣

∣

∣

t=0
= f in .

We do this over x ∈ [0,1] and impose the boundary condition

(∂xf + f2)
∣

∣

∣

x=1
= 0 .

The equilibria for this equation are

fµ(x) =
1

x + µ
for some µ ≥ 0 .

We posed the problem on a bounded interval to capture these. The hope
is that it will also capture the formation and evolution of condensates.



Again letting u = x2f and uin = x2f in, our model becomes

∂tu = ∂x

[

x2∂xu − 2xu + u2
]

, u
∣

∣

∣

t=0
= uin ,

considered over [0,1] with the boundary condition
[

∂xu − 2u + u2
]∣

∣

∣

x=1
= 0 .

The equilibria then have the form

uµ(x) =
x2

x + µ
for some µ ≥ 0 .

The entropy for this equation is

H[u] =

∫ 1

0

(

xu − x2 log(u)
)

dx .

We consider initial data uin ∈ L1([0,1],dx) such that uin(x) > 0 a.e.
and H[uin] < ∞.



We show there exists a unique solution that satisfies

d

dt

∫ 1

0+
udx = −u2

∣

∣

∣

x=0+
.

The number of photons in the condensate at time t is therefore
∫ t

0
u(0+, s)2ds .

Once a photon enters the condensate, it stays there.

We show that

d

dt
H[u] ≤ −

∫ 1

0+
u2

(

1 − ∂x

(

x2

u

))2

dx .

The entropy H[u] does not see the Bose-Einstein condensate.



Our approach is to pass to the ǫ → 0 limit in the weak formulation of the
regularized problem

∂tuǫ = ∂x

[

x2
ǫ ∂xuǫ − 2xǫuǫ + u2

ǫ

]

, u
∣

∣

∣

t=0
= uin ,

considered over [0,1] with the boundary conditions
[

x2
ǫ ∂xuǫ − 2xǫuǫ

]
∣

∣

∣

x=0
= 0 ,

[

x2
ǫ ∂xuǫ − 2xǫuǫ + u2

ǫ

]
∣

∣

∣

x=1
= 0 ,

where xǫ = x + ǫ and ǫ > 0. This problem has been constructed so that
it mimics the conservation and entropy structure of our model.

Passing to the limit requires estimates that you will be spared.



Our model problem is easier to analyze than the Kompaneets equation
because our regularized problem has the universal super-solution

wǫ(x, t) = xǫ +
1 − x

t
+ 2t−

1
2 .

Every solution uǫ of our regularized problem satisfies uǫ(x, t) < wǫ(x, t)

over x ∈ (0,1]. Upon passing to the limiting solution u we see that
∫ 1

0+
udx ≤

1

2
+

1

2t
+ 2t−

1
2 .

This shows that a Bose-Einstein condensate must develop in finite time for
any initial data uin such that

∫ 1

0+
uin dx >

1

2
.

Below this threshold a condensate will develop for some initial data, but not
for others. For example, no condensate develops if uin(x) ≤ x.



8. Conclusion

There is much more to do.

• Is there a sharper criterion for a Bose-Einstein condensate to develop?

• Do analogous results hold for the Kompaneets equation?

• Do analogous results hold for other Boson systems? (There have been
many recent related results, such as those of Xuguang Lu.)

• Are there numerical schemes that capture this phenomenon?

Thank You!


