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Portfolio Models II: Long Portfolios

Long Portfolio Constraint. Because the value of any portfolio with short
positions has the potential to go negative, many investors do not want to
hold a short position in any risky asset. For these investors we restrict
the optimization problem to so-called long portfolios by imposing the con-
straints f ≥ 0. Because these are inequality constraints, the resulting
optimization problem is not solved by Lagrange multipliers. Here we treat it
for cases when ff(µ0) ≥ 0 for some µ0. The frontier portfolio distribution
ff(µ) can be expressed as

ff(µ) = ff(µ0) +
µ − µ0

ν 2
as

V
−1
(

m − µmv1
)

.

Because 1TV−1
(

m − µmv1
)

= b − µmva = 0, and because 1 and m

are not co-linear, we see that the second term above has both positive and
negative entries whenever µ 6= µ0. Because ff(µ0) ≥ 0, the set of µ for
which ff(µ) ≥ 0 is satisfied must be a closed interval containing µ0.



Remark. It is often true that fmv ≥ 0 because the least risky position in a
healthy market generally does not require any assets to be held short. In
that case it is natural to take µ0 = µmv. However, it is false that fmv ≥ 0

for every positive definite V. Indeed, for the case N = 2 one has

V =

(

v11 v12
v12 v22

)

, V
−1 =

1

v11v22 − v 2
12

(

v22 −v12
−v12 v11

)

,

while fmv is a positive multiple of

V
−1

1 =
1

v11v22 − v 2
12

(

v22 − v12
v11 − v12

)

.

On one hand, V is positive definite if and only if v11 > 0, v22 > 0, and
v11v22 > v 2

12. On the other hand, if V is positive definite then V−11 has
nonnegative entries if and only if v11 ≥ v12 and v22 ≥ v12. You can find
positive definite matrices for which these conditions do not hold.



Long Frontier. The set of points in the σµ-plane that correspond to long
portfolios that have less volatility than every other long portfolio with the
same return rate mean is called the long frontier. Because the distribution
f of any long portfolio satisfies 1Tf = 1 and f ≥ 0 while its return rate
mean is given by µ = mTf , we see that µ must satisfy the bounds

µmn ≤ µ ≤ µmx ,

where

µmn = min{mi : i = 1, · · · , N} ,

µmx = max{mi : i = 1, · · · , N} .

It should also be clear to you that every point in [µmn, µmx] is the return
rate mean for some long portfolio. The long frontier is therefore given by
σ = σlf(µ) where the function σlf(µ) is only defined over [µmn, µmx].
As we will see, this function is given by a finite list of formulas that are
straightforward to obtain when N is not too large.



Because ff(µ0) ≥ 0, the distributions of those frontier portfolios that are
long portfolios are given by ff(µ) where µ ∈ [µ1, µ1] with

µ1 = max
{

µ ∈ R : ff(µ) ≥ 0 entrywise
}

,

µ1 = min
{

µ ∈ R : ff(µ) ≥ 0 entrywise
}

.

The long frontier coincides with the frontier for µ ∈ [µ1, µ1]. That is to say,

σlf(µ) = σf(µ) for µ ∈ [µ1, µ1] .

We can extend σlf(µ) to the interval [µmn, µmx] by an iterative process.
We will show how to do this for the right endpoint. The steps are analogous
for the left endpoint. We initialize the iteration by setting

m0 = m , V0 = V , σ
f0

(µ) = σf(µ) , f
f0

(µ) = ff(µ) .



Suppose we have extended σlf(µ) to an interval with right endpoint µk. If
µk = µmx then we are done. Otherwise, let the vector mk and matrix Vk

be obtained from mk−1 and Vk−1 by removing every entry with an index
corresponding to an entry of f

fk−1
(µk) that is zero. In other words, let mk

be the return rate mean vector and Vk be the return rate covariance matrix
after we drop from consideration every asset corresponding to an entry of
f
fk−1

(µk) that is zero. (Typically only one asset will be dropped each time.)

Let σ = σ
fk

(µ) be the frontier of this reduced portfolio. The dimension
of the associated frontier distribution f

fk
(µ) is less than that of f

fk−1
(µ) by

the number of zero entries of f
fk−1

(µk). The entries of f
fk
(µk) are exactly

the positive entries of f
fk−1

(µk). Therefore σ
fk
(µ) satisfies

σ
fk
(µk) = f

fk
(µk)

T
Vkffk

(µk)

= f
fk−1

(µk)
T
Vk−1ffk−1

(µk) = σ
fk−1

(µk) .



Because σ
fk

(µ) is associated with fewer assets, we also know that

σ
fk

(µ) ≥ σ
fk−1

(µ) for every µ .

Because these functions are equal at µ = µk, we conclude that moreover

σ′
fk

(µk) = σ′
fk−1

(µk) .

Now let

µk+1 = max
{

µ ∈ R : f
fk

(µ) ≥ 0 entrywise
}

.

Because f
fk

(µk) > 0, it is clear that µk+1 > µk. Finally, set

σlf(µ) = σ
fk
(µ) for µ ∈ [µk, µk+1] .

We have thereby extended σlf(µ) to an interval with right endpoint µk+1,
whereby we can return to the beginning of the iteration.



After applying the analogous iterative process to extend the left endpoint,
you find that σlf(µ) is expressed over [µmn, µmx] as the list function

σlf(µ) =



















σfk
(µ) for µ ∈ [µk+1, µk] ,

σf(µ) for µ ∈ [µ1, µ1] ,

σ
fk

(µ) for µ ∈ [µk, µk+1] .

This is strictly convex and continuously differentiable over [µmn, µmx]. Its
second derivative will have a jump discontinuity at each µk and µk that lies
in (µmn, µmx).

Remark. Here we will not show why the above algorithm for computing
σlf(µ) works. The proof is far more complicated than others in this course.
The algorithm is straightforward to implement when N is not too large.
When either N is large or no µ0 exists then σlf(µ) can be approximated
numerically using a primal-dual interior algorithm for convex optimization.
Such algorithms are taught in some graduate courses on optimization.



Long Frontier Portfolios. Associated with each of the distributions ffk
(µ)

and f
fk
(µ) of the reduced portfolios in the above construction we define

the distributions f fk
(µ) and f

fk
(µ) to be the N -vectors obtained by adding

zero entries corresponding to assets that are not held by the respective
reduced portfolios.

The distibutions associated with the long frontier portfolios are then given
over [µmn, µmx] by the list function

flf(µ) =



















f fk
(µ) for µ ∈ [µk+1, µk] ,

ff(µ) for µ ∈ [µ1, µ1] ,

f
fk

(µ) for µ ∈ [µk, µk+1] ,

This is continuous and piecewise linear over [µmn, µmx]. Its first derivative
will have a jump discontinuity at each µk and µk that lies in (µmn, µmx).



Because flf(µ) is continuous and piecewise linear over [µmn, µmx] with
nodes µk and µk in [µmn, µmx], it can be expressed in terms of the so-
called nodal portfolio distributions given by

fk = f fk
(µk) , fk = f

fk
(µk) .

Because

fk+1 = f fk
(µk+1) , fk+1 = f

fk
(µk+1) ,

by the two mutual fund property we have

f fk
(µ) =

µk+1 − µ

µk+1 − µk

fk +
µ − µk

µk+1 − µk

fk+1 ,

ff(µ) =
µ1 − µ

µ1 − µ1

f1 +
µ − µ1

µ1 − µ1

f1 ,

f
fk

(µ) =
µk+1 − µ

µk+1 − µk

fk +
µ − µk

µk+1 − µk

fk+1 .



General Portfolio with Two Risky Assets. Recall the portfolio of two risky
assets with mean vector m and covarience matrix V given by

m =

(

m1
m2

)

, V =

(

v11 v12
v12 v22

)

.

Here we will assume that m1 < m2, so that µmn = m1 and µmx = m2.
The frontier portfolios are

ff(µ) =
1

m2 − m1

(

m2 − µ

µ − m1

)

for µ ∈ R .

Clearly ff(µ) ≥ 0 if and only if µ ∈ [m1, m2] = [µmn, µmx]. Therefore

flf(µ) = ff(µ) for µ ∈ [m1, m2] ,

and the long frontier is determined by

σlf(µ) = σf(µ) =
√

ff(µ)TV ff(µ) for µ ∈ [m1, m2] .

In this case there is no need to construct σlf(µ) by the foregoing algorithm.



Simple Portfolio with Three Risky Assets. Recall the portfolio of three
risky assets with mean vector m and covarience matrix V given by

m =







m1
m2
m3






=







m − d

m

m + d






, V = s2







1 r r

r 1 r

r r 1






.

Here m ∈ R, d, s ∈ R+, and r ∈ (−1
2,1), where the last condition is

equivalent to the condition that V is positive definite given s > 0. Its
frontier parameters are

σmv =

√

1

a
= s

√

1 + 2r

3
, µmv =

b

a
= m ,

νas =

√

c −
b2

a
=

d

s

√

2

1 − r
.

Its minimum volatility portfolio is fmv = 1
31, whereby we can take µ0 = m.

Clearly [µmn, µmx] = [m − d, m + d].



Its frontier is determined by

σf(µ) = s

√

√

√

√

1 + 2r

3
+

1 − r

2

(

µ − m

d

)2

for µ ∈ (−∞,∞) ,

while the distribution of the frontier portfolio with return rate mean µ is

ff(µ) =













1
3 − µ−m

2d
1
3

1
3 + µ−m

2d













=













m+2
3d−µ

2d
1
3

µ−m+2
3d

2d













.

The frontier portfolio holds long postitions when µ ∈ (m − 2
3d, m + 2

3d).
Therefore [µ1, µ1] = [m − 2

3d, m + 2
3d] and the long frontier satisfies

σlf(µ) = σf(µ) for µ ∈ [m − 2
3d, m + 2

3d] .

The distribution weight of first asset vanishes at the right endpoint while
that of the third vanishes at the left endpoint.



In order to extend the long frontier beyond the right endpoint µ1 = m+ 2
3d

to µmx = m + d we reduce the portfolio by removing the first asset and
set

m1 =

(

m2
m3

)

=

(

m

m + d

)

, V1 = s2
(

1 r

r 1

)

.

Then

V
−1
1 =

1

s2(1 − r2)

(

1 −r

−r 1

)

, V
−1
1 1 =

1

s2(1 + r)
1 ,

whereby

a1 = 1
T
V

−1
1 1 =

2

s2(1 + r)
, b1 = 1

T
V

−1
1 m1 =

2m + d

s2(1 + r)
,

c1 = m
T
1V

−1
1 m1 =

2m(m + d)

s2(1 + r)
+

d2

s2(1 − r2)
.



The associated frontier parameters are

σmv1
=

√

1

a1
= s

√

1 + r

2
, µmv1

=
b1

a1
= m + 1

2d ,

νas1
=

√

√

√

√

c1 −
b
2
1

a1
=

d

2s

√

2

1 − r
,

whereby the frontier of the reduced portfolio is given by

σ
f1

(µ) = s

√

√

√

√

√

1 + r

2
+

1 − r

2

(

µ − m − 1
2d

1
2d

)2

.

Similarly, to extend beyond the left endpoint we remove the third asset and
find that the frontier of the reduced portfolio is given by

σf1
(µ) = s

√

√

√

√

√

1 + r

2
+

1 − r

2

(

µ − m + 1
2d

1
2d

)2

.



By putting these pieces together we see that the long frontier is given by

σlf(µ) =



















































s

√

√

√

√

1 + r

2
+

1 − r

2

(

µ−m+1
2d

1
2d

)2

for µ ∈ [m − d, m − 2
3d] ,

s

√

1 + 2r

3
+

1 − r

2

(

µ−m
d

)2
for µ ∈ [m − 2

3d, m + 2
3d] ,

s

√

√

√

√

1 + r

2
+

1 − r

2

(

µ−m−1
2d

1
2d

)2

for µ ∈ [m + 2
3d, m + d] .

This is strictly convex and continuously differentiable over [m − d, m + d].
Its second derivative is defined and positive everywhere in [m− d, m + d]

except at the points µ = m ± 2
3d where it has jump discontinuities. We

have

σlf(m ± 2
3d) = s

√

5 + 4r

9
, σlf(m ± d) = s .



Finally, the long frontier distributions are given by

flf(µ) =



























































































m−µ
d

µ−m+d
d

0









for µ ∈ [m − d, m − 2
3d] ,









1
3 − µ−m

2d
1
3

1
3 + µ−m

2d









for µ ∈ [m − 2
3d, m + 2

3d] ,









0
m+d−µ

d
µ−m

d









for µ ∈ [m + 2
3d, m + d] .

Notice that the distribution weights do not depend on either s or r. They are
continuous and piecewise linear over [m−d, m+d]. Their first derivatives
are defined everywhere in [m−d, m+d] except at the points µ = m± 2

3d

where they have jump discontinuities.



Exercise. Find a 2×2 positive definite matrix V such that the vector V−11

has a negative entry.

Exercise. Consider the following groups of assets:

(a) Google, Microsoft, Exxon-Mobil, UPS, GE, and Ford stock in 2009;

(b) Google, Microsoft, Exxon-Mobil, UPS, GE, and Ford stock in 2007;

(c) S&P 500 and Russell 1000 and 2000 index funds in 2009;

(d) S&P 500 and Russell 1000 and 2000 index funds in 2007.

For group (a), group (c), and groups (a) and (c) combined, determine if
ff(µ0) ≥ 0 for some µ0. If so, add plots of the associated long frontiers
to the graph you produced for these assets in the last exercise of the last
section. (Use daily data.) Do the same thing for groups (b) and (d). Explain
any relationships you see between the objects plotted on each graph. For
which of these groupings is fmv ≥ 0? Compute flf(µ) for each of these
groupings, identifying the nodal portfolios.


