
Solutions to Final Exam Sample Problems, Math 246, Fall 2012

(1) Consider the differential equation
dy

dt
= (9− y2)y2.

(a) Identify its equilibrium (stationary) points and classify their stability.
(b) Sketch how solutions move in the interval −5 ≤ y ≤ 5 (its phase-line portrait).
(c) If y(0) = −1, how does the solution y(t) behave as t→∞?

Solution (a,b). The right-hand side factors as (3 + y)(3 − y)y2. The stationary
solutions are y = −3, y = 0, and y = 3. A sign analysis of (3 + y)(3 − y)y2 shows
that the phase-line portrait for this equation is therefore

− + + −
←←←← • →→→→ • →→→→ • ←←←← y

−3 0 3
unstable semistable stable

Solution (c). The phase-line shows that if y(0) = −1 then y(t)→ 0 as t→∞.

(2) Solve (possibly implicitly) each of the following initial-value problems. Identify their
intervals of definition.

(a)
dy

dt
+

2ty

1 + t2
= t2 , y(0) = 1 .

(b)
dy

dx
+

exy + 2x

2y + ex
= 0 , y(0) = 0 .

Solution (a). This equation is linear and is already in normal form. An integrating
factor is

exp

(
∫ t

0

2s

1 + s2
ds

)

= exp
(

log(1 + t2)
)

= 1 + t2 ,

so that the integrating factor form is

d

dt

(

(1 + t2)y
)

= (1 + t2)t2 = t2 + t4 .

Integrate this to obtain

(1 + t2)y = 1
3
t3 + 1

5
t5 + c .

The initial condition y(0) = 1 implies that c = (1+02) · 1− 1
3
03− 1

5
05 = 1. Therefore

y =
1 + 1

3
t3 + 1

5
t5

1 + t2
.

This solution exists for every t, so its interval of definition is (−∞,∞).

Remark. Because this equation is linear, you can see that the interval of definition
of its solution is (−∞,∞) without solving it because both its coefficient and forcing
are continuous over (−∞,∞).

Solution (b). The initial-value problem is

dy

dx
+

exy + 2x

2y + ex
= 0 , y(0) = 0 .
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Express this equation in the differential form

(exy + 2x) dx + (2y + ex) dy = 0 .

This differential form is exact because

∂y(e
xy + 2x) = ex = ∂x(2y + ex) = ex .

Therefore we can find H(x, y) such that

∂xH(x, y) = exy + 2x , ∂yH(x, y) = 2y + ex .

The first equation implies H(x, y) = exy + x2 + h(y). Plugging this into the second
equation gives

ex + h′(y) = 2y + ex ,

which yields h′(y) = 2y. Taking h(y) = y2, the general solution is

exy + x2 + y2 = c .

The initial condition y(0) = 0 implies that c = e0 · 0 + 02 + 02 = 0. Therefore

y2 + exy + x2 = 0 .

The quadratic formula then yields the explicit solution

y =
−ex +

√
e2x − 4x2

2
.

Here the positive square root is taken because that solution satisfies the initial con-
dition. Its interval of definition is the largest interval (xL, xR) containing the initial
time 0 over which e2x > 4x2. You cannot find the endpoints of this interval explicitly.

(3) Consider the following MATLAB function M-file.

function [t,y] = solveit(ti, yi, tf, n)
t = zeros(n + 1, 1); y = zeros(n + 1, 1);
t(1) = ti; y(1) = yi; h = (tf - ti)/n;
for i = 1:n
t(i + 1) = t(i) + h; y(i + 1) = y(i) + h*((t(i))̂ 4 + (y(i))̂ 2);
end

Suppose that the input values are ti = 1, yi = 1, tf = 5, and n = 40.
(a) What is the initial-value problem being approximated numerically?
(b) What is the numerical method being used?
(c) What is the timestep (step size)?
(d) What are the output values for the first two approximations, y(2) and y(3)?

Solution (a). The initial-value problem being approximated numerically is

dy

dt
= t4 + y2 , y(1) = 1 .

Solution (b). The forward Euler (explicit Euler) method is being used.

Solution (c). The time step is

h =
tF− tI

n
=

5− 1

40
=

4

40
=

1

10
= .1 .
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Solution (d). By carrying out the “for” loop in the MATLAB code for i = 1 and
i = 2 you obtain the output values

t(2) = t(1) + h = 1 + .1 = 1.1 ,

y(2) = y(1) + h*((t(1))̂ 4 + (y(1))̂ 2) = 1 + .1(14 + 12) = 1 + .1 · 2 = 1.2 .

t(3) = t(2) + h = 1.1 + .1 = 1.2 ,

y(3) = y(2) + h*((t(2))̂ 4 + (y(2))̂ 2) = 1.2 + .1
(

(1.1)4 + (1.2)2
)

.

You DO NOT have to work out the arithmetic to compute y(3)! If you did then you
would obtain y(3) = 1.49041.

Remark. You should be able to answer similar questions that employ the improved
Euler (Runge trapeziodal) method.

(4) Give an explicit real-valued general solution of the following equations.
(a) y′′ − 2y′ + 5y = tet + cos(2t)
(b) u′′ − 3u′ − 10u = te−2t

(c) v′′ + 9v = cos(3t)

Solution (a). This is a constant coefficient, nonhomogeneous, linear equation. Its
characteristic polynomial is

p(z) = z2 − 2z + 5 = (z − 1)2 + 4 = (z − 1)2 + 22 .

This has the conjugate pair of roots 1 ± i2, which yields a general solution of the
associated homogeneous problem

yH(t) = c1e
t cos(2t) + c2e

t sin(2t) .

A particular solution yP (t) can be found by either the method of Key Identity Evalua-
tions or the method of Undetermined Coefficients. The characteristics of the forcing
terms tet and cos(2t) are r + is = 1 and r + is = i2 respectively. Because these
characteristics are different, they should be treated separately.

Key Indentity Evaluations. The forcing term t et has degree d = 1 and charac-
teristic r + is = 1, which is a root of p(z) of multiplicity m = 0. Because m = 0 and
m + d = 1, we need the Key Identity and its first derivative

L(ezt) = (z2 − 2z + 5)ezt ,

L(t ezt) = (z2 − 2z + 5)t ezt + (2z − 2) ezt .

Evaluate these at z = 1 to find L(et) = 4et and L(t et) = 4t et. Dividing the second
of these equations by 4 yields L(1

4
t et) = t et, which implies yP1(t) = 1

4
t et.

The forcing term cos(2t) has degree d = 0 and characteristic r + is = i2, which is
a root of p(z) of multiplicity m = 0. Because m = m + d = 0, we only need the Key
Identity,

L(ezt) = (z2 − 2z + 5)ezt .

Evaluating this at z = i2 to find L(ei2t) = (1− i4)ei2t and dividing by 1− i4 yeilds

L

(

ei2t

1− i4

)

= ei2t .
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Because cos(2t) = Re(ei2t), the above equation implies

yP2(t) = Re

(

ei2t

1− i4

)

= Re

(

(1 + i4)ei2t

12 + 42

)

= 1
17

Re
(

(1 + i4)ei2t
)

= 1
17

(

cos(2t)− 4 sin(2t)
)

.

Combining these two particular solutions with the general solution of the associated
homogeneous problem found earlier yields the general solution

y = yH(t) + yP1(t) + yP2(t)

= c1e
t cos(2t) + c2e

t sin(2t) + 1
4
t et + 1

17
cos(2t)− 4

17
sin(2t) .

Undetermined Coefficients. The forcing term t et has degree d = 1 and charac-
teristic r + is = 1, which is a root of p(z) of multiplicity m = 0. Because m = 0 and
m + d = 1, we seek a particular solution of the form

yP1(t) = A0t et + A1e
t .

Because

y′

P1(t) = A0t et + (A0 + A1)e
t , y′′

P1(t) = A0t et + (2A0 + A1)e
t ,

we see that

LyP1(t) = y′′

P1(t)− 2y′

P1(t) + 5yP1(t)

=
(

A0t et + (2A0 + A1)e
t
)

− 2
(

A0t et + (A0 + A1)e
t
)

+ 5
(

A0t et + A1e
t
)

= 4A0t et + 4A1e
t .

Setting 4A0t et + 4A1e
t = t et, we see that 4A0 = 1 and 4A1 = 0, whereby A0 = 1

4

and A1 = 0. Hence, a particular solution is yP1(t) = 1
4
t et.

The forcing term cos(2t) has degree d = 0 and characteristic r + is = i2, which
is a root of p(z) of multiplicity m = 0. Because m = 0 and m + d = 0, we seek a
particular solution of the form

yP2(t) = A cos(2t) + B sin(2t) .

Because
y′

P2(t) = −2A sin(2t) + 2B cos(2t) ,

y′′

P2(t) = −4A cos(2t)− 4B sin(2t) ,

we see that

LyP2(t) = y′′

P2(t)− 2y′

P2(t) + 5yP2(t)

=
(

− 4A cos(2t)− 4B sin(2t)
)

− 2
(

− 2A sin(2t) + 2B cos(2t)
)

+ 5
(

A cos(2t) + B sin(2t)
)

= (A− 4B) cos(2t) + (B + 4A) sin(2t) .

Setting (A− 4B) cos(2t) + (B + 4A) sin(2t) = cos(2t), we see that

A− 4B = 1 , B + 4A = 0 .
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This system can be solved by any method you choose to find A = 1
17

and B = − 4
17

,
whereby a particular solution is

yP2(t) = 1
17

cos(2t)− 4
17

sin(2t) .

Combining these two particular solutions with the general solution of the associated
homogeneous problem found earlier yields the general solution

y = yH(t) + yP1(t) + yP2(t)

= c1e
t cos(2t) + c2e

t sin(2t) + 1
4
t et + 1

17
cos(2t)− 4

17
sin(2t) .

Solution (b). The equation is

u′′ − 3u′ − 10u = te−2t .

This is a constant coefficient, nonhomogeneous, linear equation. Its characteristic
polynomial is

p(z) = z2 − 3z − 10 = (z − 5)(z + 2) .

This has the two real roots 5 and −2, which yields a general solution of the associated
homogeneous problem

uH(t) = c1e
5t + c2e

−2t .

A particular solution uP (t) can be found by either the method of Key Identity Eval-
uations or the method of Undetermined Coefficients.

Key Indentity Evaluations. The forcing term t e−2t has degree d = 1 and charac-
teristic r + is = −2, which is a root of p(z) of multiplicity m = 1. Because m = 1
and m+d = 2, we will need the first and second derivative of the Key Identity, which
are computed from the Key Identity as

L(ezt) = (z2 − 3z − 10) ezt ,

L(t ezt) = (z2 − 3z − 10) t ezt + (2z − 3) ezt ,

L(t2ezt) = (z2 − 3z − 10) t2ezt + 2(2z − 3) t ezt + 2 ezt .

Evaluate the last two of these at z = −2 to find

L(t e−2t) = −7e−2t , L(t2e−2t) = −14t e−2t + 2e−2t .

By adding 2
7

of the first to the second we get

L
(

t2e−2t + 2
7
t e−2t

)

= −14t e−2t .

By dividing this by −14 we obtain

L
(

− 1
14

t2e−2t − 2
98

t e−2t
)

= t e−2t ,

whereby a particular solution is

uP (t) = − 1
14

t2e−2t − 2
98

t e−2t .

Therefore a general solution is

u(t) = uH(t) + uP (t) = c1e
5t + c2e

−2t − 1
14

t2e−2t − 2
98

t e−2t .



6

Undetermined Coefficients. The forcing term t e−2t has degree d = 1 and char-
acteristic r + is = −2, which is a root of p(z) of multiplicity m = 1. Because m = 1
and m + d = 2, we seek a particular solution of the form

uP (t) = A0t
2e−2t + A1t e−2t .

Because

u′

P (t) = −2A0t
2e−2t + (2A0 − 2A1)t e−2t + A1e

−2t ,

u′′

P (t) = 4A0t
2e−2t + (−8A0 + 4A1)t e−2t + (2A0 − 4A1)e

−2t ,

we see that

LuP (t) = u′′

P (t)− 3u′

P (t)− 10uP (t)

=
(

4A0t
2e−2t + (−8A0 + 4A1)t e−2t + (2A0 − 4A1)e

−2t
)

− 3
(

− 2A0t
2e−2t + (2A0 − 2A1)t e−2t + A1e

−2t
)

− 10
(

A0t
2e−2t + A1t e−2t

)

= −14A0t e−2t + (2A0 − 7A1)e
−2t .

By setting −14A0t e−2t + (2A0 − 7A1)e
−2t = t e−2t we see that

−14A0 = 1 , 2A0 − 7A1 = 0 .

This system can be solved by any method you choose to find A0 = − 1
14

and A1 = − 2
98

,
whereby a particular solution is

uP (t) = − 1
14

t2e−2t − 2
98

t e−2t .

Therefore a general solution is

u(t) = uH(t) + uP (t) = c1e
5t + c2e

−2t − 1
14

t2e−2t − 2
98

t e−2t .

Solution (c). The equation is

v′′ + 9v = cos(3t) .

This is a constant coefficient, nonhomogeneous, linear equation. Its characteristic
polynomial is

p(z) = z2 + 9 = z2 + 32 .

This has the conjugate pair of roots ±i3, which yields a general solution of the
associated homogeneous problem

vH(t) = c1 cos(3t) + c2 sin(3t) .

A particular solution vP (t) can be found by either the method of Key Identity Eval-
uations or the method of Undetermined Coefficients.

Key Indentity Evaluations. The forcing term cos(3t) has degree d = 0 and
characteristic r + is = i3, which is a root of p(z) of multiplicity m = 1. Because
m = 1 and m+d = 1, we need the first derivative of the Key Identity, which is found
as

L(ezt) = (z2 + 9) ezt ,

L(t ezt) = (z2 + 9) t ezt + 2z ezt .
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Evaluate the first derivative of the Key Identity at z = i3 to find that

L(t ei3t) = i6 ei3t .

Because cos(3t) = Re(ei3t), upon dividing by i6 and taking the real part you see that
a particular solution is

vP (t) = Re
(

1
i6

t ei3t
)

= Re
(

1
i6

t (cos(3t) + i sin(3t))
)

= 1
6
t sin(3t) .

Therefore a general solution is

v(t) = vH(t) + vP (t) = c1 cos(3t) + c2 sin(3t) + 1
6
t sin(3t) .

Undetermined Coefficients. The forcing term cos(3t) has degree d = 0 and
characteristic r + is = i3, which is a root of p(z) of multiplicity m = 1. Because
m = 1 and m + d = 1, we seek a particular solution of the form

vP (t) = At cos(3t) + Bt sin(3t) .

Because

v′

P (t) = −3At sin(3t) + 3Bt cos(3t)A cos(3t) + B sin(3t) ,

v′′

P (t) = −9At cos(3t)− 9Bt sin(3t)− 6A sin(3t) + 6B cos(3t) ,

we see that

LvP (t) = v′′

P (t) + 9vP (t)

=
(

− 9At cos(3t)− 9Bt sin(3t)− 6A sin(3t) + 6B cos(3t)
)

+ 9
(

At cos(3t) + Bt sin(3t)
)

= −6A sin(3t) + 6B cos(3t) .

By setting −6A sin(3t)+6B cos(3t) = cos(3t) we see that A = 0 and B = 1
6
, whereby

a particular solution is

vP (t) = 1
6
t sin(3t) .

Therefore a general solution is

v(t) = vH(t) + vP (t) = c1 cos(3t) + c2 sin(3t) + 1
6
t sin(3t) .

Remark. Because of the simple form of this equation, if you had tried to solve
it by either the Green Function or Variation of Parameters method then integrals
that arise are not too difficult. However, it is not generally a good idea to use these
methods for such problems because evaluating the integrals that arise often involve
much more work that the methods shown above.

(5) Solve the following initial-value problems.
(a) w′′ + 4w′ + 20w = 5e2t, w(0) = 3 , w′(0) = −7.

(b) y′′ − 4y′ + 4y =
e2t

3 + t
, y(0) = 0 , y′(0) = 5.

(c) tu′′ + 4u′ = 0, u(1) = 2 , u′(1) = −3.
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You should try to evaluate any definite integrals that arise.

Solution (a). This is a constant coefficient, nonhomogeneous, linear equation. Its
characteristic polynomial is

p(z) = z2 + 4z + 20 = (z + 2)2 + 16 = (z + 2)2 + 42 .

This has the conjugate pair of roots −2 ± i4, which yields a general solution of the
associated homogeneous problem

wH(t) = c1e
−2t cos(4t) + c2e

−2t sin(4t) .

A particular solution wP (t) can be found by either the method of Key Identity Eval-
uations or the method of Undetermined Coefficients.

Key Indentity Evaluations. The forcing term 5e2t has degree d = 0 and charac-
teristic r + is = 2, which is a root of p(z) of multiplicity m = 0. Because m = 0 and
m + d = 0, we only need the Key Identity,

L(ezt) = (z2 + 4z + 20) ezt .

Evaluate this at z = 2 to find that

L(e2t) = (4 + 8 + 20)e2t = 32e2t .

Upon multiplying this by 5
32

we see that a particular solution is

wP (t) = 5
32

e2t .

Undetermined Coefficients. The forcing term 5e2t has degree d = 0 and charac-
teristic r + is = 2, which is a root of p(z) of multiplicity m = 0. Therefore we seek a
particular solution of the form

wP (t) = Ae2t .

Because
w′

P (t) = 2Ae2t , w′′

P (t) = 4Ae2t ,

we see that

LwP (t) = w′′

P (t) + 4w′

P (t) + 20wP (t)

= 4Ae2t + 4(2Ae2t) + 20Ae2t = 32Ae2t .

By setting 32Ae2t = 5e2t, we see that A = 5
32

, whereby a particular solution is

wP (t) = 5
32

e2t .

Solving the Initial-Value Problem. By either method we find that a general
solution is

w(t) = wH(t) + wP (t) = c1e
−2t cos(4t) + c2e

−2t sin(4t) + 5
32

e2t .

Because

w′(t) = −2c1e
−2t cos(4t)− 4c1e

−2t sin(4t)

− 2c2e
−2t sin(4t) + 4c2e

−2t cos(4t) + 5
16

e2t ,

the initial conditions yield

3 = w(0) = c1 + 5
32

, −7 = w′(0) = −2c1 + 4c2 + 5
16

.
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Upon solving this system we find that c1 = 91
32

and c2 = −13
32

, whereby the solution
of the initial-value problem is

w(t) = 91
32

e−2t cos(4t)− 13
32

e−2t sin(4t) + 5
32

e2t .

Solution (b). The initial-value problem is

y′′ − 4y′ + 4y =
e2t

3 + t
, y(0) = 0 , y′(0) = 5 .

This is a constant coefficient, nonhomogeneous, linear equation in normal form. Its
characteristic polynomial is

p(z) = z2 − 4z + 4 = (z − 2)2 .

This has the double real root 2, which yields a general solution of the associated
homogeneous problem

yH(t) = c1e
2t + c2t e2t .

A particular solution yP (t) cannot be found by either the method of Key Identity
Evaluations or the method of Undetermined Coefficients. Rather, we must use either
the Green Function or the Variation of Parameters method.

Green Function. The associated Green function g(t) satisfies

g′′ − 4g′ + 4g = 0 , g(0) = 0 , g′(0) = 1 .

A general solution of this equation is

g(t) = c1e
2t + c2t e2t .

Because 0 = g(0) = c1, we see that g(t) = c2t e2t. Then

g′(t) = c2e
2t + 2c2t e2t .

Because 1 = g′(0) = c2, the Green function is g(t) = t e2t. The particular solution
yP (t) that satisfies yP (0) = y′

P (0) = 0 is given by

yP (t) =

∫ t

0

g(t− s)
e2s

3 + s
ds =

∫ t

0

(t− s)e2t−2s e2s

3 + s
ds

= e2t

∫ t

0

t− s

3 + s
ds = e2tt

∫ t

0

1

3 + s
ds− e2t

∫ t

0

s

3 + s
ds .

Because
∫ t

0

1

3 + s
ds = log(3 + s)

∣

∣

∣

t

0
= log(3 + t)− log(3) = log

(

3 + t

3

)

,

∫ t

0

s

3 + s
ds =

∫ t

0

1− 3

3 + s
ds = t− 3 log

(

3 + t

3

)

,

we find that

yP (t) = e2tt log(1 + 1
3
t)− e2t

(

t− 3 log(1 + 1
3
t)

)

.

Therefore a general solution of the equation is

y(t) = c1e
2t + c2t e2t + yP (t) .
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Because

y′(t) = 2c1e
2t + 2c2t e2t + c2e

2t + y′

P (t) ,

and because yP (0) = y′

P (0) = 0, the initial conditions imply

0 = y(0) = c1 , 5 = y′(0) = 2c1 + c2 .

We find that c1 = 0 and c2 = 5, whereby the solution of the initial-value problem is

y(t) = 5t e2t + e2tt log(1 + 1
3
t)− e2t

(

t− 3 log(1 + 1
3
t)

)

.

Variation of Parameters. The equation is already in normal form. We therefore
seek a particular solution of the form

yP (t) = e2tu1(t) + t e2tu2(t) ,

such that
e2tu′

1(t) + t e2tu′

2(t) = 0 ,

2e2tu′

1(t) + (2t e2t + e2t)u′

2(t) =
e2t

3 + t
.

This system can be solved to find that

u′

1(t) = − t

3 + t
, u′

2(t) =
1

3 + t
.

These can be integrted to obtain

u1(t) = −
∫

t

3 + t
dt = −

∫

1− 3

3 + t
dt = −t + 3 log(3 + t) + c1 ,

u2(t) =

∫

1

3 + t
dt = log(3 + t) + c2 ,

whereby a general solution is

y(t) = c1e
2t − e2t

(

t− 3 log(3 + t)
)

+ c2t e2t + t e2t log(3 + t) .

Because

y′(t) = 2c1e
2t − 2e2t

(

t− 3 log(3 + t)
)

− e2t

(

1− 3

3 + t

)

+ 2c2t e2t + c2e
2t + 2t e2t log(3 + t) + e2t log(3 + t) + t e2t 1

3 + t
,

the initial conditions imply that

0 = y(0) = c1 + 3 log(3) ,

5 = y′(0) = 2c1 + 6 log(3) + c2 + log(3) .

We can solve this system to find that c1 = −3 log(3) and c2 = 5− log(3). Therefore
the solution of the initial-value problem is

y(t) = −3 log(3)e2t − e2t
(

t− 3 log(3 + t)
)

+
(

5− log(3)
)

t e2t + t e2t log(3 + t) .

Solution (c). The initial-value problem is

tu′′ + 4u′ = 0 , u(1) = 2 , u′(1) = −3 .
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This is a variable coefficient, homogeneous, second-order linear equation. Because it
does not depend explictly on u, we can reduce its order by setting w = u′. Then w

satisfies the initial-value problem

tw′ + 4w = 0 , w(1) = −3 .

This is a variable coefficient, homogeneous, first-order linear equation. Its normal
form is

w′ +
4

t
w = 0 , w(1) = −3 .

By setting

A(t) =

∫ t

1

4

s
ds = 4 log(s)

∣

∣

∣

t

1
= 4 log(t)− 4 log(1) = 4 log(t) ,

the solution of the initial-value problem for w is

w(t) = w(1)e−A(t) = −3e−4 log(t) = −3t−4 .

Then because u′ = w and u(1) = 2 we see that

u(t) = u(1) +

∫ t

1

w(s) ds = 2− 3

∫ t

1

s−4 ds = 2 +
[

s−3
]

∣

∣

∣

t

1
= 2 + t−3 − 1 = 1 + t−3 .

The interval of definition for this solution is (0,∞), which can be seen by putting the
original initial-value problem into normal form.

(6) Give an explicit general solution of the equation

h′′ + 2h′ + 5h = 0 .

Sketch a typical solution for t ≥ 0. If this equation governs a damped spring-mass
system, is the system over, under, or critically damped?

Solution. This is a constant coefficient, homogeneous, linear equation. Its charac-
teristic polynomial is

p(z) = z2 + 2z + 5 = (z + 1)2 + 22 .

This has the conjugate pair of roots −1± i2, which yields a general solution

h(t) = c1e
−t cos(2t) + c2e

−t sin(2t) .

When c 2
1 + c 2

2 > 0 this can be put into the amplitute-phase form

h(t) = Ae−t cos(2t− δ) ,

where A > 0 and 0 ≤ δ < 2π are determined from c1 and c2 by

A =
√

c 2
1 + c 2

2 , cos(δ) =
c1

A
, sin(δ) =

c2

A
.

In other words, (A, δ) are the polar coordinates for the point in the plane whose
Cartesian coordinates are (c1, c2). The sketch should show a decaying oscillation
with amplitude Ae−t and quasiperiod 2π

2
= π. A sketch might be given during the

review session. The equation governs an under damped spring-mass system because
its characteristic polynomial has a conjugate pair of roots.
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(7) When a mass of 2 kilograms is hung vertically from a spring, it stretches the spring
0.5 meters. (Gravitational acceleration is 9.8 m/sec2.) At t = 0 the mass is set in
motion from 0.3 meters below its equilibrium (rest) position with a upward velocity of
2 m/sec. It is acted upon by an external force of 2 cos(5t). Neglect drag and assume
that the spring force is proportional to its displacement. Formulate an initial-value
problem that governs the motion of the mass for t > 0. (DO NOT solve this initial-
value problem; just write it down!)

Solution. Let h(t) be the displacement (in meters) of the mass from its equilibrium
(rest) position at time t (in seconds), with upward displacements being positive. The
governing initial-value problem then has the form

m
d2h

dt2
+ kh = 2 cos(5t) , h(0) = −.3 , h′(0) = 2 ,

where m is the mass and k is the spring constant. The problem says that m = 2
kilograms. The spring constant is obtained by balancing the weight of the mass (mg

= 2 · 9.8 Newtons) with the force applied by the spring when it is stetched .5 m.
This gives k .5 = 2 · 9.8, or

k =
2 · 9.8

.5
= 4 · 9.8 Newtons/m .

The governing initial-value problem is therefore

2
d2h

dt2
+ 4 · 9.8h = 2 cos(5t) , h(0) = −.3 , h′(0) = 2 .

Had you chosen downward displacements to be positive then the sign of the initial
data would change! You should make your convention clear!

(8) Find the Laplace transform Y (s) of the solution y(t) to the initial-value problem

y′′ + 4y′ + 8y = f(t) , y(0) = 2 , y′(0) = 4 .

where

f(t) =

{

4 for 0 ≤ t < 2 ,

t2 for 2 ≤ t .

You may refer to the Laplace table in the book. (DO NOT take the inverse Laplace
transform to find y(t); just solve for Y (s)!)

Solution. The Laplace transform of the initial-value problem is

L[y′′](s) + 4L[y′](s) + 8L[y](s) = L[f ](s) ,

where

L[y](s) = Y (s) ,

L[y′](s) = sY (s)− y(0) = sY (s)− 2 ,

L[y′′](s) = s2Y (s)− sy(0)− y′(0) = s2Y (s)− 2s− 4 .

To compute L[f ](s), first write f as

f(t) =
(

1− u(t− 2)
)

4 + u(t− 2)t2 = 4− u(t− 2)4 + u(t− 2)t2

= 4 + u(t− 2)(t2 − 4) = 4 + u(t− 2)j(t− 2) ,
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where
j(t) = (t + 2)2 − 4 = t2 + 4t .

Referring to the table of Laplace transforms in the book, item 13 with c = 2 and
f(t) = j(t), item 1, and item 3 with n = 1 and n = 2 then show that

L[f ](s) = 4L[1](s) + L
[

u(t− 2)j(t− 2)
]

(s)

= 4L[1](s) + e−2sL
[

j(t)
]

(s)

= 4L[1](s) + e−2sL[4t + t2](s)

= 4L[1](s) + 4e−2sL[t](s) + e−2sL[t2](s)

= 4
1

s
+ 4e−2s 1

s2
+ e−2s 2

s3
.

The Laplace transform of the initial-value problem then becomes
(

s2Y (s)− 2s− 4
)

+ 4
(

sY (s)− 2
)

+ 8Y (s) =
4

s
+ e−2s 4

s2
+ e−2s 2

s3
,

which becomes

(s2 + 4s + 8)Y (s)− 2s− 12 =
4

s
+ e−2s 4

s2
+ e−2s 2

s3
.

Hence, Y (s) is given by

Y (s) =
1

s2 + 4s + 8

(

2s + 12 +
4

s
+ e−2s 4

s2
+ e−2s 2

s3

)

.

(9) Find the function y(t) whose Laplace transform Y (s) is given by

(a) Y (s) =
e−3s4

s2 − 6s + 5
, (b) Y (s) =

e−2ss

s2 + 4s + 8
.

You may refer to the table in Section 6.2 of the book.

Solution (a). The denominator factors as (s − 5)(s − 1), so the partial fraction
decomposition is

4

s2 − 6s + 5
=

4

(s− 5)(s− 1)
=

1

s− 5
− 1

s− 1
.

Referring to the table of Laplace transforms in the book, item 11 with n = 0 and
a = 5, and with n = 0 and a = 1 gives

L−1

[

1

s− 5

]

(t) = e5t , L−1

[

1

s− 1

]

(t) = et ,

whereby

L−1

[

4

s2 − 6s + 5

]

(t) = L−1

[

1

s− 5
− 1

s− 1

]

= e5t − et .

It follows from item 13 with c = 3 and f(t) = e5t − et that

y(t) = L−1[Y (s)](t) = L−1

[

e−3s4

s2 − 6s + 5

]

(t)

= u(t− 3)L−1

[

4

s2 − 6s + 5

]

(t− 3) = u(t− 3)
(

e5(t−3) − et−3
)

.
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Solution (b). The denominator does not have real factors. The partial fraction
decomposition is

s

s2 + 4s + 8
=

s

(s + 2)2 + 4
=

s + 2

(s + 2)2 + 22
− 2

(s + 2)2 + 22
.

Referring to the table of Laplace transforms in the book, items 10 and 9 with a = −2
and b = 2 give

L−1

[

s + 2

(s + 2)2 + 22

]

(t) = e−2t cos(2t) , L−1

[

2

(s + 2)2 + 22

]

(t) = e−2t sin(2t) ,

whereby

L−1

[

s

s2 + 4s + 8

]

(t) = L−1

[

s + 2

(s + 2)2 + 22

]

(t)− L−1

[

2

(s + 2)2 + 22

]

(t)

= e−2t
(

cos(2t)− sin(2t)
)

.

It follows from item 13 with c = 2 and f(t) = e−2t
(

cos(2t)− sin(2t)
)

that

y(t) = L−1[Y (s)](t) = L−1

[

e−2ss

s2 + 4s + 8

]

(t) = u(t− 2)L−1

[

s

s2 + 4s + 8

]

(t− 2)

= u(t− 2)e−2(t−2)
(

cos(2(t− 2))− sin(2(t− 2))
)

.

(10) Consider two interconnected tanks filled with brine (salt water). The first tank
contains 80 liters and the second contains 30 liters. Brine flows with a concentration
of 3 grams of salt per liter flows into the first tank at a rate of 2 liters per hour. Well
stirred brine flows from the first tank to the second at a rate of 6 liters per hour,
from the second to the first at a rate of 4 liters per hour, and from the second into a
drain at a rate of 2 liters per hour. At t = 0 there are 7 grams of salt in the first tank
and 25 grams in the second. Give an initial-value problem that governs the amount
of salt in each tank as a function of time.

Solution: The rates work out so there will always be 80 liters of brine in the first
tank and 30 liters in the second. Let S1(t) be the grams of salt in the first tank and
S2(t) be the grams of salt in the second tank. These are governed by the initial-value
problem

dS1

dt
= 3·2 +

S2

30
4− S1

80
6 , S1(0) = 7 ,

dS2

dt
=

S1

80
6− S2

30
4− S2

30
2 , S2(0) = 25 .

You could leave the answer in the above form. It can however be simplified to

dS1

dt
= 6 + 2

15
S2 − 3

40
S1 , S1(0) = 7 ,

dS2

dt
= 3

40
S1 − 1

5
S2 , S2(0) = 25 .

(11) Consider the real vector-valued functions x1(t) =

(

1
t

)

, x2(t) =

(

t3

3 + t4

)

.

(a) Compute the Wronskian W [x1,x2](t).
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(b) Suppose that x1 and x2 comprise a fundamental set of solutions to the linear
system x′ = A(t)x. Give a general solution to this system.

Solution (a). The Wronskian is given by

W [x1,x2](t) = det

(

1 t3

t 3 + t4

)

= 1 · (3 + t4)− t · t3 = 3 + t4 − t4 = 3 .

Solution (b). Because x1(t), x2(t) is a fundamental set of solutions for the linear
system whose coefficient matrix is A(t), a general solution is given by

x(t) = c1x1(t) + c2x2(t) = c1

(

1
t

)

+ c2

(

t3

3 + t4

)

.

(12) Give a general real vector-valued solution of the linear planar system x′ = Ax for

(a) A =

(

6 4
4 0

)

, (b) A =

(

1 2
−2 1

)

.

Solution (a). The characteristic polynomial of A is

p(z) = z2 − tr(A)z + det(A)

= z2 − 6z − 16 = (z − 3)2 − 25 = (z − 3)2 − 52 .

The eigenvalues of A are the roots of this polynomial, which are 3± 5, or simply −2
and 8. Therefore we have

etA = e3t

[

cosh(5t)I +
sinh(5t)

5
(A− 3I)

]

= e3t

[

cosh(5t)

(

1 0
0 1

)

+
sinh(5t)

5

(

3 4
4 −3

)]

= e3t

(

cosh(5t) + 3
5
sinh(5t) 4

5
sinh(5t)

4
5
sinh(5t) cosh(5t)− 3

5
sinh(5t)

)

.

Therefore a general solution is given by

x(t) = etA

(

c1

c2

)

= c1e
3t

(

cosh(5t) + 3
5
sinh(5t)

4
5
sinh(5t)

)

+ c2e
3t

(

4
5
sinh(5t)

cosh(5t)− 3
5
sinh(5t)

)

.

Alternative Solution (a). The characteristic polynomial of A is

p(z) = z2 − tr(A)z + det(A)

= z2 − 6z − 16 = (z − 3)2 − 25 = (z − 3)2 − 52 .

The eigenvalues of A are the roots of this polynomial, which are 3± 5, or simply −2
and 8. Because

A + 2I =

(

8 4
4 2

)

, A− 8I =

(

−2 4
4 −8

)

,

we see that A has the eigenpairs
(

−2 ,

(

1
−2

))

,

(

8 ,

(

2
1

))

.
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Form these eigenpairs we construct the solutions

x1(t) = e−2t

(

1
−2

)

, x2(t) = e8t

(

2
1

)

,

Therefore a general solution is

x(t) = c1x1(t) + c2x2(t) = c1e
−2t

(

1
−2

)

+ c2e
8t

(

2
1

)

.

Solution (b). The characteristic polynomial of A is

p(z) = z2 − tr(A)z + det(A)

= z2 − 2z + 5 = (z − 1)2 + 4 = (z − 1)2 + 22 .

The eigenvalues of A are the roots of this polynomial, which are 1 ± i2. Therefore
we have

etA = et

[

cos(2t)I +
sin(2t)

2
(A− I)

]

= et

[

cos(2t)

(

1 0
0 1

)

+
sin(2t)

2

(

0 2
−2 0

)]

= et

(

cos(2t) sin(2t)
− sin(2t) cos(2t)

)

.

Therefore a general solution is given by

x(t) = etA

(

c1

c2

)

= c1e
t

(

cos(2t)
− sin(2t)

)

+ c2e
t

(

sin(2t)
cos(2t)

)

.

Alternative Solution (b). The characteristic polynomial of A is

p(z) = z2 − tr(A)z + det(A)

= z2 − 2z + 5 = (z − 1)2 + 4 = (z − 1)2 + 22 .

The eigenvalues of A are the roots of this polynomial, which are 1± i2. Because

A− (1 + i2)I =

(

−i2 2
−2 −i2

)

, A− (1− i2)I =

(

i2 2
−2 i2

)

,

we see that A has the eigenpairs
(

1 + i2 ,

(

1
i

))

,

(

1− i2 ,

(

−i

1

))

.

Because

e(1+i2)t

(

1
i

)

= et

(

cos(2t) + i sin(2t)
− sin(2t) + i cos(2t)

)

,

two real solutions of the system are

x1(t) = et

(

cos(2t)
− sin(2t)

)

, x2(t) = et

(

sin(2t)
cos(2t)

)

.

Therefore a general solution is

x(t) = c1x1(t) + c2x2(t) = c1e
t

(

cos(2t)
− sin(2t)

)

+ c2e
t

(

sin(2t)
cos(2t)

)

.
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(13) What answer will be produced by the following MATLAB command?

>> A = [1 4; 3 2]; [vect, val] = eig(sym(A))

You do not have to give the answer in MATLAB format.

Solution. The MATLAB command will produce the eigenpairs of A =

(

1 4
3 2

)

.

The characteristic polynomial of A is

p(z) = z2 − tr(A)z + det(A) = z2 − 3z − 10 = (z − 5)(z + 2) ,

so its eigenvalues are 5 and −2. Because

A− 5I =

(

−4 4
3 −3

)

, A + 2I =

(

3 4
3 4

)

,

we can read off that the eigenpairs are
(

5 ,

(

1
1

))

,

(

−2 ,

(

−4
3

))

.

(14) A real 2×2 matrix A has eigenvalues 2 and −1 with associated eigenvectors
(

3
1

)

and

(

−1
2

)

.

(a) Give a general solution to the linear planar system x′ = Ax.
(b) Compute etA.
(c) Sketch a phase-plane portrait for this system and identify its type. Classify the

stability of the origin. Carefully mark all sketched trajectories with arrows!

Solution (a). Use the given eigenpairs to construct the solutions

x1(t) = e2t

(

3
1

)

, x2(t) = e−t

(

−1
2

)

.

Therefore a general solution is

x(t) = c1x1(t) + c2x2(t) = c1e
2t

(

3
1

)

+ c2e
−t

(

−1
2

)

.

Solution (b). The matrix A can be diagonalized as A = VDV−1 where

V =

(

3 −1
1 2

)

, D =

(

2 0
0 −1

)

, V−1 =
1

7

(

2 1
−1 3

)

.

Then

etA = VetDV−1 =
1

7

(

3 −1
1 2

) (

e2t 0
0 e−t

) (

2 1
−1 3

)

=
1

7

(

3e2t −e−t

e2t 2e−t

) (

2 1
−1 3

)

=
1

7

(

6e2t + e−t 3e2t − 3e−t

2e2t − 2e−t e2t + 6e−t

)

.
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Alternative Solution (b). By part (a) a fundamental matrix is

Ψ(t) =
(

x1(t) x2(t)
)

=

(

3e2t −e−t

e2t 2e−t

)

.

Then

etA = Ψ(t)Ψ(0)−1 =

(

3e2t −e−t

e2t 2e−t

) (

3 −1
1 2

)

−1

=
1

7

(

3e2t −e−t

e2t 2e−t

) (

2 1
−1 3

)

=
1

7

(

6e2t + e−t 3e2t − 3e−t

2e2t − 2e−t e2t + 6e−t

)

.

Solution (c). The matrix A has two real eigenvalues of opposite sign. The origin
is therefore a saddle and is thereby unstable. There is one trajectory moves away
from (0, 0) along each half of the line x = 3y, and one trajectory moves towards(0, 0)
along each half of the line y = −2x. (These are the lines of eigenvectors.) Every
other trajectory sweeps away from the line y = −2x and towards the line x = 3y. A
phase-plane portrait might be sketched during the review session.

(15) Solve the initial-value problem x′ = Ax, x(0) = xI and describe how its solution
behaves as t→∞ for the following A and xI .

(a) A =

(

3 10
−5 −7

)

, xI =

(

−3
2

)

.

(b) A =

(

8 −5
5 −2

)

, xI =

(

3
−1

)

.

Solution (a). The characteristic polynomial of A =

(

3 10
−5 −7

)

is

p(z) = z2 − tr(A)z + det(A) = z2 + 4z + 29 = (z + 2)2 + 52 .

Therefore the eigenvlues of A are −2± i5. Then

etA = e−2t

[

cos(5t)I +
sin(5t)

5
(A + 2I)

]

= e−2t

[

cos(5t)

(

1 0
0 1

)

+
sin(5t)

5

(

5 10
−5 −5

)]

= e−2t

(

cos(5t) + sin(5t) 2 sin(5t)
− sin(5t) cos(5t)− sin(5t)

)

.

The solution of the initial-value problem is therefore

x(t) = etAxI = e−2t

(

cos(5t) + sin(5t) 2 sin(5t)
− sin(5t) cos(5t)− sin(5t)

) (

−3
2

)

= e−2t

(

−3 cos(5t) + sin(5t)
2 cos(5t) + sin(5t)

)

.

This solution decays to zero as t→∞.
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Alternative Solution (a). The characteristic polynomial of A =

(

3 10
−5 −7

)

is

p(z) = z2 − tr(A)z + det(A) = z2 + 4z + 29 = (z + 2)2 + 52 .

Therefore the eigenvlues of A are −2± i5. Because

A− (−2 + i5)I =

(

5− i5 10
−5 −5− i5

)

,

we can read off that A has the conjugate eigenpairs
(

−2 + i5 ,

(

1 + i

−1

))

,

(

−2− i5 ,

(

1− i

−1

))

.

Because

e−2t+i5t

(

1 + i

−1

)

= e−2t
(

cos(5t) + i sin(5t)
)

(

1 + i

−1

)

= e−2t

(

cos(5t)− sin(5t) + i cos(5t) + i sin(5t)
− cos(5t)− i sin(5t)

)

,

a fundamental set of real solutions is

x1(t) = e−2t

(

cos(5t)− sin(5t)
− cos(5t)

)

, x2(t) = e−2t

(

cos(5t) + sin(5t)
− sin(5t)

)

.

Then a fundamental matrix Ψ(t) is given by

Ψ(t) =
(

x1(t) x2(t)
)

= e−2t

(

cos(5t)− sin(5t) cos(5t) + sin(5t)
− cos(5t) − sin(5t)

)

.

Because

Ψ(0)−1 =

(

1 1
−1 0

)

−1

=
1

1

(

0 −1
1 1

)

=

(

0 −1
1 1

)

,

we see that

etA = Ψ(t)Ψ(0)−1 = e−2t

(

cos(5t)− sin(5t) cos(5t) + sin(5t)
− cos(5t) − sin(5t)

) (

0 −1
1 1

)

= e−2t

(

cos(5t) + sin(5t) 2 sin(5t)
− sin(5t) cos(5t)− sin(5t)

)

.

Therefore the solution of the initial-value problem is

x(t) = etAxI = e−2t

(

cos(5t) + sin(5t) 2 sin(5t)
− sin(5t) cos(5t)− sin(5t)

) (

−3
2

)

= e−2t

(

−3 cos(5t) + sin(5t)
2 cos(5t) + sin(5t)

)

.

This solution decays to zero as t→∞.

Remark. After you have constructed the fundmental set of solutions x1(t) and x2(t),
you could also have solved the initial-value problem by finding constants c1 and c2

such that x(t) = c1x1(t) + c2x2(t) satisfies the initial condition. Had you done this
using the x1(t) and x2(t) constructed above, you would have found that c1 = −2 and
c2 = −1.
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Solution (b). The characteristic polynomial of A =

(

8 −5
5 −2

)

is

p(z) = z2 − tr(A)z + det(A) = z2 − 6z + 9 = (z − 3)2 .

The ony eigenvalue of A is 3. Then

etA = e3t
[

I + t (A− 3I)
]

= e3t

[(

1 0
0 1

)

+ t

(

5 −5
5 −5

)]

= e3t

(

1 + 5t −5t
5t 1− 5t

)

.

Therefore the solution of the initial-value problem is

x(t) = etAxI = e3t

(

1 + 5t −5t
5t 1− 5t

) (

3
−1

)

= e3t

(

3 + 20t
−1 + 20t

)

.

This solution grows like 20t e3t as t→∞.

Alternative Solution (b). The characteristic polynomial of A =

(

8 −5
5 −2

)

is

p(z) = z2 − tr(A)z + det(A) = z2 − 6z + 9 = (z − 3)2 .

The only eigenvalue of A is 3. Because

A− 3I =

(

5 −5
5 −5

)

,

we can read off that A has the eigenpair
(

3 ,

(

1
1

))

.

We can use this eigenpair to construct the solution

x1(t) = e3t

(

1
1

)

.

A second solution can be constructed by

x2(t) = e3tw + t e3t(A− 3I)w ,

where w is any nonzero vector that is not an eigenvector associated with 3. For

example, taking w =
(

1 0
)T

yields

x2(t) = e3t

(

1
0

)

+ t e3t

(

5 −5
5 −5

)(

1
0

)

= e3t

(

1 + 5t
5t

)

.

Then a fundamental matrix Ψ(t) is given by

Ψ(t) =
(

x1(t) x2(t)
)

= e3t

(

1 1 + 5t
1 5t

)

.

Because

Ψ(0)−1 =

(

1 1
1 0

)

−1

=
1

−1

(

0 −1
−1 1

)

=

(

0 1
1 −1

)

,
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we see that

etA = Ψ(t)Ψ(0)−1 =

(

1 1 + 5t
1 5t

) (

0 1
1 −1

)

=

(

1 + 5t −5t
5t 1− 5t

)

.

Therefore the solution of the initial-value problem is

x(t) = etAxI = e3t

(

1 + 5t −5t
5t 1− 5t

) (

3
−1

)

= e3t

(

3 + 20t
−1 + 20t

)

.

This solution grows like 20t e3t as t→∞.

Remark. After you have constructed the fundmental set of solutions x1(t) and x2(t),
you could also have solved the initial-value problem by finding constants c1 and c2

such that x(t) = c1x1(t) + c2x2(t) satisfies the initial condition. Had you done this
using the x1(t) and x2(t) constructed above, you would have found that c1 = −1 and
c2 = 4.

(16) Consider the nonlinear planar system

x′ = 2xy ,

y′ = 9− 9x− y2 .

(a) Find all of its equilibrium (critical, stationary) points.
(b) Find a nonconstant function H(x, y) such that every trajectory of the system

satisfies H(x, y) = c for some constant c.
(c) Classify the type and stability of each equilibrium (critical, stationary) point.
(d) Sketch the level sets (contour lines) H(x, y) = c for values of c corresponding to

each saddle point. Use arrows to indicate the direction of the trajectory along
each curve that you sketch!

Solution (a). Stationary points satisfy

0 = 2xy ,

0 = 9− 9x− y2 .

The top equation shows that x = 0 or y = 0. If x = 0 then the bottom equation
becomes 0 = 9 − y2 = (3 − y)(3 + y), which shows that either y = 3 or y = −3. If
y = 0 then the bottom equation becomes 0 = 9 − 9x = 9(1− x), which shows that
x = 1. Therefore the stationary points of the system are

(0, 3) , (0,−3) , (1, 0) .

Solution (b). The associated first-order trajectory equation is

dy

dx
=

9− 9x− y2

2xy
.

This equation is not linear or separable. It has the differential form

(y2 + 9x +−9) dx + 2xy dy = 0 ,

which is exact because

∂y(y
2 + 9x− 9) = 2y = ∂x(2xy) = 2y .
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Therefore there exists H(x, y) such that

∂xH(x, y) = y2 + 9x− 9 , ∂yH(x, y) = 2xy .

By integrating the second equation we see that

H(x, y) = xy2 + h(x) .

When this is substituted into the first equation we find

∂xH(x, y) = y2 + h′(x) = y2 + 9x− 9 ,

which implies that h′(x) = 9x− 9. By taking h(x) = 9
2
x2 − 9x we obtain

H(x, y) = xy2 + 9
2
x2 − 9x .

Alternative Solution (b). Notice that

∂xf(x, y) + ∂yg(x, y) = ∂x(2xy) + ∂y(9− 9x− y2) = 2y − 2y = 0 .

Therefore the system has Hamiltonian form with Hamiltonian H(x, y) that satisfies

∂yH(x, y) = 2xy , −∂xH(x, y) = 9− 9x− y2 .

By integrating the first equation we see that

H(x, y) = xy2 + h(x) .

When this is substituted into the second equation we find

−∂xH(x, y) = −y2 − h′(x) = 9− 9x− y2 ,

which implies that h′(x) = 9x− 9. By taking h(x) = 9
2
x2 − 9x we obtain

H(x, y) = xy2 + 9
2
x2 − 9x .

Solution (c). Because
(

f(x, y)
g(x, y)

)

=

(

2xy

9− 9x− y2

)

,

the Jacobian matrix J(x, y) of partial derivatives is

J(x, y) =

(

∂xf(x, y) ∂yf(x, y)
∂xg(x, y) ∂yg(x, y)

)

=

(

2y 2x
−9 −2y

)

.

Evaluating this matrix at each stationary point yields

J(0, 3) =

(

6 0
−9 −6

)

, J(0,−3) =

(

−6 0
−9 6

)

, J(1, 0) =

(

0 2
−9 0

)

.

• Because the matrix J(0, 3) is lower triangular, we can read off that its eigenvalues
are 6 and −6. Because these are real with opposite signs, the stationary point
(0, 3) is a saddle and thereby is unstable.
• Because the matrix J(0,−3) is lower triangular, we can read off that its eigen-

values are −6 and 6. Because these are real with opposite signs, the stationary
point (0,−3) is a saddle and thereby is unstable.
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• The characteristic polynomial of the matrix J(1, 0) is

p(z) = z2 + 18 ,

so the matrix J(1, 0) has eigenvalues ±i
√

18. Because these are immaginary and
the system has an integral while the lower left entry of J(1, 0) is negative, the
stationary point (1, 0) is a clockwise center and thereby is stable.

Alternative Solution (c). If you saw that the system has Hamiltonian form with
Hamiltonian H(x, y) from part (b) then you can take this approach. The Hessian
matrix H(x, y) of second partial derivatives of the Hamiltonian H(x, y) is

H(x, y) =

(

∂xxH(x, y) ∂xyH(x, y)
∂yxH(x, y) ∂yyH(x, y)

)

=

(

9 2y
2y 2x

)

.

Evaluating this at the stationary points yields

H(0, 3) =

(

9 6
6 0

)

, H(0,−3) =

(

9 −6
−6 0

)

, H(1, 0) =

(

9 0
0 2

)

.

• The characteristic polynomial of the matrix H(0, 3) is

p(z) = z2 − 9z − 36 = (z − 12)(z + 3) .

Therefore the matrix H(0, 3) has eigenvalues 12 and −3. Because these have
different signs, the stationary point (0, 3) is a saddle and thereby is unstable.
• The characteristic polynomial of the matrix H(0,−3) is

p(z) = z2 − 9z − 36 = (z − 12)(z + 3) .

Therefore the matrix H(0,−3) has eigenvalues 12 and −3. Because these have
different signs, the stationary point (0,−3) is a saddle and thereby is unstable.
• Because the matrix H(1, 0) is diagonal, we can read off that its eigenvalues are 9

and 2. Because these are both positive, the stationary point (1, 0) is a clockwise

center and thereby is stable.

Solution (d). The saddle points are (0, 3) and (0,−3). Because

H(0, 3) = H(0,−3) = 0 · (±3)2 + 9
2
· 02 − 9 · 0 = 0 .

Hence, the level set corresponding to these saddle points is

0 = xy2 + 9
2
x2 − 9x = (y2 + 9

2
x− 9)x .

The points on this set must satisfy either y2 + 9
2
x − 9 = 0 or x = 0. Therefore the

level set is the union of the parabola x = 2− 2
9
y2 and the y-axis.

Along the y-axis (x = 0) the y′ equation reduces to y′ = 9 − y2 = (3− y)(3 + y),
whereby the arrows point towards (0, 3) and away from (0,−3). Along the parabola
x = 2− 2

9
y2 the arrows point away from (0, 3) and towards (0,−3) because they are

saddle points.

(17) Consider the nonlinear planar system

x′ = −5y ,

y′ = x− 4y − x2 .

(a) Find all of its equilibrium (critical, stationary) points.



24

(b) Compute the Jacobian matrix (derivative matrix, linearization coefficient ma-
trix) at each equilibrium (critical, stationary) point.

(c) Classify the type and stability of each equilibrium (critical, stationary) point.
(d) Sketch a plausible global phase-plane portrait. Use arrows to indicate the direc-

tion of the trajectory along each curve that you sketch!

Solution (a). Stationary points satisfy

0 = −5y , 0 = x− 4y − x2 .

The first equation implies y = 0, whereby the second equation becomes 0 = x−x2 =
x(1−x), which implies either x = 0 or x = 1. All the stationary points of the system
are therefore

(0, 0) , (1, 0) .

Solution (b). Because
(

f(x, y)
g(x, y)

)

=

(

−5y
x− 4y − x2

)

,

the Jacobian matrix of partial derivatives is
(

∂xf(x, y) ∂yf(x, y)
∂xg(x, y) ∂yg(x, y)

)

=

(

0 −5
1− 2x −4

)

.

Evaluating this matrix at each stationary point yields the coefficient matrices

A =

(

0 −5
1 −4

)

at (0, 0) , A =

(

0 −5
−1 −4

)

at (1, 0) .

Solution (c). The coefficient matrix A at (0, 0) has eigenvalues that satisfy

0 = det(zI −A) = z2 − tr(A)z + det(A) = z2 + 4z + 5 = (z + 2)2 + 12 .

The eigenvalues are thereby −2 ± i. Because a21 = 1 > 0, the stationary point
(0, 0) is therefore a counterclockwise spiral sink, which is asymptotically stable or
attracting. This is one of the generic types, so it describes the phase-plane portrait
of the nonlinear system near (0, 0).

The coefficient matrix A at (1, 0) has eigenvalues that satisfy

0 = det(zI−A) = z2 − tr(A)z + det(A) = z2 + 4z − 5 = (z + 2)2 − 32 .

The eigenvalues are thereby −2±3, or simply −5 and 1. The stationary point (1, 0) is
therefore a saddle, which is unstable. This is one of the generic types, so it describes
the phase-plane portrait of the nonlinear system near (1, 0).

Solution (d). The nullcline for x′ is the line y = 0. This line partitions the plane
into regions where x is increasing or decreasing as t increases. The nullcline for y′ is
the parabola y = 1

4
(x − x2). This curve partitions the plane into regions where y is

increasing or decreasing as t increases. Neither of these nullclines is invariant.

The stationary point (0, 0) is a counterclockwise spiral sink.
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The stationary point (1, 0) is a saddle. The coefficient matrix A has eigenvalues
−5 and 1. Because

A + 5I =

(

5 −5
−1 1

)

, A− I =

(

−1 −5
−1 −5

)

,

it has the eigenpairs
(

−5 ,

(

1
1

))

,

(

1 ,

(

−5
1

))

Near (1, 0) there is one trajectory that emerges from (1, 0) tangent to each side of the
line x = 1− 5y. There is also one trajectory that approaches (1, 0) tangent to each
side of the line y = x − 1. These trajectories are separatrices. A global phase-plane
portrait might be sketched during the review session.

Remark. The global phase-plane portrait becomes clearer if you are able to observe
that H(x, y) = 1

2
x2 + 5

2
y2 − 1

3
x3 satisfies

d

dt
H(x, y) = ∂xH(x, y) x′ + ∂yH(x, y) y′

= (x− x2)(−5y) + 5y(x− 4y − x2) = −20y2 ≤ 0 .

The trajectories of the system are thereby seen to cross the contour lines of H(x, y)
so as to decrease H(x, y). You would not be expected to see this on the Final Exam.

(18) Consider the nonlinear planar system

x′ = x(3− 3x + 2y) ,

y′ = y(6− x− y) .

Do parts (a-d) as for the previous problem.
(e) Why do solutions that start in the first quadrant stay in the first quadrant?

Solution (a). Stationary points satisfy

0 = x(3− 3x + 2y) , 0 = y(6− x− y) .

The first equation implies either x = 0 or 3− 3x +2y = 0, while the second equation
implies either y = 0 or 6− x− y = 0. If x = 0 and y = 0 then (0, 0) is a stationary
point. If x = 0 and 6− x− y = 0 then (0, 6) is a stationary point. If 3− 3x + 2y = 0
and y = 0 then (1, 0) is a stationary point. If 3 − 3x + 2y = 0 and 6 − x − y = 0
then upon solving these equations one finds that (3, 3) is a stationary point. All the
stationary points of the system are therefore

(0, 0) , (0, 6) , (1, 0) , (3, 3) .

Solution (b). Because
(

f(x, y)
g(x, y)

)

=

(

3x− 3x2 + 2xy

6y − xy − y2

)

,

the matrix of partial derivatives is
(

∂xf(x, y) ∂yf(x, y)
∂xg(x, y) ∂yg(x, y)

)

=

(

3− 6x + 2y 2x
−y 6− x− 2y

)

.
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Evaluating this matrix at each stationary point yields the coefficient matrices

A =

(

3 0
0 6

)

at (0, 0) ,

A =

(

−3 2
0 5

)

at (1, 0) ,

A =

(

15 0
−6 −6

)

at (0, 6) ,

A =

(

−9 6
−3 −3

)

at (3, 3) .

Solution (c). The coefficient matrix A at (0, 0) is diagonal, so you can read-off its
eigenvalues as 3 and 6. The stationary point (0, 0) is thereby a nodal source, which is
unstable (or even better is repelling). This is one of the generic types, so it describes
the phase-plane portrait of the nonlinear system near (0, 0).

The coefficient matrix A at (0, 6) is triangular, so you can read-off its eigenvalues
as −6 and 15. The stationary point (0, 6) is thereby a saddle, which is unstable. This
is one of the generic types, so it describes the phase-plane portrait of the nonlinear
system near (0, 6).

The coefficient matrix A at (1, 0) is triangular, so you can read-off its eigenvalues
as −3 and 5. The stationary point (1, 0) is thereby a saddle, which is unstable. This
is one of the generic types, so it describes the phase-plane portrait of the nonlinear
system near (1, 0).

The coefficient matrix A at (3, 3) has eigenvalues that satisfy

0 = det(zI −A) = z2 − tr(A)z + det(A) = z2 + 12z + 45 = (z + 6)2 + 32 .

Its eigenvalues are thereby −6±i3. Because a21 = −3 < 0, the stationary point (3, 3)
is therefore a clockwise spiral sink, which is asymptotically stable or attracting. This
is one of the generic types, so it describes the phase-plane portrait of the nonlinear
system near (3, 3).

Solution (d). The nullclines for x′ are the lines x = 0 and 3− 3x + 2y = 0. These
lines partition the plane into regions where x is increasing or decreasing as t increases.
The nullclines for y′ are the lines y = 0 and 6− x− y = 0. These lines partition the
plane into regions where y is increasing or decreasing as t increases.

Next, observe that the lines x = 0 and y = 0 are invariant. A trajectory that starts
on one of these lines must stay on that line. Along the line x = 0 the system reduces
to

y′ = y(6− y) .

Along the line y = 0 the system reduces to

x′ = 3x(1− x) .

The arrows along these invariant lines can be determined from a phase-line portrait
of these reduced systems.

The stationary point (0, 0) is a nodal source. The coefficient matrix A has eigen-
values 3 and 6. Because

A− 3I =

(

0 0
0 3

)

, A− 6I =

(

−3 0
0 0

)

,
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it has the eigenpairs
(

3 ,

(

1
0

))

,

(

6 ,

(

0
1

))

Near there is one trajectory that emerges from (0, 0) along each side of the invariant
lines y = 0 and x = 0. Every other trajectory emerges from (0, 0) tangent to the line
y = 0, which is the line corresponding to the eigenvalue with the smaller absolute
value.

The stationary point (0, 6) is a saddle. The coefficient matrix A has eigenvalues
−6 and 15. Because

A + 6I =

(

21 0
−6 0

)

, A− 15I =

(

0 0
−6 −21

)

,

it has the eigenpairs
(

−6 ,

(

0
1

))

,

(

15 ,

(

7
−2

))

Near (0, 6) there is one trajectory that approaches (0, 6) along each side of the in-
variant line x = 0. There is also one trajectory that emerges from (0, 6) tangent to
each side of the line y = 6− 2

7
x. These trajectories are separatrices.

The stationary point (1, 0) is a saddle. The coefficient matrix A has eigenvalues
−3 and 5. Because

A + 3I =

(

0 2
0 8

)

, A− 5I =

(

−8 2
0 0

)

,

it has the eigenpairs
(

−3 ,

(

1
0

))

,

(

5 ,

(

1
4

))

Near (1, 0) there is one trajectory that emerges from (1, 0) along each side of the
invariant line y = 0. There is also one trajectory that approaches (1, 0) tangent to
each side of the line y = 4(x− 1). These trajectories are also separatrices.

Finally, the stationary point (3, 3) is a clockwise spiral sink. All trajectories in the
positive quadrant will spiral into it. A phase-plane global portrait might be sketched
during the review session. Be sure your portrait be correct near each stationary point!

Solution (e). Because the lines x = 0 and y = 0 are invariant, the uniqueness
theorem implies that no other trajectories can cross them.


