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1. Introduction. There are definite integrals that are either difficult or impossible to

evaluate analytically. In such cases we can approximate the value of the integral by so-

called numerical integration or quadrature methods. Most calculators and computers

have routines that use such methods to approximately evaluate

∫ b

a

f(x) dx

for any given integrand f and endpoints of integration a and b. The quadrature methods

they use are advanced versions of the methods studied in elementary calculus courses,

which we now review.

The quadrature methods studied in elementary calculus courses usually divide the

interval [a, b] into n uniform subintervals. The length ∆x of each subinterval is given by

∆x ≡
b− a

n
. (1.1a)

The kth subinterval is then [xk−1, xk] where

a = x0 < x1 < · · · < xn−1 < xn = b ,

with xk given by the formula

xk ≡ a+ k∆x . (1.1b)

Most basic quadrature methods associated with these subintervals are built from one

or more Riemann sums of the form

n
∑

k=1

f(pk)∆x , where pk is some point in [xk−1, xk]. (1.2)

When f is positive such a sum approximates the area under the curve y = f(x) over the

kth subinterval by the area of a rectangle of height f(pk). Given an interval [a, b] and a

number of subintervals n, we compute ∆x and the points xk using (1.1). Then a Riemann

sum in the form (1.2) for a given integrand f is determined by specifying a rule for choosing

the points pk.
1
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The quadrature methods studied in most elementary calculus courses include three

such Riemann sums.

• The so-called left-hand rule corresponds to the choice pk = xk−1, which is the

left-hand endpoint of the kth subinterval. When n uniform subintervals are used, we

denote it by QL
n [f ] and it is given by

QL
n [f ] =

n
∑

k=1

f(xk−1)∆x . (1.3)

• The so-called right-hand rule corresponds to the choice pk = xk, which is the right-

hand endpoint of the kth subinterval. When n uniform subintervals are used, we

denote it by QR
n [f ] and it is given by

QR
n [f ] =

n
∑

k=1

f(xk)∆x . (1.4)

• The so-called midpoint rule corresponds to the choice pk = xk− 1

2

≡ 1
2 (xk−1 + xk),

which is the midpoint of the kth subinterval. When n uniform subintervals are used,

we denote it by QM
n [f ] and it is given by

QM
n [f ] =

n
∑

k=1

f(xk− 1

2

)∆x . (1.5)

They also include two quadrature methods built from these Riemann sums.

• The trapezoidal rule is the average of the left-hand rule and the right-hand rule.

When n uniform subintervals are used, we denote it by QT
n [f ] and it is given by

QT
n [f ] =

1
2
QL

n [f ] +
1
2
QR

n [f ] =
n
∑

k=1

f(xk−1) + f(xk)

2
∆x . (1.6)

• The Simpson rule is a weighted average of the left-hand rule, the right-hand rule,

and the midpoint rule. When n uniform subintervals are used, we denote it by QS
n [f ]

and it is given by

QS
n [f ] =

1
6 Q

L
n [f ] +

2
3 Q

M
n [f ] + 1

6 Q
R
n [f ]

=
n
∑

k=1

f(xk−1) + 4f(xk− 1

2

) + f(xk)

6
∆x .

(1.7)
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2. Left-Hand and Right-Hand Rules. The left-hand rule is given by (1.3) and the

right-hand rule is given by (1.4). They are related by the identity

QR
n [f ]−QL

n [f ] =
(

f(b)− f(a)
)

∆x . (2.1)

This identity should be evident both graphically and analytically.

The left-hand and right-hand rules are both clearly exact for constant functions. It is

also clear that if f is increasing over [a, b] then the left-hand rule gives an underestimate

while the right-hand rule gives an overestimate:

QL
n [f ] ≤

∫ b

a

f(x) dx ≤ QR
n [f ] . (2.2a)

Similarly, if f is decreasing over [a, b] then the right-hand rule gives an underestimate while

the left-hand rule gives an overestimate:

QR
n [f ] ≤

∫ b

a

f(x) dx ≤ QL
n [f ] . (2.2b)

Hence, if f is either increasing over [a, b] or decreasing over [a, b] then the right-hand and

left-hand rules are each accurate to within
∣

∣QR
n [f ] − QL

n [f ]
∣

∣. However, by (2.1) we know

that
∣

∣QR
n [f ]−QL

n [f ]
∣

∣ = |f(b)− f(a)|∆x .

Therefore, if f is either increasing over [a, b] or decreasing over [a, b] then the error En[f ]

made by either the left-hand or right-hand rule satisfies

∣

∣En[f ]
∣

∣ ≤ |f(b)− f(a)|∆x . (2.3)

This upper bound for the size of the error can be made as small as we wish by picking n

large enough. It decreases no slower than 1/n as n increases.

We will show that if f is any continuously differentiable function with f(a) 6= f(b)

then as n → ∞ the leading order errors of QL
n [f ] and QR

n [f ] are given by

EL
n [f ] = QL

n [f ]−

∫ b

a

f(x) dx ∼ −1
2

(

f(b)− f(a)
)

∆x ,

ER
n [f ] = QR

n [f ]−

∫ b

a

f(x) dx ∼ 1
2

(

f(b)− f(a)
)

∆x .

(2.4)

Notice that these errors have opposite signs, about equal magnitude, and decrease like 1/n

as n increases. Moreover, they are consistent with (2.3).
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3. Midpoint and Trapezoidal Rules. The midpoint rule is given by (1.5) and the

trapezoidal rule is given by (1.6). The trapezoidal rule is the average of the left-hand and

right-hand rules given by

QT
n [f ] =

1
2

(

QL
n [f ] +QR

n [f ]
)

. (3.1)

For this combination the leading order errors of QL
n [f ] and QR

n [f ] given by (2.4) cancel.

Both the midpoint and trapezoidal rules can be thought of as approximating the area

under the curve over each subinterval by that of a trapezoid. In the case of the midpoint

rule the top of the trapezoid is given by the tangent line at the midpoint of the subinterval,

while in the case of the trapezoidal rule the top of the trapezoid is given by the secant line

associated with the endpoints of the subinterval. Therefore the midpoint and trapezoidal

rules are both exact for linear functions. This way of looking at them also shows that if

f is convex over [a, b] then the midpoint rule gives an underestimate while the trapezoidal

rule gives an overestimate:

QM
n [f ] ≤

∫ b

a

f(x) dx ≤ QT
n [f ] . (3.2a)

Similarly, if f is concave over [a, b] then the trapezoidal rule gives an underestimate while

the midpoint rule gives an overestimate:

QT
n [f ] ≤

∫ b

a

f(x) dx ≤ QM
n [f ] . (3.2b)

Therefore if f is either convex over [a, b] or concave over [a, b] then both the midpoint rule

and the trapezoidal rule are accurate to within
∣

∣QT
n [f ]−QM

n [f ]
∣

∣.

Next we show that the midpoint rule is always better than the trapezoidal rule when

f is either convex over [a, b] or concave over [a, b]. The starting point is the fact that the

midpoint and trapezoidal rules are related by

QT
2n[f ] =

1
2 Q

T
n [f ] +

1
2 Q

M
n [f ] . (3.3)

Hence, if f is convex over [a, b] then

QM
n [f ] ≤

∫ b

a

f(x) dx ≤ QT
2n[f ] =

1
2 Q

T
n [f ] +

1
2 Q

M
n [f ] ,

whereby

0 ≤

∫ b

a

f(x) dx−QM
n [f ] ≤

QT
n [f ]−QM

n [f ]

2
≤ QT

n [f ]−

∫ b

a

f(x) dx . (3.4a)
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Similarly, if f is concave over [a, b] then

0 ≤ QM
n [f ]−

∫ b

a

f(x) dx ≤
QM

n [f ]−QT
n [f ]

2
≤

∫ b

a

f(x) dx−QT
n [f ] . (3.4b)

Therefore, if f is either convex over [a, b] or concave over [a, b] then the midpoint rule is

better than the trapezoidal rule. This should also be evident graphically.

Recall that when f is either increasing over [a, b] or decreasing over [a, b] the size of

the error made by either the left-hand or right-hand rule satisfies the upper bound given

by (2.3). Similarly, there is an upper bound for the size of the error made by the midpoint

and trapezoidal rules when f is either convex over [a, b] or concave over [a, b]. Because we

have already showed that the midpoint rule is better than the trapezoidal rule in those

cases, all that remains is to find an upper bound for the size of the error made by the

trapezoidal rule. If f is convex over [a, b] then the trapezoidal rule gives an overestimate

for the integral. The integral can be underestimated over [a, b] by replacing f with its

tangent line approximation at xk over each subinterval [xk −
1
2∆x, xk +

1
2∆x]. (A picture

should make this clear.) When this approximation is integrated over [a, b] we find that

QT
n [f ]−

1
8

(

f ′(b)− f ′(a)
)

(∆x)2 ≤

∫ b

a

f(x) dx ,

whereby

QT
n [f ]−

∫ b

a

f(x) dx ≤ 1
8

(

f ′(b)− f ′(a)
)

(∆x)2 . (3.5a)

Similarly, if f is concave over [a, b] then

∫ b

a

f(x) dx−QT
n [f ] ≤ −1

8

(

f ′(b)− f ′(a)
)

(∆x)2 . (3.5b)

Hence, if f is either convex over [a, b] or concave over [a, b] then the errors EM
n [f ] and ET

n [f ]

made by the midpoint and trapezoidal rules satisfy

∣

∣EM
n [f ]

∣

∣ ≤
∣

∣ET
n [f ]

∣

∣ ≤ 1
8
|f ′(b)− f ′(a)| (∆x)2 . (3.6)

This upper bound for the size of the error can be made as small as we wish by picking n

large enough. It decreases no slower than n−2 as n increases. This is a much better rate

of convergence than that given by (2.3) for the left-hand and right-hand rules.
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We will show that if f is any twice continuously differentiable function with f ′(a) 6=

f ′(b) then as n → ∞ the leading order errors of QM
n [f ] and QT

n [f ] are given by

EM
n [f ] = QM

n [f ]−

∫ b

a

f(x) dx ∼ − 1
24

(

f ′(b)− f ′(a)
)

(∆x)2 , (3.7a)

ET
n [f ] = QT

n [f ]−

∫ b

a

f(x) dx ∼ 1
12

(

f ′(b)− f ′(a)
)

(∆x)2 . (3.7b)

Notice that the midpoint rule error is about half the size of the trapezoidal rule error.

Moreover, they have opposite signs, decrease like n−2 as n increases, and are consistent

with (3.6).

4. Simpson Rule. The Simpson rule is given by (1.7). It is the weighted average of the

midpoint and trapezoidal rules given by

QS
n [f ] =

2
3 Q

M
n [f ] + 1

3 Q
T
n [f ] . (4.1)

For this combination the leading order errors of QM
n [f ] and QT

n [f ] given by (3.7) cancel.

Remark. Because it follows from (3.3) that

QM
n [f ] = 2QT

2n[f ]−QT
n [f ] ,

another way to think of the Simpson rule (4.1) is

QS
n [f ] =

4
3
QT

2n − 1
3
QT

n . (4.2)

This is the way it will arise in the context of Romberg quadrature methods, which we will

study later.

Because both the midpoint rule and the trapezoidal rule are exact for linear functions,

it follows from (4.1) that the Simpson rule also is exact for linear functions. We now show

that the Simpson rule is exact for cubic functions. To do this we must check that its error

vanishes when f is a cubic function. We see from (1.8) that its error is given by

ES
n [f ] = QS

n [f ]−

∫ b

a

f(x) dx

=
n
∑

k=1

f(xk−1) + 4f(xk− 1

2

) + f(xk)

6
∆x−

n
∑

k=1

∫ xk

xk−1

f(x) dx

=
n
∑

k=1

[

f(xk−1) + 4f(xk− 1

2

) + f(xk)

6
∆x−

∫ xk

xk−1

f(x) dx

]

.



7

For every k the quantity inside the square brackets is the error of the Simpson rule for the

subinterval [xk−1, xk]. It is enough to show that for every k this quantity vanishes when f

is a cubic function. Because every cubic function can be expressed as

f(x) = c0 + c1
(

x− xk− 1

2

)

+ c2
(

x− xk− 1

2

)2
+ c3

(

x− xk− 1

2

)3
,

and because we already know that it vanishes for linear functions, we only have to check

that it vanishes for

f(x) =
(

x− xk− 1

2

)2
and f(x) =

(

x− xk− 1

2

)3
.

For f(x) =
(

x− xk− 1

2

)2
we have

f(xk−1) + 4f(xk− 1

2

) + f(xk)

6
∆x =

(

xk−1 − xk− 1

2

)2
+ 4 · 02 +

(

xk − xk− 1

2

)2

6
∆x

=

(

− 1
2∆x

)2
+
(

1
2∆x

)2

6
∆x =

1

24
(∆x)3 ,

and
∫ xk

xk−1

f(x) dx =

∫ xk

xk−1

(

x− xk− 1

2

)2
dx =

1

3

(

x− xk− 1

2

)3
∣

∣

∣

xk

xk−1

=

(

xk − xk− 1

2

)3
−

(

xk−1 − xk− 1

2

)3

3
=

(

1
2∆x

)3
−
(

− 1
2∆x

)3

3
=

1

24
(∆x)3 .

Because these are equal, the Simpson rule is exact for quadratic functions.

For f(x) =
(

x− xk− 1

2

)3
we can use the fact that f(x) has odd symmetry about xk− 1

2

to conclude that
f(xk−1) + 4f(xk− 1

2

) + f(xk)

6
∆x = 0 ,

and that
∫ xk

xk−1

f(x) dx = 0 .

Because these are equal, the Simpson rule is exact for cubic functions.

We will show that if f is any four times continuously differentiable function with

f ′′′(a) 6= f ′′′(b) then as n → ∞ the leading order error of QS
n is given by

ES
n [f ] = QS

n [f ]−

∫ b

a

f(x) dx ∼ 1
2880

(

f ′′′(b)− f ′′′(a)
)

(∆x)4 . (4.3)

Notice that the error of the Simpson rule decreases like n−4 as n increases.
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5. Errors of Quadrature Methods. The error bounds given so far have required the

integrand f to be either monotonic, convex, or concave over [a, b]. We now give expressions

for the errors of these quadrature methods that allow error bounds to be derived for more

general integrands. We will assume that f has as many continuous derivatives over [a, b]

as is needed for the calculations to make sense.

The first step is to find expressions for the error of each method for the case of only

one subinterval (n = 1). These will just be summed to obtain expressions for the error

when n > 1. The error for any Riemann sum with one term is

E1[f ] = f(p)(b− a)−

∫ b

a

f(x) dx =

∫ b

a

[f(p)− f(x)] dx . (5.1)

By the First Fundamental Theorem of Calculus

f(p)− f(x) =

∫ p

x

f ′(y) dy .

This allows (5.1) to be expressed as

E1[f ] =

∫ b

a

∫ p

x

f ′(y) dy dx =

∫ p

a

∫ p

x

f ′(y) dy dx−

∫ b

p

∫ x

p

f ′(y) dy dx

=

∫ p

a

∫ y

a

f ′(y) dx dy−

∫ b

p

∫ b

y

f ′(y) dx dy

=

∫ p

a

(y − a)f ′(y) dy −

∫ b

p

(b− y)f ′(y) dy .

(5.2)

5.1. Left-Hand and Right-Hand Rules. By setting p = a in (5.2) we see that the

error for the left-hand rule is

EL
1 [f ] = −

∫ b

a

(b− y)f ′(y) dy . (5.3a)

By setting p = b in (5.2) we see that the error for the right-hand rule is

ER
1 [f ] =

∫ b

a

(y − a)f ′(y) dy . (5.3b)

All good estimates on the error of the left-hand and right-hand rules follow from (5.3a)

and (5.3b) respectively. We will present several such estimates below. They are simpler

versions of the analogous estimates for the other quadrature rules.
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If [a, b] is divided into n uniform subintervals [xk−1, xk] as given by (1.1) then it follows

from (5.3) that the errors of the left-hand and right-hand rules are

EL
n [f ] = −

n
∑

k=1

∫ xk

xk−1

(xk − y)f ′(y) dy , (5.4a)

ER
n [f ] =

n
∑

k=1

∫ xk

xk−1

(y − xk−1)f
′(y) dy . (5.4b)

If |f ′(y)| ≤ M over [a, b] then because

∫ xk

xk−1

(xk − y) dy =

∫ xk

xk−1

(y − xk−1) dy =
(b− a)2

2n2
,

we can obtain from (5.4) the bounds

∣

∣EL
n [f ]

∣

∣ ≤
(b− a)2

2n
M ,

∣

∣ER
n [f ]

∣

∣ ≤
(b− a)2

2n
M . (5.5)

Alternatively, because

max
{

(xk − y) : y ∈ [xk−1, xk]
}

= max
{

(y − xk−1) : y ∈ [xk−1, xk]
}

=
b− a

n
,

we can also obtain from (5.4) the bounds

∣

∣EL
n [f ]

∣

∣ ≤
b− a

n

∫ b

a

|f ′(y)| dy ,
∣

∣ER
n [f ]

∣

∣ ≤
b− a

n

∫ b

a

|f ′(y)| dy . (5.6)

Both (5.5) and (5.6) show that these errors vanish at least as fast as n−1 as n → ∞. Which

bound is better depends upon f .

The bounds (5.6) reduce to the bound (2.3) that was derived earlier for the case when

f is monotonic over [a, b] because in that case

∫ b

a

|f ′(y)| dy = |f(b)− f(a)| .

Because the factors (y − xk−1) and (xk − y) that appear inside the integrals in (5.4) are

nonnegative, when f is monotonic over [a, b] we can read off the sign of the errors given

by (5.4). In particular, we recover the bounds (2.2).
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Because the factors (y − xk−1) and (xk − y) that appear inside the integrals in (5.4)

are nonnegative, the Integral Mean-Value Theorem can be applied to conclude that

∫ xk

xk−1

(xk − y)f ′(y) dy =
(b− a)2

2n2
f ′(yLk ) for some yLk ∈ [xk−1, xk] ,

∫ xk

xk−1

(y − xk−1)f
′(y) dy =

(b− a)2

2n2
f ′(yRk ) for some yRk ∈ [xk−1, xk] .

When these relations are placed into (5.4) it becomes

EL
n [f ] = −

b − a

2n

n
∑

k=1

f ′(yLk )
b− a

n
for some yLk ∈ [xk−1, xk] , (5.7a)

ER
n [f ] =

b− a

2n

n
∑

k=1

f ′(yRk )
b− a

n
for some yRk ∈ [xk−1, xk] . (5.7b)

Because the Intermediate-Value Theorem applied to f ′ yields

1

n

n
∑

k=1

f ′(yLk ) = f ′(yL) for some yL ∈ [a, b] ,

1

n

n
∑

k=1

f ′(yRk ) = f ′(yR) for some yR ∈ [a, b] ,

we see from (5.7) that

EL
n [f ] = −

(b− a)2

2n
f ′(yL) for some yL ∈ [a, b] , (5.8a)

ER
n [f ] =

(b− a)2

2n
f ′(yR) for some yR ∈ [a, b] . (5.8b)

These forms for the errors are given in the textbook. We can derive (5.5) from them, but

we cannot derive (5.6) from them.
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Finally, because of the convergence of the Riemann sums

lim
n→∞

n
∑

k=1

f ′(yLk )
b− a

n
=

∫ b

a

f ′(y) dy = f(b)− f(a) ,

lim
n→∞

n
∑

k=1

f ′(yRk )
b− a

n
=

∫ b

a

f ′(y) dy = f(b)− f(a) ,

we see from (5.7) that if f(b) 6= f(a) then

EL
n [f ] ∼ −

b− a

2n

(

f(b)− f(a)
)

as n → ∞ , (5.9a)

ER
n [f ] ∼

b− a

2n

(

f(b)− f(a)
)

as n → ∞ . (5.9b)

These are the asymptotic convergence results that were asserted in (2.4). They show that

the errors vanish like 1/n as n → ∞ when f(a) 6= f(b), and vanish faster when f(a) = f(b).

Remark. It suffices to assume that f is continuously differentiable over [a, b] to justify all

the estimates above.

5.2. Midpoint Rule. The midpoint of [a, b] is c = 1
2
(a + b). By setting p = c in (5.2)

and integrating by parts we see that the error for the midpoint rule is

EM
1 [f ] =

∫ c

a

(y − a)f ′(y) dy −

∫ b

c

(b− y)f ′(y) dy

= 1
2 (y − a)2f ′(y)

∣

∣

∣

c

a
− 1

2

∫ c

a

(y − a)2f ′′(y) dy

+ 1
2 (b− y)2f ′(y)

∣

∣

∣

b

c
− 1

2

∫ b

c

(b− y)2f ′′(y) dy

= −1
2

∫ c

a

(y − a)2f ′′(y) dy − 1
2

∫ b

c

(b− y)2f ′′(y) dy .

(5.10)

Remark. Notice that the endpoint contributions from the integration by parts cancel.

This canellation happened because we set p = c in (5.2). It does not generally happen for

any other value of p. This distinuishes the midpoint rule from all other Riemann sums.
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If [a, b] is divided into n uniform subintervals [xk−1, xk] as given by (1.1), each with

midpoint xk− 1

2

, then it follows from (5.10) that the error of the midpoint rule is

EM
n [f ] =− 1

2

n
∑

k=1

∫ x
k−

1

2

xk−1

(y − xk−1)
2f ′′(y) dy − 1

2

n
∑

k=1

∫ xk

x
k−

1

2

(xk − y)2f ′′(y) dy . (5.11)

If |f ′′(y)| ≤ M over [a, b] then because
∫ x

k−

1

2

xk−1

(y − xk−1)
2 dy =

∫ xk

x
k−

1

2

(xk − y)2f ′′(y) dy =
(b− a)3

24n3
,

we can obtain from (5.11) the bound

∣

∣EM
n [f ]

∣

∣ ≤
(b− a)3

24n2
M . (5.12)

Alternatively, because

max
{

(y − xk−1)
2 : y ∈ [xk−1, xk− 1

2

]
}

= max
{

(xk − y)2 : y ∈ [xk− 1

2

, xk]
}

=
(b− a)2

4n2
,

we can also obtain from (5.11) the bound

∣

∣EM
n [f ]

∣

∣ ≤
(b− a)2

8n2

∫ b

a

|f ′′(y)| dy . (5.13)

Both (5.12) and (5.13) show that the error vanishes at least as fast as n−2 as n → ∞.

Which bound is better depends upon f .

Bound (5.13) reduces to the bound on EM
n [f ] in (3.6) that was derived earlier for the

case when f is either convex or concave over [a, b] because in that case

∫ b

a

|f ′′(y)| dy = |f ′(b)− f ′(a)| .

Because the factors (y − xk−1)
2 and (xk − y)2 that appear inside the integrals in (5.11)

are nonnegative, when f is either convex or concave over [a, b] we can read off the sign of

the error given by (5.11). In particular, we recover the bounds on EM
n [f ] given in (3.2).

Because the factors (y−xk−1)
2 and (xk−y)2 that appear inside the integrals in (5.11)

are nonnegative, the Integral Mean-Value Theorem can be applied to conclude that
∫ x

k−

1

2

xk−1

(y − xk)
2f ′′(y) dy =

(b− a)3

24n3
f ′′(y−k ) for some y−k ∈ [xk−1, xk− 1

2

] ,

∫ xk

x
k−

1

2

(xk − y)2f ′′(y) dy =
(b− a)3

24n3
f ′′(y+k ) for some y+k ∈ [xk− 1

2

, xk] .
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When these relations are placed into (5.11) it becomes

EM
n [f ] = −

(b− a)3

24n3

n
∑

k=1

f ′′(y−k ) + f ′′(y+k )

2
for some y−k , y

+
k ∈ [xk−1, xk] . (5.14)

Because the Intermediate-Value Theorem applied to f ′′ yields
n
∑

k=1

f ′′(y−k ) + f ′′(y+k )

2n
= f ′′(yM ) for some yM ∈ [a, b] ,

we see from (5.14) that

EM
n [f ] = −

(b− a)3

24n2
f ′′(yM) for some yM ∈ [a, b] . (5.15)

This form for the error is given in the textbook. We can derive (5.12) from it, but we

cannot derive (5.13) from it.

Finally, because of the convergence of the Riemann sums

lim
n→∞

n
∑

k=1

f ′′(y−k ) + f ′′(y+k )

2

b− a

n
=

∫ b

a

f ′′(y) dy = f ′(b)− f ′(a) ,

we see from (5.14) that if f ′(b) 6= f ′(a) then

EM
n [f ] ∼ −

(b− a)2

24n2

(

f ′(b)− f ′(a)
)

as n → ∞ , (5.16)

This is the asymptotic convergence result that was asserted in (3.7a). It shows that

the error vanishes like n−2 as n → ∞ when f ′(a) 6= f ′(b), and vanishes faster when

f ′(a) = f ′(b).

Remark. It suffices to assume that f is twice continuously differentiable over [a, b] to

justify all the estimates above.

5.3. Trapezoidal Rule. The trapezoidal rule is defined in terms of the left-hand and

right-hand rules by (3.1). Because the errors of the left-hand and right-hand rules are

given by (5.3), the error of the trapezoidal rule is

ET
1 [f ] = 1

2E
L
1 [f ] +

1
2E

R
1 [f ]

= −1
2

∫ b

a

(b− y)f ′(y) dy + 1
2

∫ b

a

(y − a)f ′(y) dy

= −1
2

∫ b

a

(

(y − a)(b− y)
)

′

f ′(y) dy

= −1
2

(

(y − a)(b− y)
)

f ′(y)
∣

∣

∣

b

a
+ 1

2

∫ b

a

(y − a)(b− y)f ′′(y) dy

= 1
2

∫ b

a

(y − a)(b− y)f ′′(y) dy .

(5.20)
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Remark. Expression (5.20) is the starting point for the derivation of the Euler-Maclaurin

formula, which lies at the heart of the Romberg quadrature methods we will study later.

If [a, b] is divided into n uniform subintervals [xk−1, xk] as given by (1.1) then it follows

from (5.20) that the error of the trapezoidal rule is

ET
n [f ] = 1

2

n
∑

k=1

∫ xk

xk−1

(y − xk−1)(xk − y)f ′′(y) dy . (5.21)

If |f ′′(y)| ≤ M over [a, b] then because

∫ xk

xk−1

(y − xk−1)(xk − y) dy =
(b− a)3

6n3
,

we can obtain from (5.21) the bound

∣

∣ET
n [f ]

∣

∣ ≤
(b− a)3

12n2
M . (5.22)

Alternatively, because

max
{

(y − xk−1)(xk − y) : y ∈ [xk−1, xk]
}

=
(b− a)2

4n2
,

we can also obtain from (5.21) the bound

∣

∣ET
n [f ]

∣

∣ ≤
(b− a)2

8n2

∫ b

a

|f ′′(y)| dy . (5.23)

Both (5.22) and (5.23) show that the error vanishes at least as fast as n−2 as n → ∞.

Which bound is better depends upon f .

Bound (5.23) reduces to the bound on ET
n [f ] in (3.6) that was derived earlier for the

case when f is either convex over [a, b] or concave over [a, b] because in that case

∫ b

a

|f ′′(y)| dy = |f ′(b)− f ′(a)| .

Because the factor (y− xk−1)(xk − y) that appears inside the integral in (5.21) is nonneg-

ative, when f is either convex or concave over [a, b] we can read off the sign of the error

given by (5.21). In particular, we recover the bounds on QT
n [f ] given in (3.2).
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Because the factor (y − xk−1)(xk − y) that appears inside the integral in (5.21) is

nonnegative, the Integral Mean-Value Theorem can be applied to conclude that

∫ xk

xk−1

(y − xk−1)(xk − y)f ′′(y) dy =
(b− a)3

12n3
f ′′(yk) for some yk ∈ [xk−1, xk] .

When this relation is placed into (5.21) it becomes

ET
n [f ] =

(b− a)3

12n3

n
∑

k=1

f ′′(yk) for some yk ∈ [xk−1, xk] . (5.24)

Because the Intermediate-Value Theorem applied to f ′′ yields

1

n

n
∑

k=1

f ′′(yk) = f ′′(yT ) for some yT ∈ [a, b] ,

we see from (5.24) that

ET
n [f ] =

(b− a)3

12n2
f ′′(yT ) for some yT ∈ [a, b] . (5.25)

This form for the error is given in the textbook. We can derive (5.22) from it, but we

cannot derive (5.23) from it.

Finally, because of the convergence of the Riemann sum

lim
n→∞

n
∑

k=1

f ′′(yk)
b− a

n
=

∫ b

a

f ′′(y) dy = f ′(b)− f ′(a) ,

we see from (5.24) that if f ′(b) 6= f ′(a) then

ET
n [f ] ∼

(b− a)2

12n2

(

f ′(b)− f ′(a)
)

as n → ∞ , (5.26)

This is the asymptotic convergence result that was asserted in (3.7b). It shows that

the error vanishes like n−2 as n → ∞ when f ′(a) 6= f ′(b), and vanishes faster when

f ′(a) = f ′(b).

Remark. It suffices to assume that f is twice continuously differentiable over [a, b] to

justify all the estimates above.
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5.4. Simpson Rule. The Simpson rule is defined in terms of the midpoint and trapezoidal

rules by (4.1). Because the errors of the midpoint and trapezoidal rules are given by (5.10)

and (5.20) respectively, after expressing the error as two integrals, some algebra in the

integrands, and two integrations by parts for each integral, we see that the error of the

Simpson rule is

ES
1 [f ] =

2
3
EM
1 [f ] + 1

3
ET
1 [f ]

= −1
3

∫ c

a

(y − a)2f ′′(y) dy − 1
3

∫ b

c

(b− y)2f ′′(y) dy

+ 1
6

∫ b

a

(y − a)(b− y)f ′′(y) dy

= 1
6

∫ c

a

(

(y − a)(b− y)− 2(y − a)2
)

f ′′(y) dy

+ 1
6

∫ b

c

(

(y − a)(b− y)− 2(b− y)2
)

f ′′(y) dy

= 1
6

∫ c

a

(

2(y − a)(c− y)− (y − a)2
)

f ′′(y) dy

+ 1
6

∫ b

c

(

2(y − c)(b− y)− (b− y)2
)

f ′′(y) dy

= 1
6

∫ c

a

(y − a)2(c− y)f ′′′(y) dy

− 1
6

∫ b

c

(y − c)(b− y)2f ′′′(y) dy

= 1
18

∫ c

a

[

(y − a)3(c− y) + 1
4
(y − a)4

]

f (4)(y) dy

+ 1
18

∫ b

c

[

(y − c)(b− y)3 + 1
4
(b− y)4

]

f (4)(y) dy .

(5.30)

In what follows we will make use of the facts that

0 ≤ (y − a)3(c− y) + 1
4
(y − a)4 ≤ 1

4
(c− a)4 = 1

64
(b− a)4 over [a, c] ,

0 ≤ (y − c)(b− y)3 + 1
4(b− y)4 ≤ 1

4 (b− c)4 = 1
64 (b− a)4 over [c, b] ,

(5.31)

and that
∫ c

a

[

(y − a)3(c− y) + 1
4
(y − a)4

]

dy = 1
10
(c− a)5 = 1

320
(b− a)5 ,

∫ b

c

[

(y − c)(b− y)3 + 1
4
(b− y)4

]

dy = 1
10
(b− c)5 = 1

320
(b− a)5 .

(5.32)



17

If [a, b] is divided into n uniform subintervals [xk−1, xk] as given by (1.1) then it follows

from (5.30) that the error of the Simpson rule is

ES
n [f ] =

1
18

n
∑

k=1

∫ x
k−

1

2

xk−1

[

(y − xk−1)
3(xk− 1

2

− y)− 1
4
(y − xk−1)

4
]

f (4)(y) dy

+ 1
18

n
∑

k=1

∫ xk

x
k−

1

2

[

(y − xk− 1

2

)(xk − y)3 + 1
4 (xk − y)4

]

f (4)(y) dy .

(5.33)

If |f (4)(y)| ≤ M over [a, b] then because by (5.32)

∫ x
k−

1

2

xk−1

[

(y − xk−1)
3(xk− 1

2

− y)− 1
4 (y − xk−1)

4
]

dy =
(b− a)5

320n5
,

∫ xk

x
k−

1

2

[

(y − xk− 1

2

)(xk − y)3 + 1
4 (xk − y)4

]

dy =
(b− a)5

320n5
,

we can obtain from (5.33) the bound

∣

∣ES
n [f ]

∣

∣ ≤
(b− a)5

2880n4
M . (5.34)

Alternatively, because by (5.31)

max
{

(y − xk−1)
3(xk− 1

2

− y)− 1
4
(y − xk−1)

4 : y ∈ [xk−1, xk− 1

2

]
}

=
(b− a)4

64n4
,

max
{

(y − xk− 1

2

)(xk − y)3 + 1
4(xk − y)4 : y ∈ [xk− 1

2

, xk]
}

=
(b− a)4

64n4
,

we can also obtain from (5.33) the bound

∣

∣ES
n [f ]

∣

∣ ≤
(b− a)4

1152n4

∫ b

a

|f (4)(y)| dy . (5.35)

Both (5.34) and (5.35) show that the error vanishes at least as fast as n−4 as n → ∞.

Which bound is better depends upon f .

When f ′′′ is monotonic over [a, b] then

∫ b

a

|f (4)(y)| dy = |f ′′′(b)− f ′′′(a)| ,

in which case (5.35) can be recast as

∣

∣ES
n [f ]

∣

∣ ≤
(b− a)4

1152n4
|f ′′′(b)− f ′′′(a)| . (5.36)
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Because the factors inside the square brackets of the integrands in (5.33) are nonnegative,

when f ′′′ is monotonic over [a, b] we can read off the sign of the error given by (5.33).

Because the factors that appear inside the square brackets of the integrands in (5.33)

are nonnegative, the Integral Mean-Value Theorem can be applied to conclude that
∫ x

k−

1

2

xk−1

[

(y − xk−1)
3(xk− 1

2

− y)− 1
4 (y − xk−1)

4
]

f (4)(y) dy

=
(b− a)5

5760n5
f (4)(y−k ) for some y−k ∈ [xk−1, xk− 1

2

] ,
∫ xk

x
k−

1

2

[

(y − xk− 1

2

)(xk − y)3 + 1
4 (xk − y)4

]

f (4)(y) dy

=
(b− a)5

5760n5
f (4)(y+k ) for some y+k ∈ [xk− 1

2

, xk] .

When these relations are placed into (5.33) it becomes

ES
n [f ] =

(b− a)5

2880n5

n
∑

k=1

f (4)(y−k ) + f (4)(y+k )

2
for some y−k , y

+
k ∈ [xk−1, xk] . (5.37)

Because the Intermediate-Value Theorem applied to f (4) yields
n
∑

k=1

f (4)(y−k ) + f (4)(y+k )

2n
= f ′′(yS) for some yS ∈ [a, b] ,

we see from (5.35) that

ES
n [f ] = −

(b − a)5

2880n4
f (4)(yS) for some yS ∈ [a, b] . (5.38)

This form for the error is equivalent to the one given in the textbook. We can derive (5.34)

from it, but we cannot derive (5.35) from it.

Finally, because of the convergence of the Riemann sums

lim
n→∞

n
∑

k=1

f (4)(y−k ) + f (4)(y+k )

2

b− a

n
=

∫ b

a

f (4)(y) dy = f ′′′(b)− f ′′′(a) ,

we see from (5.37) that if f ′′′(b) 6= f ′′′(a) then

ES
n [f ] ∼ −

(b− a)4

2880n4

(

f ′′′(b)− f ′′′(a)
)

as n → ∞ , (5.39)

This is the asymptotic convergence result that was asserted in (4.3). It shows that the error

vanishes like n−4 as n → ∞ when f ′′′(a) 6= f ′′′(b), and vanishes faster when f ′′′(a) = f ′′′(b).

Remark. It suffices to assume that f is four times continuously differentiable over [a, b]

to justify all the estimates above.


