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5. Nonhomogeneous Linear Equations with Constant Coefficients

This chapter gives three methods by which we can construct particular solutions to
an nth-order nonhomogeneous linear ordinary differential equation

(5.1) Ly = f(t) ,

when the differential operator L has constant coefficients and is in normal form,

(5.2) L = Dn + a1D
n−1 + · · ·+ an−1D + an .

The previous chapter showed that constructing a particular solution of (5.1) is the key
step either in finding a general solution of (5.1) or in solving an initial-value problem
associated with (5.1).

The first two methods we present are Key Identity Evaluations and Undetermined
Coefficients. They are related and require the forcing f(t) to have a special form.
Because they generally provide the fastest way to find a particular solution whenever
f(t) has this special form, it is a good idea to master at least one of them.

The third method we present is Green Functions. It can be applied to any forcing
f(t), but does not yield an explicit particular solution. Rather, it reduces the problem
of computing a particular solution to that of evaluating n integrals. Because evaluating
integrals takes time, this method should only be applied when the first two methods
cannot be applied.

5.1. Key Identity Evaluations. This method should only be used to find a particular
solution of equation (5.1) when the following two conditions are met.

(1) The differential operator L has constant coefficients.
(2) The forcing f(t) can be expressed in the form

(5.3)
f(t) =

(
f0t

d + f1t
d−1 + · · ·+ fd

)
eµt cos(νt)

+
(
g0t

d + g1t
d−1 + · · ·+ gd

)
eµt sin(νt) ,

for some nonnegative integer d and real numbers µ and ν with ν ≥ 0. Here we
are assuming that f0, f1, · · · , fd and g0, g1, · · · , gd are all real and that either
f0 6= 0 or νg0 6= 0.

When the forcing f(t) can be expressed the form (5.3) it is said to have characteristic
form. The complex number µ+ iν with ν ≥ 0 is called the characteristic of f(t) while
the integer d is called the degree of f(t). If ν = 0 we say that f(t) has real characteristic
form. Otherwise we say that f(t) has complex characteristic form.

Remark. If f(t) has real characteristic form then the gk can be anything because ν = 0
implies that sin(νt) = 0 for every t. In this case we can assume that all the gk are zero.
Then the fk are uniquely determined by the linear independence of the functions

tdeµt , td−1eµt , · · · t eµt , eµt .

Remark. If f(t) has complex characteristic form then we can restrict to ν > 0 because
the form (5.3) remains unchanged if we replace ν with −ν and each gk with −gk. The
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restriction ν > 0 implies that the fk and gk are uniquely determined by the linear
independence of the functions

tdeµt cos(νt) , td−1eµt cos(νt) , · · · t eµt cos(νt) , eµt cos(νt) ,

tdeµt sin(νt) , td−1eµt sin(νt) , · · · t eµt sin(νt) , eµt sin(νt) .

Verification of condition (1) is always easy to do by inspection. Verification of con-
dition (2) is often easy to do by inspection, but sometimes requires the use of some
trigonometric or other identity. You should be able to identify when a forcing f(t) has
characteristic form and, when it does, to read-off its characteristic and degree.

Example. The forcing of the differential equation Ly = 2e2t has characteristic form
with characteristic µ+ iν = 2 and degree d = 0.

Example. The forcing of the differential equation Ly = t2e−3t has characteristic form
with characteristic µ+ iν = −3 and degree d = 2.

Example. The forcing of the differential equation Ly = t e5t sin(3t) has characteristic
form with characteristic µ+ iν = 5 + i3 and degree d = 1.

Example. The forcing of the differential equation Ly = t3 + 7t has characteristic form
with characteristic µ+ iν = 0 and degree d = 3.

Example. The forcing of the differential equation Ly = sin(2t) cos(2t) can be put into
the form (5.3) by using the double-angle identity sin(4t) = 2 sin(2t) cos(2t). The equa-
tion thereby can be expressed as Ly = 1

2
sin(4t). Therefore the forcing has characteristic

form with characteristic µ+ iν = i4 and degree d = 0.

5.1.1. Setting Up Key Identity Evaluations. The method of Key Identity Evaluations
is based on the observation that for any forcing that has characteristic form with char-
acteristic µ + iν we can construct an explicit particular solution of equation (5.1) by
evaluating the Key Identity and some of its derivatives with respect to z at z = µ+ iν.
For example, if p(z) is the characteristic polynomial of L then the Key Identity and its
first four derivatives with respect to z are

(5.4)

L
(
ezt
)

= p(z)ezt ,

L
(
t ezt

)
= p(z) t ezt + p′(z) ezt ,

L
(
t2ezt

)
= p(z) t2ezt + 2p′(z) t ezt + p′′(z) ezt ,

L
(
t3ezt

)
= p(z) t3ezt + 3p′(z) t2ezt + 3p′′(z) t ezt + p′′′(z) ezt ,

L
(
t4ezt

)
= p(z) t4ezt + 4p′(z) t3ezt + 6p′′(z) t2ezt + 4p′′′(z) t ezt + p(4)(z) ezt .

We see that when these are evaluated at z = µ + iν then the terms on the right-hand
sides above have the same form as those appearing in the forcing (5.3).
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Remark. The coefficients appearing on the right-hand side of (5.4) are the coefficients
that appear in the binomial expansion. They are generated by the Pascal triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
...

Recall that each entry in the Pascal triangle is the sum of the two entries appearing
immediately above it. By using this rule it is easy to extend (5.4) to as many derivatives
of the Key Identity with respect to z as needed.

If the characteristic µ + iν is not a root of p(z) then one needs through the dth

derivative of the Key Identity with respect to z. These should be evaluated at z = µ+iν.
A linear combination of the resulting d + 1 equations (and their conjugates if ν > 0)
can then be found so that its right-hand side equals any f(t) given by (5.3). We can
then read off YP from this linear combination.

More generally, if the characteristic µ + iν is a root of p(z) of multiplicity m then
one needs through the (m+d)th derivative of the Key Identity with respect to z. These
should be evaluated at z = µ + iν. Because µ + iν is a root of multiplicity m, the
first m of these will vanish when evaluated at z = µ+ iν. A linear combination of the
resulting d + 1 equations (and their conjugates if ν > 0) can then be found so that its
right-hand side equals any f(t) given by (5.3). We can then read off YP from this linear
combination. This case includes the previous one if we understand “µ+ iν is a root of
p(z) of multiplicity 0” to mean that it is not a root of p(z).

Given a nonhomogeneous problem Ly = f(t) in which the forcing f(t) has character-
istic form with characteristic µ + iν, degree d, and multiplicity m, the method of Key
Identity Evaluations will find a particular solution YP as follows.

1. Write down the Key Identity through its (m+ d)th derivative with respect to z.
2. Evaluate the mth through the (m + d)th derivative of the Key Identity at z =
µ+ iν.

3. Find a linear combination of the resulting d+ 1 equations (and their conjugates
if ν > 0) whose right-hand side equals f(t) and read off YP .

Remark. The method Key Identity Evaluations is fairly painless when d is small. For
the problems we will face both m and d will be small, so m + d will seldom be larger
than 3, and more commonly be 0, 1, or 2.

5.1.2. Zero Degree Examples. The case where d = 0 often arises in applications. When
d = 0 the method of Key Identity evaluations reduces to a single equation that can be
easily solved. For example, if the characteristic µ+ iν has multiplicity m = 0 then that
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single equation is just the Key Identity evaluated at µ+ iν, which is

L
(
e(µ+iν)t

)
= p(µ+ iν) e(µ+iν)t .

Because p(µ+ iν) 6= 0 we see that a particular solution of L(y) = e(µ+iν)t is

(5.5a) YP (t) =
e(µ+iν)t

p(µ+ iν)
.

On the other hand, if µ + iν has multiplicity m > 0 then that single equation is just
the mth derivative of the Key Identity evaluated at µ+ iν, which because

p(k)(µ+ iν) = 0 for every k < m and p(m)(µ+ iν) 6= 0 ,

we see from (5.4) becomes

L
(
tme(µ+iν)t

)
= p(m)(µ+ iν) e(µ+iν)t .

Because p(m)(µ+ iν) 6= 0 we see that a particular solution of L(y) = e(µ+iν)t is

(5.5b) YP (t) =
tme(µ+iν)t

p(m)(µ+ iν)
.

We call (5.5) the zero degree formulas. The first can be recovered from the second by
setting m = 0. They can be applied whenever the forcing has characteristic form with
degree d = 0 and characteristic µ+ iν. We illustrate with examples.

Remark. Because the characterisitc µ+iν has multplicity m > 0 we see from (5.4) that
the right-hand sides of the kth derivative of the Key Identity will vanish at z = µ+iν for
every k < m, which tells us something we already know, namely, that L(tke(µ+iν)t) = 0
for k = 0, · · · , m − 1. This is why we need the mth derivative of the Key Identity to
construct a particular solution.

Remark. The zero degree formulas (5.5) are also called exponential response formulas
because they give a solution of equations that have a purely exponential forcing — i.e.
equations in the form Ly = e(µ+iν)t.

In the first examples the forcing has real characteristic form, i.e. ν = 0.

Example. Find a general solution of

Ly = D2y + 2Dy + 10y = 6e2t .

Solution. The characteristic polynomial is

p(z) = z2 + 2z + 10 = (z + 1)2 + 9 = (z + 1)2 + 32 .

Its roots are −1± i3. Hence, a general solution of the associated homogeneous equation
is

YH(t) = c1e
−t cos(3t) + c2e

−t sin(3t) .

To find a particular solution, first notice that the forcing has characteristic form with
characteristic µ + iν = 2 and degree d = 0. Because the characteristic 2 is not a root
of p(z), it has multiplicity m = 0.



6

For µ+ iν = 2 and m = 0 the zero degree formula (5.5a) yields

L

(
e2t

p(2)

)
= e2t .

By multiplying this equation by 6 we see that a particular solution of L(y) = 6e2t is

yP (t) = 6
e2t

p(2)
= 6

e2t

18
= 1

3
e2t .

Therefore a general solution is

y = c1e
−t cos(3t) + c2e

−t sin(3t) + 1
3
e2t .

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

1

2

3

4

5

6

7

8

t

y(
t)

Figure 5.1. Solution to D2y + 2Dy + 10y = 6e2t shown for the initial
conditions y(0) = 3 and y′(0) = 0.

Example. Find a general solution of

Ly = D2y − 6Dy + 9y = 4e3t .

Solution. The characteristic polynomial is

p(z) = z2 − 6z + 9 = (z − 3)2 .

It has the double root 3. Hence, a general solution of the associated homogeneous
equation is

YH(t) = c1e
3t + c2t e

3t .

To find a particular solution, first notice that the forcing has characteristic form with
characteristic µ + iν = 3 and degree d = 0. Because the characteristic 3 is a double
root of p(z), it has multiplicity m = 2.
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For µ+ iν = 3 and m = 2 the zero degree formula (5.5b) yields

L

(
t2e3t

p′′(3)

)
= e3t .

By multiplying this equation by 4 and using the fact that p′′(z) = 2 we see that a
particular solution of L(y) = 4e3t is

yP (t) = 4
t2e3t

p′′(3)
= 4

t2e3t

2
= 2t2e3t .

Therefore a general solution is

y = c1e
3t + c2t e

3t + 2t2e3t .

Remark. Had we failed to notice that the characteristic µ + iν = 3 has multiplicity
m = 2 and tried to apply the zero degree formula for the m = 0 case, the resulting
division by zero should be a warning that m > 0!

In the next examples the forcing has complex characteristic form. These examples
will require some complex arithmetic. We will make use of the fact that because L has
real coefficients if Y (t) and f(t) are complex-valued functions such that then

L(Re(Y (t))) = Re(f(t)) , L(Im(Y (t))) = Im(f(t)) .

These two real equations are respectively the real and imaginary parts of the single
complex equation L(Y (t)) = f(t), and are thereby equivalent to that equation.

Example. Find a general solution of

Ly = D2y + 2Dy + 10y = cos(2t) .

Solution. As before, the characteristic polynomial is

p(z) = z2 + 2z + 10 = (z + 1)2 + 32 .

Its roots are −1± i3. Hence, a general solution of the associated homogeneous equation
is

YH(t) = c1e
−t cos(3t) + c2e

−t sin(3t) .

To find a particular solution, first notice that the forcing has characteristic form with
characteristic µ+ iν = i2 and degree d = 0. Because the characteristic i2 is not a root
of p(z), it has multiplicity m = 0.

For µ+ iν = i2 and m = 0 the zero degree formula (5.5a) shows that

L

(
ei2t

p(i2)

)
= ei2t .

Because L has real coefficients the real part of this equation is

L

(
Re

(
ei2t

p(i2)

))
= Re

(
ei2t
)

= cos(2t) .
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We thereby see that a particular solution of L(y) = cos(2t) is

YP (t) = Re

(
ei2t

p(i2)

)
= Re

(
ei2t

6 + i4

)
= Re

(
6− i4
62 + 42

ei2t
)

= 1
52

Re
(
(6− i4)ei2t

)
= 1

52
Re
(
(6− i4)(cos(2t) + i sin(2t))

)
= 6

52
cos(2t) + 4

52
sin(2t) .

Therefore a general solution is

y = c1e
−t cos(3t) + c2e

−t sin(3t) + 3
26

cos(2t) + 1
13

sin(2t) .

0 1 2 3 4 5 6 7 8 9
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

y(
t)

Figure 5.2. Solution to D2y+2Dy+10y = cos(2t) shown for the initial
conditions y(0) = 1 and y′(0) = 0.

Example. Find a general solution of

Ly = D2y + 9y = 4 cos(3t) .

Solution. This problem has constant coefficients. Its characteristic polynomial is

p(z) = z2 + 9 = z2 + 32 .

Its roots are ±i3. Hence, a general solution of the associated homogeneous equation is

YH(t) = c1 cos(3t) + c2 sin(3t) .

To find a particular solution, first notice that the forcing has the characteristic form
(5.3) with characteristic µ+ iν = i3 and degree d = 0. Because the characteristic i3 is
a simple root of p(z), it has multiplicity m = 1.

For µ+ iν = i3 and m = 1 the zero degree formula (5.5b) shows that

L

(
t ei3t

p′(i3)

)
= ei3t .
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Because L has real coefficients the real part of this equation is

L

(
Re

(
t ei3t

p′(i3)

))
= Re

(
ei3t
)

= cos(3t) .

Upon multiplying this by 4 and using the fact that p′(z) = 2z, we see that a particular
solution of L(y) = 4 cos(3t) is

YP (t) = Re

(
4
t ei3t

p′(i3)

)
= Re

(
4
t ei3t

i6

)
=

4t

6
Re
(
−i ei3t

)
=

2t

3
Re
(
− i(cos(3t) + i sin(3t))

)
= 2

3
t sin(3t) .

Therefore a general solution is

y = c1 cos(3t) + c2 sin(3t) + 2
3
t sin(3t) .

Example. Find a general solution of

Ly = D2y + 2Dy + 10y = 5e−t sin(3t) .

Solution. As before, the characteristic polynomial is

p(z) = z2 + 2z + 10 = (z + 1)2 + 32 .

Its roots are −1± i3. Hence, a general solution of the associated homogeneous equation
is

YH(t) = c1e
−t cos(3t) + c2e

−t sin(3t) .

To find a particular solution, first notice that the forcing is of the characteristic form
(5.3) with characteristic µ+ iν = −1 + i3 and degree d = 0. Because the characteristic
−1 + i3 is a simple root of p(z), it has multiplicity m = 1.

For µ+ iν = −1 + i3 and m = 1 the zero degree formula (5.5b) shows that

L

(
t e−t+i3t

p′(−1 + i3)

)
= e−t+i3t .

Because L has real coefficients the imaginary part of this equation is

L

(
Im

(
t e−t+i3t

p′(−1 + i3)

))
= Im

(
e−t+i3t

)
= e−t sin(3t) .

Upon multiplying this by 5 and using the fact that p′(z) = 2(z + 1), we see that a
particular solution of L(y) = 5e−t sin(3t) is

YP (t) = Im

(
5t e−t+i3t

p′(−1 + i3)

)
= Im

(
5t e−tei3t

i6

)
=

5t

6
e−tIm

(
−i ei3t

)
= 5

6
t e−tIm

(
− i(cos(3t) + i sin(3t))

)
= −5

6
t e−t cos(3t) .

Therefore a general solution is

y = c1e
−t cos(3t) + c2e

−t sin(3t)− 5
6
t e−t cos(3t) .
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5.1.3. Positive Degree Examples. When d > 0 the method of Key Identity evaluations
reduces to d + 1 equations that have to be combined into a single equation whose
right-hand side is f(t). For example, if the degree d = 1 and the characteristic µ + iν
has multiplicity m = 0 then the two equations are just the Key Identity and its first
derivative evaluated at µ+ iν, which are

L
(
e(µ+iν)t

)
= p(µ+ iν)e(µ+iν)t ,

L
(
t e(µ+iν)t

)
= p(µ+ iν)t e(µ+iν)t + p′(µ+ iν)e(µ+iν)t ,

Because m = 0 we know that p(µ + iν) 6= 0, the first of these equations recovers the
zero degree formula

L

(
e(µ+iν)t

p(µ+ iν)

)
= e(µ+iν)t ,

while the second yields

L

(
t e(µ+iν)t

p(µ+ iν)

)
= t e(µ+iν)t +

p′(µ+ iν)

p(µ+ iν)
e(µ+iν)t .

Upon multiplying the zero degree formula by p′(µ + iν)/p(µ + iν) and subtracting it
from one just above we obtain

L

(
t e(µ+iν)t

p(µ+ iν)
− p′(µ+ iν)

p(µ+ iν)

e(µ+iν)t

p(µ+ iν)

)
= t e(µ+iν)t .

By linearly combining the real and imaginary parts of this formula with the real and
imaginary parts of the zero degree formula we can obtain an explicit particular solution
for any forcing f(t) of characteristic form that has degree d = 1 and characteristic µ+iν
with multiplicity m = 0.

The best approach to using the method of Key Identity evaluations is to mimic the
steps that we used to derive the above formulas rather than remembering the formulas
themselves. That approach works when d > 1 as well as when m > 0. We now illustrate
this approach.

Example. Find a general solution of

Ly = D2y + 2Dy + 10y = 4te2t .

Solution. As before the characteristic polynomial is

p(z) = z2 + 2z + 10 = (z + 1)2 + 32 .

Its roots are −1± i3. Hence, a general solution of the associated homogeneous equation
is

YH(t) = c1e
−t cos(3t) + c2e

−t sin(3t) .

To find a particular solution, first notice that the forcing has characteristic form with
characteristic µ + iν = 2 and degree d = 1. Because the characteristic 2 is not a root
of p(z), it has multiplicity m = 0.
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Because m + d = 1, we will only need the Key Identity and its first derivative with
respect to z:

L
(
ezt
)

= (z2 + 2z + 10) ezt ,

L
(
t ezt

)
= (z2 + 2z + 10) t ezt + (2z + 2) ezt .

Evaluate these at z = 2 to obtain

L
(
e2t
)

= 18e2t , L
(
t e2t

)
= 18 t e2t + 6 e2t .

Because we want to isolate the t e2t term on the right-hand side, subtract one-third the
first equation from the second to get

L
(
t e2t − 1

3
e2t
)

= L
(
t e2t

)
− 1

3
L
(
e2t
)

= 18 t e2t .

After multiplying this by 2
9

we can read off that

YP (t) = 2
9
te2t − 2

27
e2t .

Therefore a general solution is

y = c1e
−t cos(3t) + c2e

−t sin(3t) + 2
9
te2t − 2

27
e2t .

Example. Find a general solution of

Ly = D2y + 4y = t cos(2t) .

Solution. This problem has constant coefficients. Its characteristic polynomial is

p(z) = z2 + 4 = z2 + 22 .

Its roots are ±i2. Hence,

YH(t) = c1 cos(2t) + c2 sin(2t) .

To find a particular solution, first notice that the forcing has characteristic form with
characteristic µ + iν = i2 and degree d = 1. Because the characteristic i2 is a simple
root of p(z), it has multiplicity m = 1.

Because m + d = 2, we will need the Key Identity and its first two derivatives with
respect to z:

L
(
ezt
)

= (z2 + 4)ezt ,

L
(
t ezt

)
= (z2 + 4)t ezt + 2z ezt ,

L
(
t2ezt

)
= (z2 + 4)t2ezt + 4z t ezt + 2ezt .

Because m = 1, we evaluate the first and second derivative of the Key Identity at z = i2
to obtain

L
(
t ei2t

)
= i4 ei2t , L

(
t2ei2t

)
= i8 t ei2t + 2ei2t .

Because t cos(2t) = Re(t ei2t), we want to isolate the t ei2t term on the right-hand side.
This is done by multiplying the second equation by i1

2
and adding it to the third to find

L
(
(t2 + i1

2
t)ei2t

)
= L

(
t2ei2t

)
+ i1

2
L
(
t ei2t

)
= i8 t ei2t .

Now divide this by i8 to obtain

L

(
t2 + i1

2
t

i8
ei2t
)

= t ei2t ,
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from which we read off that

YP (t) = Re

(
t2 + i1

2
t

i8
ei2t
)

=
t

16
Re
(
(1− i2t)ei2t

)
=

t

16

(
cos(2t) + 2t sin(2t)

)
.

Therefore a general solution is

y = c1 cos(2t) + c2 sin(2t) + 1
16
t cos(2t) + 1

8
t2 sin(2t) .

Remark. The characterisitc µ+iν = i2 has multplicitym = 1 because p(z) = z2+4 = 0
at z = i2. This means the right-hand side of the Key Identity will vanish at z = i2,
which tells us something we already know, namely, that L(ei2t) = 0. Moreover, it means
the term involving t ezt on the right-hand side of the derivative of the Key Identity and
the term involving t2ezt on the right-hand side of the second derivative of the Key
Identity will also vanish at z = i2.

0 1 2 3 4 5 6 7 8 9
−10

−5

0

5

10

t

y(
t)

Figure 5.3. Solution to D2y + 4y = t cos (2t) shown for the initial
conditions y(0) = 1 and y′(0) = 0

5.1.4. Why the Method Works. While the foregoing examples show how the method of
Key Identity Evaluations works, they do not show why it works. Specifically, they do
not show why it can find a particular solution for every forcing that has characteristic
form. We will now show why this is the case. You do not need to know these arguments.

Suppose the forcing f(t) has the characteristic form (5.3) with characteristic µ + iν
and degree d. The characteristic form (5.3) can be written as

f(t) = Re
((
h0t

d + h1t
d−1 + · · ·+ hd−1t+ hd

)
e(µ+iν)t

)
,

where hk = fk − igk for every k = 0, 1, · · · , d.
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Now let p(z) be the characteristic polynomial of the operator L. The kth derivative
of the Key Identity with respect to z is

L
(
tkezt

)
=

k∑
j=0

(
k
j

)
p(k−j)(z)tjezt ,

where we recall that the binomial coefficient is defined by(
k
j

)
=

k!

(k − j)! j!
.

Suppose that µ+ iν is a root of p(z) of multiplicity m. For any C0, C1, · · · , Cd we have

L

(
d∑

k=0

Cd−kt
m+ke(µ+iν)t

)
=

d∑
k=0

Cd−kL
(
tm+ke(µ+iν)t

)
=

d∑
k=0

Cd−k

(
m+k∑
j=0

(
m+ k
j

)
p(m+k−j)(z)tjezt

)

=
d∑

k=0

k∑
j=0

Cd−k

(
m+ k
j

)
p(m+k−j)(µ+ iν)tje(µ+iν)t

=
d∑
j=0

(
d∑
k=j

(
m+ k
j

)
p(m+k−j)(µ+ iν)Cd−k

)
tje(µ+iν)t

=
d∑
j=0

hd−jt
je(µ+iν)t ,

where h0, h1, · · · , hd are related to C0, C1, · · · , Cd by

hd−k =
d∑
k=j

(
m+ k
j

)
p(m+k−j)(µ+ iν)Cd−k for every k = 0, · · · , d .

In particular, these d+ 1 equations have the form

(5.6)

h0 =

(
m+ d
d

)
p(m)(µ+ iν)C0 ,

h1 =

(
m+ d
d− 1

)
p(m+1)(µ+ iν)C0 +

(
m+ d− 1
d− 1

)
p(m)(µ+ iν)C1 ,

h2 =

(
m+ d
d− 2

)
p(m+2)(µ+ iν)C0

+

(
m+ d− 1
d− 2

)
p(m+1)(µ+ iν)C1 +

(
m+ d− 2
d− 2

)
p(m)(µ+ iν)C2 ,

...

hd = p(m+d)(µ+ iν)C0 + p(m+d−1)(µ+ iν)C1 + · · ·+ p(m)(µ+ iν)Cd ,
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Because p(m)(µ + iν) 6= 0, system (5.6) can be solved for C0, C1, · · · , Cd for any given
h0, h1, · · · , hd. We first solve the first equation for C0 and plug the result into the
remaining equations. We then solve the second equation for C1 and plug the result into
the remaining equations. This continues until we finally solve the last equation for Cd.

Let C0, C1, · · · , Cd be the solution of system (5.6) when we set hk = fk − igk for
every k = 0, 1, · · · , d. Then a particular solution of Ly = f(t) is given by

(5.7) YP (t) = Re
((
C0t

m+d + C1t
m+d−1 + · · ·+ Cd−1t

m+1 + Cdt
m
)
e(µ+iν)t

)
.

5.2. Undetermined Coefficients. This method should only be applied to equation
(5.1) when the following two conditions are met.

(1) The differential operator L has constant coefficients.
(2) The forcing f(t) has the characteristic form (5.3) for some characteristic µ+ iν

and degree d.

These are the same conditions required by the method of Key Identity evalutaions.

5.2.1. Form for Particular Solutions. The method of Undetermined Coefficients is based
on the observation that if the characteristic µ+ iν of the forcing f(t) is not a root of the
characteristic polynomial p(z) of the operator L then equation (5.1) has a particular
solution of the form

(5.8)
YP (t) =

(
A0t

d + A1t
d−1 + · · ·+ Ad

)
eµt cos(νt)

+
(
B0t

d +B1t
d−1 + · · ·+Bd

)
eµt sin(νt) ,

where A0, A1, · · · , Ad, and B0, B1, · · · , Bd are real constants. Notice that when ν = 0
the terms involving B0, B1, · · · , Bd all vanish. More generally, if the characteristic
µ + iν is a root of p(z) of multiplicity m then equation (5.1) has a particular solution
of the form

(5.9)
YP (t) =

(
A0t

m+d + A1t
m+d−1 + · · ·+ Adt

m
)
eµt cos(νt)

+
(
B0t

m+d +B1t
m+d−1 + · · ·+Bdt

m
)
eµt sin(νt) ,

where A0, A1, · · · , Ad, and B0, B1, · · · , Bd are real constants. Notice that when ν = 0
the terms involving B0, B1, · · · , Bd all vanish. This case includes the previous one if
we once again understand “µ+ iν is a root of p(z) of multiplicity 0” to mean that it is
not a root of p(z). When we then sets m = 0 in (5.9), it reduces to (5.8).

5.2.2. Determining the Undetermined Coefficients. Given a nonhomogeneous equation
Ly = f(t) in which the forcing f(t) has the characteristic form (5.3) with characteristic
µ + iν, degree d, and multiplicity m, the method of undetermined coefficients seeks a
particular solution YP (t) in the form (5.9) with A0, A1, · · · , Ad, and B0, B1, · · · , Bd as
unknowns to be determined. These are the “undetermined coefficients” of the method.
There are 2d+2 unknowns when ν 6= 0, and only d+1 unknowns when ν = 0 because in
that case the terms involving B0, B1, · · · , Bd vanish. These unknowns are determined
as follows.

1. Substitute the form (5.9) directly into LYP and collect like terms.
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2. Set LYP = f(t) and match the coefficients in front of each of the linearly in-
dependent functions that appears on either side. (Examples will make this
clearer.)

3. Solve the resulting linear algebraic system for the unknowns in the form (5.9).

This linear algebraic system will consist of either 2d+2 equations for the 2d+2 unknowns
A0, A1, · · · , Ad, and B0, B1, · · · , Bd (when ν 6= 0) or d + 1 equations for the d + 1
unknowns A0, A1, · · · , Ad (when ν = 0). Because these unknowns are the parameters
of the family (5.9), this method is also sometimes called “Undetermined Parameters”.
We do not do so here in order to avoid confusion with the method of “Variation of
Parameters” which we will study later.

Remark. The methods of Undetermined Coefficients and Key Identity Evaluations
are each fairly painless when m and d are both small and ν = 0. When m and d are
both small and ν 6= 0 then Key Identity Evaluations is usually faster. For the problems
we will face both m and d will be small, so m + d will seldom be larger than 3, and
more commonly be 0, 1, or 2.

5.2.3. Examples. In order to contrast the two methods, we will now illustrate the
method of Undetermined Coefficients on some of the same examples we had previously
treated by Key Identity evaluations.

Example. Find a general solution of

Ly = D2y + 2Dy + 10y = 6e2t .

Solution. The characteristic polynomial is

p(z) = z2 + 2z + 10 = (z + 1)2 + 9 = (z + 1)2 + 32 .

Its roots are −1± i3. Hence,

YH(t) = c1e
−t cos(3t) + c2e

−t sin(3t) .

To find a particular solution, first notice that the forcing has the characteristic form
(5.3) with characteristic µ + iν = 2 and degree d = 0. Because the characteristic 2 is
not a root of p(z), it has multiplicity m = 0.

Because µ+ iν = 2, d = 0, and m = 0, we see from (5.9) that YP has the form

YP (t) = Ae2t .

Because
Y ′P (t) = 2Ae2t , Y ′′P (t) = 4Ae2t ,

we see that
LYP (t) = Y ′′P (t) + 2Y ′P (t) + 10YP (t)

= 4Ae2t + 4Ae2t + 10Ae2t = 18Ae2t .

If we set LYP (t) = 6e2t then we see that 18A = 6, whereby A = 1
3
. Hence,

YP (t) = 1
3
e2t .

Therefore a general solution is

y = c1e
−t cos(3t) + c2e

−t sin(3t) + 1
3
e2t .
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Example. Find a general solution of

Ly = D2y + 2Dy + 10y = 4te2t .

Solution. As before, the characteristic polynomial is

p(z) = z2 + 2z + 10 = (z + 1)2 + 32 .

Its roots are −1± i3. Hence,

YH(t) = c1e
−t cos(3t) + c2e

−t sin(3t) .

To find a particular solution, first notice that the forcing has the characteristic form
(5.3) with characteristic µ + iν = 2 and degree d = 1. Because the characteristic 2 is
not a root of p(z), it has multiplicity m = 0.

Because µ+ iν = 2, d = 1, and m = 0, we see from (5.9) that YP has the form

YP (t) = (A0t+ A1)e
2t .

Because

Y ′P (t) = 2(A0t+ A1)e
2t + A0e

2t , Y ′′P (t) = 4(A0t+ A1)e
2t + 4A0e

2t ,

we see that

LYP (t) = Y ′′P (t) + 2Y ′P (t) + 10YP (t)

= 4(A0t+ A1)e
2t + 4A0e

2t + 4(A0t+ A1)e
2t + 2A0e

2t + 10(A0t+ A1)e
2t

= 18(A0t+ A1)e
2t + 6A0e

2t

= 18A0te
2t + (18A1 + 6A0)e

2t .

If we set LYP (t) = 4te2t then by equating the coefficients of the linearly independent
functions te2t and e2t we see that

18A0 = 4 , 18A1 + 6A0 = 0 .

Upon solving this linear algebraic system for A0 and A1 we first find that A0 = 2
9

and

then that A1 = −1
3
A0 = − 2

27
. Hence,

YP (t) = 2
9
te2t − 2

27
e2t .

Therefore a general solution is

y = c1e
−t cos(3t) + c2e

−t sin(3t) + 2
9
te2t − 2

27
e2t .

Example. Find a general solution of

Ly = D2y + 2Dy + 10y = cos(2t) .

Solution. As before, the characteristic polynomial is

p(z) = z2 + 2z + 10 = (z + 1)2 + 32 .

Its roots are −1± i3. Hence,

YH(t) = c1e
−t cos(3t) + c2e

−t sin(3t) .
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To find a particular solution, first notice that the forcing has the characteristic form
(5.3) with characteristic µ+ iν = i2 and degree d = 0. Because the characteristic i2 is
not a root of p(z), it has mutplicity m = 0.

Because µ+ iν = i2, d = 0, and m = 0 we see from (5.9) that YP has the form

YP (t) = A cos(2t) +B sin(2t) .

Because

Y ′P (t) = −2A sin(2t) + 2B cos(2t) , Y ′′P (t) = −4A cos(2t)− 4B sin(2t) ,

we see that

LYP (t) = Y ′′P (t) + 2Y ′P (t) + 10YP (t)

= −4A cos(2t)− 4B sin(2t)− 4A sin(2t) + 4B cos(2t)

+ 10A cos(2t) + 10B sin(2t)

= (6A+ 4B) cos(2t) + (6B − 4A) sin(2t) .

If we set LYP (t) = cos(2t) then by equating the coefficients of the linearly independent
functions cos(2t) and sin(2t) we see that

6A+ 4B = 1 , −4A+ 6B = 0 .

Upon solving this system we find that A = 3
26

and B = 1
13

, whereby

YP (t) = 3
26

cos(2t) + 1
13

sin(2t) .

Therefore a general solution is

y = c1e
−t cos(3t) + c2e

−t sin(3t) + 3
26

cos(2t) + 1
13

sin(2t) .

Example. Find a general solution of

Ly = D2y + 4y = t cos(2t) .

Solution. This problem has constant coefficients. Its characteristic polynomial is

p(z) = z2 + 4 = z2 + 22 .

Its roots are ±i2. Hence,

YH(t) = c1 cos(2t) + c2 sin(2t) .

To find a particular solution, first notice that the forcing has the characteristic form
(5.3) with characteristic µ+ iν = i2 and degree d = 1. Because the characteristic i2 is
a simple root of p(z), it has multiplicity m = 1.

Because µ+ iν = i2, d = 1, and m = 1, we see from (5.9) that YP has the form

YP (t) = (A0t
2 + A1t) cos(2t) + (B0t

2 +B1t) sin(2t) .
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Because

Y ′P (t) = −2(A0t
2 + A1t) sin(2t) + (2A0t+ A1) cos(2t)

+ 2(B0t
2 +B1t) cos(2t) + (2B0t+B1) sin(2t)

=
(
2B0t

2 + 2(B1 + A0)t+ A1

)
cos(2t)−

(
2A0t

2 + 2(A1 −B0)t−B1

)
sin(2t) ,

Y ′′P (t) = −2
(
2B0t

2 + 2(B1 + A0)t+ A1

)
sin(2t) +

(
4B0t+ 2(B1 + A0)

)
cos(2t)

− 2
(
2A0t

2 + 2(A1 −B0)t−B1

)
cos(2t)−

(
4A0t+ 2(A1 −B0)

)
sin(2t)

= −
(
4A0t

2 + (4A1 − 8B0)t− 4B1 − 2A0

)
cos(2t)

−
(
4B0t

2 + (4B1 + 8A0)t+ 4A1 − 2B0

)
sin(2t) ,

we see that

LYP (t) = Y ′′P (t) + 4YP (t)

= −
[(

4A0t
2 + (4A1 − 8B0)t− 4B1 − 2A0

)
cos(2t)

+
(
4B0t

2 + (4B1 + 8A0)t+ 4A1 − 2B0

)
sin(2t)

]
+ 4
[
(A0t

2 + A1t) cos(2t) + (B0t
2 +B1t) sin(2t)

]
=
(
8B0t+ 4B1 + 2A0

)
cos(2t)−

(
8A0t+ 4A1 − 2B0

)
sin(2t) .

If we set LYP (t) = t cos(2t) then by equating the coefficients of the linearly independent
functions cos(2t), t cos(2t), sin(2t), and t sin(2t), we see that

4B1 + 2A0 = 0 , 8B0 = 1 , 4A1 − 2B0 = 0 , 8A0 = 0 .

The solution of this system is A0 = 0, B0 = 1
8
, A1 = 1

16
, and B1 = 0, whereby

YP (t) = 1
16
t cos(2t) + 1

8
t2 sin(2t) .

Therefore a general solution is

y = c1 cos(2t) + c2 sin(2t) + 1
16
t cos(2t) + 1

8
t2 sin(2t) .

Remark. The above example is typical of a case when Key Identity Evaluations is
far faster than Undetermined Coefficients. This is because the forcing has a conjugate
pair characteristic µ ± iν = ±i2, positive degree d = 1, and small multiplicity m = 1.
This advantage becomes much more dramatic for larger d. Key Identity Evaluations will
usually be as fast or faster than Undetermined Coefficients. If you master both methods
you will develop a sense about which one is most efficient for any given problem.

5.2.4. Why the Method Works. While the foregoing examples show how the method of
Undetermined Coefficients works, they do not show why it works. Specifically, they do
not show why there should be a particular solution of the form (5.9) when the forcing
has the characteristic form (5.3). We will now show why this is the case. While you do
not need to know these arguments, understanding them might help you remember the
form (5.9). We will consider two cases.

First, suppose the forcing f(t) has the characteristic form (5.3) with real characteristic
µ and degree d — i.e. with ν = 0. Let p(z) be the characteristic polynomial of the
operator L. Suppose that µ is a root of p(z) of multiplicity m. Then p(z) can be
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factored as p(z) = (z−µ)mq(z) where q(µ) 6= 0. Observe the characteristic form of f(t)
implies that it satisfies the homogeneous linear equation

(D− µ)d+1f(t) = 0 .

Then every solution of Ly = f(t) also satisfies the homogeneous equation

(D− µ)d+1Ly = (D− µ)d+1f(t) = 0 .

The characteristic polynomial of (D−µ)d+1L is r(z) = (z−µ)d+1p(z), which factors as

r(z) = (z − µ)d+1p(z) = (z − µ)m+d+1q(z) , where q(µ) 6= 0 .

Therefore µ is a root of r(z) of multiplicity m+ d+ 1. All the other roots of r(z) and
their multiplicities are determined by the factors of q(z). Therefore a fundamental set
of solutions of the homogeneous equation (D− µ)d+1Ly = 0 is

eµt , t eµt , · · · , tm+deµt ,

plus the solutions generated by the roots of q(z). All of these solutions are also solutions
of the homogenous equation Lw = 0 except

tmeµt , tm+1eµt , · · · , tm+deµt .

Hence, every solution of Ly = f(t) can be written as y = YH(t) + YP (t) where YH(t) is
a solution of the associated homogeneous equation and YP (t) has the form (5.5) with
ν = 0.

Next, suppose the forcing f(t) has the characteristic form (5.3) with characteristic
µ + iν and degree d where ν 6= 0. Let p(z) be the characteristic polynomial of the
operator L. Suppose that µ + iν is a root of p(z) of multiplicity m. Then p(z) can be
factored as p(z) =

(
(z−µ)2 +ν2

)m
q(z) where q(µ+ iν) 6= 0. Observe the characteristic

form of f(t) implies that it satisfies the homogeneous linear equation(
(D− µ)2 + ν2

)d+1
f(t) = 0 .

Then every solution of Ly = f(t) also satisfies the homogeneous equation(
(D− µ)2 + ν2

)d+1
Ly =

(
(D− µ)2 + ν2

)d+1
f(t) = 0 .

The characteristic polynomial of
(
(D− µ)2 + ν2

)d+1
L is r(z) =

(
(z − µ)2 + ν2

)d+1
p(z),

which factors as

r(z) =
(
(z − µ)2 + ν2

)d+1
p(z) =

(
(z − µ)2 + ν2

)m+d+1
q(z) , where q(µ+ iν) 6= 0 .

Therefore µ+ iν is a root of r(z) of multiplicity m+ d+ 1. All the other roots of r(z)
and their multiplicities are determined by the factors of q(z). Therefore a fundamental

set of solutions of the homogeneous equation
(
(D− µ)2 + ν2

)d+1
Ly = 0 is

eµt cos(νt) , t eµt cos(νt) , · · · , tm+deµt cos(νt) ,

eµt sin(νt) , t eµt sin(νt) , · · · , tm+deµt sin(νt) ,
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plus the solutions generated by the roots of q(z). All of these solutions are also solutions
of the homogenous equation Lw = 0 except

tmeµt cos(νt) , tm+1eµt cos(νt) , · · · , tm+deµt cos(νt) ,

tmeµt sin(νt) , tm+1eµt sin(νt) , · · · , tm+deµt sin(νt) .

Hence, every solution of Ly = f(t) can be written as y = YH(t) + YP (t) where YH(t) is
a solution of the associated homogeneous equation and YP (t) has the form (5.9).

Remark. The Ak and Bk in (5.9) are related to the Ck in (5.7) by Ck = Ak − iBk for
every k = 0, · · · , d.

5.3. Forcings of Composite Characteristic Form. The methods of Undetermined
Coefficients and Key Identity Evaluations can be applied multiple times to construct a
particular solution of Ly = f(t) whenever

(1) the differential operator L has constant coefficients,
(2) the forcing f(t) is a sum of terms in the characteristic form (5.3), each with

different characteristics.

When the second of these conditions is satisfied the forcing is said to have composite
characteristic form. The first of these conditions is always easy to verify by inspection.
Verification of the second usually can also be done by inspection, but sometimes it might
require the use of a trigonometric or some other identity. You should be able to identify
when a forcing f(t) can be expressed as a sum of terms that have the characteristic
form (5.3), and when it is, to read-off the characteristic and degree of each component.

Example. The forcing of the equation Ly = cos(t)2 can be written as a sum of terms
that have the characteristic form (5.3) by using the identity cos(t)2 = (1 + cos(2t))/2.
We see that

Ly = cos(t)2 = 1
2

+ 1
2

cos(2t) .

Each term on the right-hand side above has the characteristic form (5.3); the first with
characteristic µ+iν = 0 and degree d = 0, and the second with characteristic µ+iν = i2
and degree d = 0.

Example. The forcing of the equation Ly = sin(2t) cos(3t) can be written as a sum of
terms that have the characteristic form (5.3) by using the identity

sin(2t) cos(3t) = 1
2

(
sin(3t+ 2t)− sin(3t− 2t)

)
= 1

2

(
sin(5t)− sin(t)

)
.

We see that
Ly = sin(2t) cos(3t) = 1

2
sin(5t)− 1

2
sin(t) .

Each term on the right-hand side above has the characteristic form (5.3); the first with
characteristic µ+iν = i5 and degree d = 0, and the second with characteristic µ+iν = i
and degree d = 0.

Example. The forcing of the equation Ly = tan(t) cannot be written as a sum of
terms in characteristic form (5.3) because every such function is smooth (infinitely
differentiable) while tan(t) is not defined at t = π

2
+mπ for every integer m.

Given a nonhomogeneous equation Ly = f(t) in which the forcing f(t) is a sum
of terms, each of which has the characteristic form (5.3), we must first identify the
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characteristic of each term and group all the terms with the same characteristic together.
We then decompose f(t) as

f(t) = f1(t) + f2(t) + · · ·+ fg(t) ,

where each fj(t) contains all the terms of a given characteristic. Each fj(t) will then
have the characteristic form (5.3) for some characteristic µ + iν and some degree d.
Then we can apply either Undetermined Coefficients or Key Identity Evaluations to
find particular solutions YjP to each of

(5.10) LY1P (t) = f1(t) , LY2P (t) = f2(t) , · · · LYgP (t) = fg(t) .

Then YP (t) = Y1P (t) + Y2P (t) + · · ·+ YgP (t) is a particular solution of Ly = f(t).

Example. Find a particular solution of Ly = D4y + 25D2y = f(t) where

f(t) = e2t + 9 cos(5t) + 4t2e2t − 7t sin(5t) + 8− 6t .

Solution. Decompose f(t) as f(t) = f1(t) + f2(t) + f3(t), where

f1(t) = 8− 6t , f2(t) =
(
1 + 4t2

)
e2t , f3(t) = 9 cos(5t)− 7t sin(5t) .

Here f1(t), f2(t), and f3(t) contain all the terms of f(t) with characteristic 0, 2, and
i5, respectively. They each have the characteristic form (5.3) with degree 1, 2, and 1
respectively. The characteristic polynomial is p(z) = z4 + 25z2 = z2(z2 + 52), which
has roots 0, 0, −i5, i5. We thereby see that the characteristics 0, 2, and i5 have
multiplicities 2, 0, and 1 respectively.

The method of Undetermined Coefficients seeks particular solutions of the problems
in (5.10) that by (5.9) have the forms

Y1P (t) = A0t
3 + A1t

2 ,

Y2P (t) =
(
A0t

2 + A1t+ A2

)
e2t ,

Y3P (t) =
(
A0t

2 + A1t
)

cos(5t) +
(
B0t

2 +B1t
)

sin(5t) .

The method leads to three systems of linear algebraic equations to solve — systems of
two equations, three equations, and four equations. We will not solve them here.

Key Identity Evaluations is often the fastest way to solve nonhomogeneous equations
whose forcings have composite characteristic form because the Key Identity and its
derivatives only have to be computed once. In the problem at hand, m + d for the
characteristics 0, 2, and i5 are 3, 2, and 2. Therefore we need the Key Identity and its
first three derivatives with respect to z:

L
(
ezt
)

=
(
z4 + 25z2

)
ezt ,

L
(
t ezt

)
=
(
z4 + 25z2

)
t ezt +

(
4z3 + 50z

)
ezt ,

L
(
t2ezt

)
=
(
z4 + 25z2

)
t2ezt + 2

(
4z3 + 50z

)
t ezt +

(
12z2 + 50

)
ezt ,

L
(
t3ezt

)
=
(
z4 + 25z2

)
t3ezt + 3

(
4z3 + 50z

)
t2ezt + 3

(
12z2 + 50

)
t ezt + 24z ezt .

For the characteristic 0 one has m = 2 and m + d = 3, so we evaluate the second
through third derivative of the Key Identity at z = 0 to obtain

L
(
t2
)

= 50 , L
(
t3
)

= 150t .
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It follows that L
(

4
25
t2 − 1

25
t3
)

= 8− 6t, whereby Y1P (t) = 4
25
t2 − 1

25
t3.

For the characteristic 2 one has m = 0 and m + d = 2, so we evaluate the zeroth
through second derivative of the Key Identity at z = 2 to obtain

L
(
e2t
)

= 116 e2t ,

L
(
t e2t

)
= 116 t e2t + 132e2t ,

L
(
t2e2t

)
= 116 t2e2t + 264 t e2t + 98 e2t .

We eliminate t e2t from the right-hand sides by multiplying the second equation by 264
116

and subtracting it from the third equation, thereby obtaining

L
(
t2e2t − 264

116
t e2t

)
= 116 t2e2t +

(
98− 264

116
132
)
e2t .

Dividing this by 29 gives

L
(

1
29
t2e2t − 66

292
t e2t

)
= 4 t2e2t +

(
98
29
− 66·132

292

)
e2t .

We eliminate e2t from the right-hand side above by multiplying the first equation by
1

116

(
98
29
− 66·132

292

)
and subtracting it from the above equation, thereby obtaining

L
(

1
29
t2e2t − 66

292
t e2t − 1

116

(
98
29
− 66·132

292

)
e2t
)

= 4 t2e2t .

Next, by multiplying the first equation by 1
116

and adding it to the above equation we
obtain

L
(

1
29
t2e2t − 66

292
t e2t − 1

116

(
98
29
− 66·132

292
− 1
)
e2t
)

=
(
1 + 4 t2

)
e2t ,

whereby Y2P (t) = 1
29
t2e2t − 66

292
t e2t − 1

116

(
98
29
− 66·132

292
− 1
)
e2t.

For the characteristic i5 we have m = 1 and m + d = 2, so we evaluate the first
through second derivative of the Key Identity at z = i5 to obtain

L
(
t ei5t

)
= −i250 ei5t , L

(
t2ei5t

)
= −i2 · 250 t ei5t − 250 ei5t .

Upon multiplying the first equation by i and adding it to the second we find that

L
(
t2ei5t + it ei5t

)
= −i2 · 250 t ei5t .

The first equation and the above equation imply

L
(
i 1
250
t ei5t

)
= ei5t , L

(
1

500
t2ei5t + i 1

500
t ei5t

)
= −i t ei5t .

The real parts of the above equations are

L
(
− 1

250
t sin(5t)

)
= cos(5t) , L

(
1

500
t2 cos(5t)− 1

500
t sin(5t)

)
= t sin(5t) .

This implies that

L
(
− 9

250
t sin(5t)− 7

500
t2 cos(5t) + 7

500
t sin(5t)

)
= 9 cos(5t)− 7t sin(5t) ,

whereby Y3P (t) = − 11
500
t sin(5t)− 7

500
t2 cos(5t).

Finally, putting all the components together, a particular solution is

YP (t) = Y1P (t) + Y2P (t) + Y3P (t)

= 4
25
t2 − 1

25
t3 + 1

29
t2e2t − 66

292
t e2t − 1

116

(
98
29
− 66·132

292
− 1
)
e2t

− 11
500
t sin(5t)− 7

500
t2 cos(5t) .
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5.4. Green Functions: Constant Coefficient Case. This method can be used to
construct a particular solution of an nth-order nonhomogeneous linear ODE

(5.11) Ly = f(t)

whenever the differential operator L has constant coefficients and is in normal form,

(5.12) L = Dn + a1D
n−1 + · · ·+ an−1D + an .

Specifically, for any initial time tI the particular solution y = YP (t) of (5.11) that

satisfies the initial condition YP (tI) = Y ′P (tI) = · · · = Y
(n−1)
P (tI) = 0 is given by

(5.13) YP (t) =

∫ t

tI

g(t− s)f(s) ds ,

where g(t) is the solution of the homogeneous initial-value problem

(5.14) Lg = 0 , g(0) = 0 , g′(0) = 0 , · · · g(n−2)(0) = 0 , g(n−1)(0) = 1 .

The function g is called the Green function associated with the operator L. Solving
the initial-value problem (5.14) for the Green function is not difficult when the roots of
the characteristic polynomials can be found. The method thereby reduces the problem
of finding a particular solution YP (t) for any forcing f(t) to that of evaluating the
integral in (5.13). However, evaluating this integral explicitly can be quite difficult or
impossible. In such cases the answer might be expressed in terms of a definite integral.

5.4.1. Examples. Before we verify that YP (t) given by (5.13) is a solution of (5.11), let
us illustrate how the method works with a few examples.

Example. Find a general solution of

Ly = D2y − y =
2

et + e−t
.

Solution. The operator L has constant coefficients and is already in normal form. Its
characteristic polynomial is given by p(z) = z2 − 1 = (z − 1)(z + 1), which has roots
±1. Therefore a general solution of the associated homogeneous equation is

YH(t) = c1e
t + c2e

−t .

By (5.14) the Green function g associated with L is the solution of the initial-value
problem

D2g − g = 0 , g(0) = 0 , g′(0) = 1 .

Set g(t) = c1e
t + c2e

−t. The first initial condition implies g(0) = c1 + c2 = 0. Because
g′(t) = c1e

t − c2e
−t, the second condition implies g′(0) = c1 − c2 = 1. Upon solving

these equations we find that c1 = 1
2

and c2 = −1
2
. Therefore the Green function is

g(t) = 1
2
(et − e−t) = sinh(t).

The particular solution given by (5.13) with tI = 0 is then

YP (t) =

∫ t

0

et−s − e−t+s

es + e−s
ds = et

∫ t

0

e−s

es + e−s
ds− e−t

∫ t

0

es

es + e−s
ds .
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The definite integrals in the above expression can be evaluated as∫ t

0

e−s

es + e−s
ds =

∫ t

0

e−2s

1 + e−2s
ds = −1

2
log
(
1 + e−2s

)∣∣∣∣t
0

= −1
2

log

(
1 + e−2t

2

)
,∫ t

0

es

es + e−s
ds =

∫ t

0

e2s

e2s + 1
ds = 1

2
log
(
e2s + 1

)∣∣∣∣t
0

= 1
2

log

(
e2t + 1

2

)
.

The above expression for YP (t) thereby becomes

YP (t) = −1
2
et log

(
1 + e−2t

2

)
− 1

2
e−t log

(
e2t + 1

2

)
.

Therefore a general solution is y = YH(t) + YP (t) where YH(t) and YP (t) are given
above.

Remark. Notice that in the above example the definite integral in the expression for
YP (t) given by (5.13) splits into two definite integrals over s whose integrands do not
involve t. This kind of splitting always happens. In general, if L is an nth-order operator
then the expression for YP (t) given by (5.13) always splits into n definite integrals over
s whose integrands do not involve t. To do this when the Green function involves terms
like eµt cos(νt) or eµt sin(νt) requires the use of the trigonometric identities

(5.15)
cos(φ− ψ) = cos(φ) cos(ψ) + sin(φ) sin(ψ) ,

sin(φ− ψ) = sin(φ) cos(ψ)− cos(φ) sin(ψ) .

You should be familiar with these identities.

Example. Find a general solution of

Ly = D2y + 9y =
27

16 + 9 sin(3t)2
.

Solution. The operator L has constant coefficients and is already in normal form. Its
characteristic polynomial is given by p(z) = z2 + 9 = z2 + 32, which has roots ±i3.
Therefore a general solution of the associated homogeneous equation is

YH(t) = c1 cos(3t) + c2 sin(3t) .

By (5.14) the Green function g associated with L is the solution of the initial-value
problem

D2g + 9g = 0 , g(0) = 0 , g′(0) = 1 .

Set g(t) = c1 cos(3t) + c2 sin(3t). The first initial condition implies g(0) = c1 = 0,
whereby g(t) = c2 sin(3t). Because g′(t) = 3c2 cos(3t), the second condition implies
g′(0) = 3c2 = 1, whereby c2 = 1

3
. Therefore the Green function is g(t) = 1

3
sin(3t).

The particular solution given by (5.13) with tI = 0 is then

YP (t) =

∫ t

0

sin
(
3(t− s)

) 9

16 + 9 sin(3s)2
ds .
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By (5.15) with φ = 3t and ψ = 3s, we see sin
(
3(t−s)

)
= sin(3t) cos(3s)−cos(3t) sin(3s).

We can use this to express YP (t) as

YP (t) = sin(3t)

∫ t

0

9 cos(3s)

16 + 9 sin(3s)2
ds− cos(3t)

∫ t

0

9 sin(3s)

16 + 9 sin(3s)2
ds .

The definite integrals in the above expression can be evaluated as∫ t

0

9 cos(3s)

16 + 9 sin(3s)2
ds =

∫ t

0

9
16

cos(3s)

1 + 9
16

sin(3s)2
ds

= 1
4

tan−1
(
3
4

sin(3s)
)∣∣∣∣t

0

= 1
4

tan−1
(
3
4

sin(3t)
)
.∫ t

0

9 sin(3s)

16 + 9 sin(3s)2
ds =

∫ t

0

9 sin(3s)

25− 9 cos(3s)2
ds =

∫ t

0

9
25

sin(3s)

1− 9
25

cos(3s)2
ds

= − 1
10

log

(
1 + 3

5
cos(3s)

1− 3
5

cos(3s)

)∣∣∣∣t
0

= − 1
10

log

(
1 + 3

5
cos(3t)

1− 3
5

cos(3t)

2
5
8
5

)
.

Here the first integral has the form

1
4

∫
du

1 + u2
= 1

4
tan−1(u) + C , where u = 3

4
sin(3s) ,

while by using partial fractions we see that the second has the form

−1
5

∫
du

1− u2
= − 1

10
log

(
1 + u

1− u

)
+ C , where u = 3

5
cos(3s) .

The above expression for YP (t) thereby becomes

YP (t) = 1
4

sin(3t) tan−1
(
3
4

sin(3t)
)

+ 1
10

cos(3t) log

(
5 + 3 cos(3t)

5− 3 cos(3t)

1

4

)
.

Therefore a general solution is y = YH(t) + YP (t) where YH(t) and YP (t) are given
above.

Remark. One can evaluate any integral whose integrand is a rational function of sine
and cosine. The integrals in the above example are of this type. The next example
illustrates what happens in most instances when the Green function method is applied
— namely, the integrals that arise cannot be evaluated analytically.

Example. Find a general solution of

Ly = D2y + 2Dy + 5y =
1

1 + t2
.

Solution. The operator L has constant coefficients and is already in normal form. Its
characteristic polynomial is given by p(z) = z2 + 2z+ 5 = (z+ 1)2 + 22, which has roots
−1± i2. Therefore a general solution of the associated homogeneous equation is

YH(t) = c1e
−t cos(2t) + c2e

−t sin(2t) .
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By (5.14) the Green function g associated with L is the solution of the initial-value
problem

D2g + 2Dg + 5g = 0 , g(0) = 0 , g′(0) = 1 .

Set g(t) = c1e
−t cos(2t) + c2e

−t sin(2t). The first initial condition implies g(0) = c1 = 0,
whereby g(t) = c2e

−t sin(2t). Because g′(t) = 2c2e
−t cos(2t) − c2e−t sin(2t), the second

condition implies g′(0) = 2c2 = 1, whereby c2 = 1
2
. Therefore the Green function is

g(t) = 1
2
e−t sin(2t).

The particular solution given by (5.13) with tI = π is then

YP (t) =

∫ t

π

1
2
e−t+s sin

(
2(t− s)

) 1

1 + s2
ds .

By (5.15) with φ = 2t and ψ = 2s, we see sin
(
2(t−s)

)
= sin(2t) cos(2s)−cos(2t) sin(2s).

We can use this to express YP (t) as

YP (t) = 1
2
e−t sin(2t)

∫ t

π

es cos(2s)

1 + s2
ds− 1

2
e−t cos(2t)

∫ t

π

es sin(2s)

1 + s2
ds .

The above definite integrals cannot be evaluated analytically. Whenever this is the
case, the answer can be left in terms of the integrals. Therefore a general solution is
y = YH(t) + YP (t) where YH(t) and YP (t) are given above.

Remark. The Green function method should never be used whenever the methods of
Undetermined Coefficients and Key Identity Evaluations can be applied. For example,
for the equation

Ly = D2y + 2Dy + 5y = t ,

the Green function method leads to the expression

YP (t) = 1
2
e−t sin(2t)

∫ t

0

es cos(2s)s ds− 1
2
e−t cos(2t)

∫ t

0

es sin(2s)s ds .

The evaluation of these integrals requires several integration-by-parts. The time it
would take to do these integrals is much longer than the time it would take to carry
out either of the other two methods, both of which quickly yield Yp(t) = 1

5
t− 2

25
!

5.4.2. Why the Method Works. Now let us verify that YP (t) given by (5.13) indeed
always gives a solution of (5.11) when g(t) is the solution of the initial-value problem
(5.14). We will use the fact from multivariable calculus that for any continuously
differentiable K(t, s) we have

D

∫ t

tI

K(t, s) ds = K(t, t) +

∫ t

tI

∂tK(t, s) ds , where D =
d

dt
.

Because g(0) = 0, we see from (5.13) that

DYP (t) = g(0)f(t) +

∫ t

tI

Dg(t− s)f(s) ds =

∫ t

tI

Dg(t− s)f(s) ds .

If 2 < n then because Dg(0) = g′(0) = 0, we see from the above that

D2YP (t) = g′(0)f(t) +

∫ t

tI

D2g(t− s)f(s) ds =

∫ t

tI

D2g(t− s)f(s) ds .
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If we continue to argue this way then because Dk−1g(0) = g(k−1)(0) = 0 for k < n, we
see that for every k < n

DkYP (t) = g(k−1)(0)f(t) +

∫ t

tI

Dkg(t− s)f(s) ds =

∫ t

tI

Dkg(t− s)f(s) ds .

Similarly, because Dn−1g(0) = g(n−1)(0) = 1, we see that

DnYP (t) = g(n−1)(0)f(t) +

∫ t

tI

Dng(t− s)f(s) ds = f(t) +

∫ t

tI

Dng(t− s)f(s) ds .

Because Lg(t) = 0, it follows that Lg(t − s) = 0. Then by the above formulas for
DkYP (t), we see that

LYP (t) = p(D)YP (t) = DnYP (t) + a1D
n−1YP (t) + · · ·+ an−1DYP (t) + anYP (t)

= f(t) +

∫ t

tI

Dng(t− s)f(s) ds+

∫ t

tI

a1D
n−1g(t− s)f(s) ds

+ · · ·+
∫ t

tI

an−1Dg(t− s)f(s) ds+

∫ t

tI

ang(t− s)f(s) ds

= f(t) +

∫ t

tI

p(D)g(t− s)f(s) ds

= f(t) +

∫ t

tI

Lg(t− s)f(s) ds = f(t) .

Therefore, YP (t) given by (5.13) is a solution of (5.11). Moreover, we see from the above
calculations that it is the unique solution of (5.11) that satisfies the initial conditions

YP (tI) = 0 , Y ′P (tI) = 0 , · · · Y
(n−1)
P (tI) = 0 .


	Contents
	5. Nonhomogeneous Linear Equations with Constant Coefficients
	5.1. Key Identity Evaluations
	5.2. Undetermined Coefficients
	5.3. Forcings of Composite Characteristic Form
	5.4. Green Functions: Constant Coefficient Case


