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6. Laplace Transform Method

The Laplace transform allows us to transform an initial-value problem for a linear
ordinary differential equation with constant coefficients into a linear algebaric equation
that can easily be solved. The solution of the initial-value problem can be obtained from
the solution of the algebaric equation by taking the so-called inverse Laplace transform.

6.1. Definition of the Transform. The Laplace transform of a function f(t) defined
over t ≥ 0 is another function L[f ](s) that is formally defined by

(6.1) L[f ](s) =

∫ ∞
0

e−stf(t) dt .

You should recall from calculus that the above definite integral is improper because
its upper endpoint is ∞. Because improper definite integrals are defined by limits, the
correct definition of the Laplace transform is

(6.2) L[f ](s) = lim
T→∞

∫ T

0

e−stf(t) dt ,

provided that the definite integrals over [0, T ] appearing in the above limit are proper.
The Laplace transform L[f ](s) is defined only at those s for which this limit exists.

Example. Use definition (6.2) to compute L[eat](s) for any real a.

Solution. From (6.2) we see that for any s 6= a we have

L[eat](s) = lim
T→∞

∫ T

0

e−steat dt = lim
T→∞

∫ T

0

e(a−s)t dt

= lim
T→∞

e(a−s)t

a− s

∣∣∣∣T
t=0

= lim
T→∞

[
1

s− a
− e(a−s)T

s− a

]
=


1

s− a
for s > a ,

∞ for s < a ,

while for s = a we have

L[eat](s) = lim
T→∞

∫ T

0

e−(s−a)t dt = lim
T→∞

∫ T

0

dt = lim
T→∞

T =∞ .

Therefore L[eat](s) is defined only for s > a with

L[eat](s) =
1

s− a
for s > a .

Remark. Notice that L[eat](s) is defined only for s > a. For every s > a it is equal to
an expression that is defined for every s 6= a, however the equality does not extend to
s < a. A similar remark will apply to subsequent examples.

Example. Use definition (6.2) to compute L[t eat](s) for any real a.
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Solution. From (6.2) we see that for any s 6= a we have

L[t eat](s) = lim
T→∞

∫ T

0

t e−steat dt = lim
T→∞

∫ T

0

t e(a−s)t dt

= lim
T→∞

(
t

a− s
− 1

(a− s)2

)
e(a−s)t

∣∣∣∣T
t=0

= lim
T→∞

[
1

(s− a)2
−
(

T

s− a
+

1

(s− a)2

)
e(a−s)T

]
=


1

(s− a)2
for s > a ,

∞ for s < a ,

while for s = a we have

L[t eat](s) = lim
T→∞

∫ T

0

t e−(s−a)t dt = lim
T→∞

∫ T

0

t dt = lim
T→∞

1
2
T 2 =∞ .

Therefore L[t eat](s) is defined only for s > a with

L[t eat](s) =
1

(s− a)2
for s > a .

Example. Use definition (6.2) to compute L[eibt](s) for any real b.

Solution. For b 6= 0 we see from (6.2) that for any real s we have

L[eibt](s) = lim
T→∞

∫ T

0

e−steibt dt = lim
T→∞

∫ T

0

e−(s−ib)t dt = lim
T→∞

(
− e−(s−ib)t

s− ib

)∣∣∣∣T
t=0

= lim
T→∞

[
1

s− ib
− e−(s−ib)T

s− ib

]
=


1

s− ib
for s > 0 ,

undefined for s ≤ 0 .

The case b = 0 is identical to our first example with a = 0. In either case L[eibt](s) is
defined only for s > 0 with

L[eibt](s) =
1

s− ib
for s > 0 .

6.2. Properties of the Transform. If we always had to return to the definition of
the Laplace transform everytime we wanted to apply it, it would not be easy to use.
Rather, we will use the definition to compute the Laplace transform for a few basic
functions and to establish some general properties that will allow us to build formulas
for more complicated functions.

6.2.1. Linearity. The most important property of the Laplace transform L is that it is
a linear operator.

Theorem. If L[f ](s) and L[g](s) exist for some s then so does L[f + g](s) and
L[cf ](s) for every constant c with

(6.3) L[f + g](s) = L[f ](s) + L[g](s) , L[cf ](s) = cL[f ](s) .
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Proof. This follows directly from definition (6.2) and the facts that definite integrals
and limits depend linearly on their arguments. Specifically, we see that

L[f + g](s) = lim
T→∞

∫ T

0

e−st
(
f(t) + g(t)

)
dt

= lim
T→∞

∫ T

0

e−stf(t) dt+ lim
T→∞

∫ T

0

e−stg(t) dt = L[f ](s) + L[g](s) ,

L[cf ](s) = lim
T→∞

∫ T

0

e−stcf(t) dt = c lim
T→∞

∫ T

0

e−stf(t) dt = cL[f ](s) .

�

Example. Compute L[cos(bt)](s) and L[sin(bt)](s) for any real b 6= 0.

Solution. This can be done by using the Euler identity eibt = cos(bt) + i sin(bt) and
the linearity (6.3) of L. Then

L[cos(bt)](s) + iL[sin(bt)](s) = L[eibt](s) =
1

s− ib
=

s+ ib

s2 + b2
for s > 0 .

By equating the real and imaginary parts above, we see that

L[cos(bt)](s) =
s

s2 + b2
for s > 0 ,

L[sin(bt)](s) =
b

s2 + b2
for s > 0 .

6.2.2. Exponentials and Translations. Another property of the Laplace transform L is
that it turns multiplication by an exponential in t into a translation of s.

Theorem. If L[f ](s) exists for every s > α and if a is any real number then
L[eatf(t)](s) exists for every s > α + a with

(6.4) L[eatf(t)](s) = L[f ](s− a) for s > α + a .

Proof. This follows directly from definition (6.2). Specifically, we see that

L[eatf ](s) = lim
T→∞

∫ T

0

e−steatf(t) dt = lim
T→∞

∫ T

0

e−(s−a)tf(t) dt = L[f ](s− a) .

�

Examples. From our previous examples and the above theorem we see that

L[e(a+ib)t](s) =
1

s− a− ib
for s > a ,

L[eat cos(bt)](s) =
s− a

(s− a)2 + b2
for s > a ,

L[eat sin(bt)](s) =
b

(s− a)2 + b2
for s > a .
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Similarly, the Laplace transform turns a translation of t into multiplication by an
exponential in s. However, because L[f ](s) only depends upon the values of f(t) over
[0,∞), we have to be careful about what is meant by a translation of t! For example,
consider fc(t) = f(t− c), the translation of f(t) by c.

If c < 0 then the graph of fc is just the graph of f shifted to the left. In that case the
values of f(t) over [0,−c) will become the values of fc(t) over [c, 0), on which L[fc](s)
does not depend. In other words, there can be no simple relation between L[fc](s) and
L[f ](s) when c < 0.

If c > 0 then the graph of fc is just the graph of f shifted to the right. In that
case the values of f(t) over [−c, 0) will become the values of fc(t) over [0, c), on which
L[fc](s) depends. Once again there can be no simple relation between L[fc](s) and
L[f ](s) when c < 0.

However, there is an important difference between the two cases we just considered.
When we shifted f to the left, values of f(t) upon which L[f ](s) depends moved outside
of [0,∞). When we shifted f to the right, the values of f(t) upon which L[f ](s) depends
stayed over [0,∞) — the problem was that new values of f(t) moved over [0,∞). This
problem is avoided if before we translate f we multiply it by the unit step or Heaviside
function u(t), which is defined by

(6.5) u(t) =

{
1 for t ≥ 0 ,

0 for t < 0 .

Because the functions uf and f agree over [0,∞), it is clear that L[uf ](s) = L[f ](s).
We now consider the Laplace transform of uc(t)fc(t) = u(t− c)f(t− c) for every c > 0.

Theorem. If L[f ](s) exists for every s > α and if c is any positive number then
L[u(t− c)f(t− c)](s) exists for every s > α with

(6.6) L[u(t− c)f(t− c)](s) = e−csL[f ](s) for s > α .

Proof. For every T > c we have∫ T

0

e−stu(t− c)f(t− c) dt =

∫ T

c

e−stf(t− c) dt = e−cs
∫ T

c

e−s(t−c)f(t− c) dt

= e−cs
∫ T−c

0

e−st
′
f(t′) dt′ .

Therefore

L[u(t− c)f(t− c)](s) = lim
T→∞

∫ T

0

e−stu(t− c)f(t− c) dt

= e−cs lim
T→∞

∫ T−c

0

e−stf(t) dt = e−csL[f ](s) for s > α .

�
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6.3. Existence and Differentiablity of the Transform. In each of the above exam-
ples the definite integrals over [0, T ] that appear in the limit (6.2) were proper. Indeed,
we were able to evaluate the definite integrals analytically and then determine the limit
(6.2) for every sufficiently large real number s. In this section we identify two prop-
erties that when possessed by a function f(t) insure that its Laplace transform exists
for every sufficiently large real number s. The first property insures that the definite
integrals over [0, T ] that appear in the limit (6.2) are all proper. The second property
insures that the limit (6.2) of these proper definite integrals exists for every s larger
than a certain value. We then use these properties to argue that the Laplace transform
F (s) of such an f(t) has derivatives in s of all orders. Moreover, we show that the kth

derivative of F (s) is related to the Laplace transform of tkf(t).

6.3.1. Piecewise Continuity. We know from calculus that a definite integral over [0, T ]
is proper whenever its integrand is:

• bounded over [0, T ],
• continuous at all but a finite number of points in [0, T ].

Such an integrand is said to be piecewise continuous over [0, T ]. Because e−st is a
continuous (and therefore bounded) function of t over every [0, T ] for each real s, the
definite integrals over [0, T ] that appear in the limit (6.2) will be proper whenever f(t)
is piecewise continuous over every [0, T ].

Example. The function

f(t) =

{
0 for 0 ≤ t < π ,

cos(t) for t ≥ π ,

is piecewise continuous over every [0, T ] because it is clearly bounded over [0,∞) and
its only discontinuity is at the point t = π.

Example. The so-called sawtooth function

f(t) = t− k for k ≤ t < k + 1 where k = 0, 1, 2, 3, · · · ,
is piecewise continuous over every [0, T ] because it is clearly bounded over [0,∞) and
has discontinuities at the points t = 1, 2, 3, · · · , only a finite number of which lie in each
[0, T ].

6.3.2. Exponential Order. Even if f(t) is piecewise continuous over every [0, T ], we still
have to give a condition under which the limit (6.2) will exist for certain s. Such a
condition is provided by the following definition.

Definition. A function f(t) defined over [0,∞) is said to be of exponential order α as
t→∞ provided that for every σ > α there exist Kσ and Tσ such that

(6.7) |f(t)| ≤ Kσe
σt for every t ≥ Tσ .

This definition need not be memorized. Rather, we are going to use it to build through
examples an understanding of what it means. Roughly speaking, it says that a function
is of exponential order α as t → ∞ if its absolute value does not grow faster than eσt

as t→∞ for every σ > α.
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Example. The function eat is of exponential order a as t → ∞ because (6.7) holds
with Kσ = 1 and Tσ = 0 for every σ > a.

Example. The functions cos(bt) and sin(bt) are of exponential order 0 as t → ∞
because (6.7) holds with Kσ = 1 and Tσ = 0 for every σ > 0.

Example. For every p > 0 the function tp is of exponential order 0 as t→∞. Indeed,
for every σ > 0 the function e−σttp takes on its maximum over [0,∞) at t = p/σ,
whereby

e−σttp ≤
(
p

eσ

)p
for every t ≥ 0 .

Therefore (6.7) holds with Kσ = ( p
eσ

)p and Tσ = 0 for every σ > 0.

Remark. The last example uses the full power of the definition. It shows that power
functions of the form tp for some p > 0 are of exponential order 0 as t → ∞ even
though tp →∞ as t→∞. This reflects something that you might recall from calculus
— namely, the fact that every exponential function of the form eσt for some σ > 0 grows
faster as t→∞ than every power function. This fact is sometimes called “expoentials
beat powers.”

Now that we have understood the exponential order as t → ∞ of the functions eat,
cos(bt), sin(bt), and tp, let us ask about the expoential order of combinations of these
functions. It can be shown that if functions f and g are of exponential orders α and β
respectively as t→∞ then

• the function f + g is of exponential order max{α, β} as t→∞,
• the function fg is of exponential order α + β as t→∞.

We will not prove these properties. They can be recalled by thinking of the case when
f and g are both exponential functions, say f(t) = eat and g(t) = ebt. They are easily
applied.

Example. For every real a the function eat + e−at is of exponential order |a| as t→∞.
This is because the functions eat and e−at are exponential orders a and −a respectively
as t→∞, and because |a| = max{a,−a}.
Example. For every p > 0 and every real a and b the function tpeat cos(bt) is of
exponential order a as t→∞. This is because the functions tp, eat, and cos(bt) are of
exponential orders 0, a, and 0 respectively as t→∞.

6.3.3. Existence and Differentiablity. The fact you should know about the existence of
the Laplace transform for certain s is the following.

Theorem. Let f(t) be

• piecewise continuous over every [0, T ],
• of exponential order α as t→∞.

Then for every positive integer k the function tkf(t) has these same properties. The
function F (s) = L[f ](s) is defined for every s > α. Moreover, F (s) has derivatives
of all orders over s > α with its kth derivative satisfying

(6.8) L[tkf(t)](s) = (−1)kF (k)(s) for s > α .
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Proof. Formula (6.8) can be derived formally by differentiating the integrands:

F (s) =

∫ ∞
0

e−stf(t) dt ,

F ′(s) = −
∫ ∞
0

t e−stf(t) dt ,

F ′′(s) =

∫ ∞
0

t2e−stf(t) dt ,

...

F (k)(s) = (−1)k
∫ ∞
0

tke−stf(t) dt .

�

Remark. A correct proof would require a justification of taking the derivatives inside
the above imporper integrals. We will not go into those details here. However, we will
give an easier proof of the fact that F (s) is defined for s > α. The proof uses the direct
comparison test for the convergence of improper integrals. That test implies that if
g(t) and h(t) are piecewise continuous over every [0, T ] such that |g(t)| ≤ h(t) for every
t ≥ 0 then ∫ ∞

0

h(t) dt converges =⇒
∫ ∞
0

g(t) dt converges .

Let s > α and apply this test to g(t) = e−stf(t). Pick σ so that α < σ < s. Because
f(t) is of exponential order α as t → ∞ and σ > α there exist Kσ and Tσ such that
(6.7) holds. Because g(t) = e−stf(t) is bounded over [0, Tσ] there exists Bσ such that
|g(t)| ≤ Bσ over [0, Tσ]. It thereby follows that

|g(t)| = e−st|f(t)| ≤ h(t) ≡

{
Bσ for 0 ≤ t < Tσ
Kσe

(σ−s)t for t ≥ Tσ .

Because s > σ for this h(t) it can be shown that∫ ∞
0

h(t) dt = lim
T→∞

∫ T

0

h(t) dt converges .

It follows that the limit in (6.2) converges, whereby F (s) = L[f ](s) is defined at s.

Example. Because for every real a and b we have

L[e(a+ib)t](s) =
1

s− a− ib
for s > a ,

it follows from the above theorem that for every nonnegative integer k

L[tke(a+ib)t](s) = (−1)k
dk

dsk
1

s− a− ib
=

k!

(s− a− ib)k+1
for s > a .
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This formula implies that for every real a and b and every nonnegative integer k

L[tk](s) =
k!

sk+1
for s > 0 ,

L[tkeat](s) =
k!

(s− a)k+1
for s > a .

L[tkeat cos(bt)](s) = Re

(
k!

(s− a− ib)k+1

)
for s > a ,

L[tkeat sin(bt)](s) = Im

(
k!

(s− a− ib)k+1

)
for s > a .

6.4. Transform of Derivatives. In the previous section we saw that the Laplace
transform turns a multiplication by t into a derivative with respect to s. The next result
shows the Laplace transform turns a derivative with respect to t into a multiplication
by s.

Theorem. Let f(t) be continuous over [0,∞) and be differentiable at all but a
finite number of points of every [0, T ]. If

• f(t) is of exponential order α as t→∞,
• f ′(t) is piecewise continuous over every [0, T ],

then L[f ′](s) is defined for every s > α with

(6.9) L[f ′](s) = sL[f ](s)− f(0) .

Proof. Let s > α. By definition (6.2), an integration by parts, the fact that f(t) is of
exponential order α as t→∞, and the fact that L[f ](s) exists, we see that

L[f ′](s) = lim
T→∞

∫ T

0

e−stf ′(t) dt = lim
T→∞

[
e−stf(t)

∣∣∣T
t=0

+ s

∫ T

0

e−stf(t) dt

]

= lim
T→∞

e−sTf(T )− f(0) + s lim
T→∞

∫ T

0

e−stf(t) dt = −f(0) + sL[f ](s) .

�

Example. Let f(t) = sin(et
2
). Because f(t) is bounded, it is of exponential order 0 as

t → ∞. Because f(t) is continuous over [0,∞) and of exponential order 0 as t → ∞,

its Laplace transform L[sin(et
2
)](s) is defined for every s > 0, even though it cannot be

computed explicitly. Because f(t) is also continuously differentiable over [0,∞) with

f ′(t) = 2tet
2

cos(et
2
), the above theorem yields

L[2tet
2

cos(et
2

)](s) = sL[sin(et
2

)](s)− sin(1) for s > 0 .

Remark. Until the last example, every functions that we have shown to have a Laplace
transform has been of exponential order as t → ∞. However, f ′(t) = 2tet

2
cos(et

2
) is

not of exponential order as t→∞, yet its Laplace transform is defined for every s > 0.
This shows that having an exponential order as t→∞ is not necessary for a function
to have a Laplace transform.
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If f(t) is sufficiently differentiable then formula (6.9) can be applied repeatedly. For
example, if f(t) is twice differentiable then

L[f ′′](s) = sL[f ′](s)− f ′(0) = s
(
sL[f ](s)− f(0)

)
− f ′(0)

= s2L[f ](s)− s f(0)− f ′(0) .

If f(t) is thrice differentiable then

L[f ′′′](s) = sL[f ′′](s)− f ′′(0) = s
(
s2L[f ](s)− s f(0)− f ′(0)

)
− f ′′(0)

= s3L[f ](s)− s2f(0)− s f ′(0)− f ′′(0) .

Proceeding in this way we can use induction to prove the following.

Theorem. Let f(t) be (n − 1)-times continuously differentiable over [0,∞) and
f (n−1) be differentiable at all but a finite number of points of every [0, T ]. If

• f(t), f ′(t), · · · , f (n−1)(t) are of exponential order α as t→∞,
• f (n)(t) is piecewise continuous over every interval [0, T ],

then L[f (n)](s) is defined for every s > α with

(6.10) L[f (n)](s) = snL[f ](s)− sn−1f(0)− sn−2f ′(0)− · · · − s f (n−2)(0)− f (n−1)(0) .

This means that if we know that a function y(t) is n-times differentiable and that it
and its first n− 1 derivatives are of exponential order as t→∞ then we have

(6.11)

L[y](s) = Y (s) ,

L[y′](s) = sL[y](s)− y(0) = s Y (s)− y(0) ,

L[y′′](s) = sL[y′](s)− y′(0) = s2Y (s)− s y(0)− y′(0) ,

L[y′′′](s) = sL[y′′](s)− y′′(0) = s3Y (s)− s2y(0)− s y′(0)− y′′(0) ,

...

L[y(n)](s) = snY (s)− sn−1y(0)− sn−2y′(0)− · · · − s y(n−2)(0)− y(n−1)(0) .

6.5. Application to Initial-Value Problems. Because the Laplace transform turns
derivatives with respect to t into multiplications by s, it transforms initial-value prob-
lems into algebraic problems. Consider the initial-value problem

y(n) + a1y
(n−1) + · · ·+ an−1y

′ + any = f(t) ,(6.12a)

y(0) = y0 , y′(0) = y1 , · · · y(n−1)(0) = yn−1 .(6.12b)

We will use the following theorem, which we state without proof.

Theorem. Let f(t) be piecewise continuous over [0,∞) and of exponential order
as t → ∞. Then there exists a unique y(t) that is (n − 1)-times continously
differentiable over [0,∞) such that

• y(n−1) is continuously differentiable at all points in [0,∞) where f is continuous,
• equation (6.12a) is satisfied at all points in [0,∞) where f is continuous,
• the initial conditions (6.12b) are satisfied,
• y and its first n derivatives are of exponential order as t→∞.



11

Remark. This theorem introduces a new notion of solution for the initial-value problem
(6.12). Specifically, it requires that the differential equation (6.12a) be satisfied only at
those points in [0,∞) where f is continuous, rather than at all points in [0,∞).

This theorem allows us to use the Laplace transform to find Y (s) = L[y](s) in
terms of the inital data y0, y1, · · · , yn−1, and the Laplace transform of the forcing,
F (s) = L[f ](s). Later we will see how to determine y(t) from Y (s), but here we will
illustrate how to compute Y (s).

First, we use the linearity of L to express the Laplace transform of the differential
equation (6.12a) as

L[y(n)] + a1L[y(n−1)] + · · ·+ an−1L[y′] + anL[y] = L[f ] .

Second, we use (6.11) and the initial conditions (6.12b) to write

L[y](s) = Y (s) ,

L[y′](s) = s Y (s)− y0 ,
L[y′′](s) = s2Y (s)− s y0 − y1 ,

...

L[y(n)](s) = snY (s)− sn−1y0 − sn−2y1 − · · · − s yn−1 − yn−1 .

Third, we compute F (s) = L[f ](s). Fourth, by placing the results of the second and
third steps into the Laplace transform of the differential equation obtained in the first
step, we see that Y (s) satisfies the linear algebraic equation

p(s)Y (s) = q(s) + F (s) ,

where p(s) is the characteristic polynomial

p(s) = sn + a1s
n−1 + · · ·+ an−1s+ an .

and q(s) is the polynomial given in terms of the initial data by

q(s) =
(
sn−1 + a1s

n−2 + · · ·+ an−2s+ an−1
)
y0

+
(
sn−2 + a1s

n−3 + · · ·+ an−3s+ an−2
)
y1

+ · · ·+
(
s2 + a1s+ a2

)
yn−3 +

(
s+ a1

)
yn−2 + yn−1 .

Finally, we solve the linear algebraic equation for Y (s) to obtain

(6.13) Y (s) =
q(s) + F (s)

p(s)
.

The hardest of the above steps is the third — namely, computing F (s) = L[f ](s).
Often f(t) is a combination of the basic forms whose Laplace transform we have already
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computed. These basic forms include

(6.14)

L[tn](s) =
n!

sn+1

L[cos(bt)](s) =
s

s2 + b2

L[sin(bt)](s) =
b

s2 + b2

L[eatj(t)](s) = J(s− a)

L[tnj(t)](s) = (−1)nJ (n)(s)

L[u(t− c)j(t− c)](s) = e−csJ(s)

L[eattn](s) =
n!

(s− a)n+1

L[eat cos(bt)](s) =
s− a

(s− a)2 + b2

L[eat sin(bt)](s) =
b

(s− a)2 + b2

for s > 0 ,

for s > 0 ,

for s > 0 ,

where J(s) = L[j(t)](s) ,

where J(s) = L[j(t)](s) ,

where J(s) = L[j(t)](s) ,

for s > a ,

for s > a ,

for s > a .

These can be used to build a longer table like those found in many textbooks. However,
this table is all we need. In fact, its first three entries are the last three for a = 0.
Alternatively, its last three entries follow from the first three and the fourth. On exams
you will be given a similar table, so you do not have to memorize this one. However,
you should learn how to use it efficiently.

Example. Find the Laplace transform Y (s) of the solution y(t) of the initial-value
problem

y′ − 2y = e5t , y(0) = 3 .

Solution. By setting a = 5 and n = 0 in the seventh entry of table (6.14) we see that
L[e5t](s) = 1/(s− 5). Therefore the Laplace transform of the initial-value problem is

L[y′](s)− 2L[y](s) = L[e5t](s) =
1

s− 5
,

where we see from (6.11) that

L[y](s) = Y (s) , L[y′](s) = sL[y](s)− y(0) = s Y (s)− 3 .

It follows that

(s− 2)Y (s)− 3 =
1

s− 5
, =⇒ Y (s) =

1

(s− 2)(s− 5)
+

3

s− 2
.

Example. Find the Laplace transform Y (s) of the solution y(t) of the initial-value
problem

y′′ − 2y′ − 8y = 0 , y(0) = 3 , y′(0) = 7 .
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Solution. Here there is no forcing. The Laplace transform of the initial-value problem
is

L[y′′](s)− 2L[y′](s)− 8L[y](s) = 0 ,

where we see from (6.11) that

L[y](s) = Y (s) ,

L[y′](s) = sL[y](s)− y(0) = s Y (s)− 3 ,

L[y′′](s) = sL[y′](s)− y′(0) = s2Y (s)− 3s− 7 .

It follows that

(s2 − 2s− 8)Y (s)− 3s− 1 = 0 , =⇒ Y (s) =
3s+ 1

s2 − 2s− 8
.

Example. Find the Laplace transform Y (s) of the solution y(t) of the initial-value
problem

y′′ + 4y = sin(3t) , y(0) = y′(0) = 0 .

Solution. By setting b = 3 in the third entry of table (6.14) we see that L[sin(3t)](s) =
3/(s2 + 9). Therefore the Laplace transform of the initial-value problem is

L[y′′](s) + 4L[y](s) = L[sin(3t)](s) =
3

s2 + 32
=

3

s2 + 9
,

where we see from (6.11) that

L[y](s) = Y (s) , L[y′′](s) = s2Y (s)− sy(0)− y′(0) = s2Y (s) .

It follows that

(s2 + 4)Y (s) =
3

s2 + 9
, =⇒ Y (s) =

3

(s2 + 4)(s2 + 9)
.

6.6. Piecewise-Defined Forcing. In the previous section we stated that the Laplace
transform method can be used to solve initial-value problems of the form

(6.15a)
y(n) + a1y

(n−1) + · · ·+ an−1y
′ + any = f(t) ,

y(0) = y0 , y′(0) = y1 , · · · y(n−1)(0) = yn−1 ,

where the forcing f(t) is piecewise-defined over [0,∞) by a list in the form

(6.15b) f(t) =



f0(t) for 0 ≤ t < c1 ,

f1(t) for c1 ≤ t < c2 ,
...

...

fm−1(t) for cm−1 ≤ t < cm ,

fm(t) for cm ≤ t <∞ ,

where 0 = c0 < c1 < · · · < cm < ∞. We assume that for each k = 0, 1, · · · , m − 1
the function fk is continuous and bounded over [ck, ck+1), and that the function fm is
continuous over [cm,∞) and is of exponential order as t→∞. In this section we show
how to compute the Laplace transform F (s) = L[f ](s) for such a function. There are
three steps.
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The first step is to express f(t) in terms of translations of the unit step u(t). How
this is done should become clear once you see that for every 0 ≤ c < d we have

u(t− c)− u(t− d) =

{
1 for c ≤ t < d ,

0 otherwise .

In other words, the function u(t− c)− u(t− d) is a switch that turns on at t = c and
turns off at t = d. So for any given function g(t) we have

(
u(t− c)− u(t− d)

)
g(t) =

{
g(t) for c ≤ t < d ,

0 otherwise .

This observation allows us to express f(t) as

f(t) =
(
u(t)− u(t− c1)

)
f0(t) +

(
u(t− c1)− u(t− c2)

)
f1(t)

+ · · ·+
(
u(t− cm−1)− u(t− cm)

)
fm−1(t) + u(t− cm) fm(t) .

By grouping terms above that involve the same u(t− ck), we bring f(t) into the form

(6.16) f(t) = f0(t) + u(t− c1)h1(t) + · · ·+ u(t− cm)hm(t) ,

where hk(t) = fk(t)− fk−1(t) for k = 1, 2, · · · ,m. This is the form we want. It can be
obtained either by carrying out the grouping indicated above or by recalling that each
term u(t− ck)hk(t) appearing in (6.16) simply changes the forcing from fk−1(t) to fk(t)
at time t = ck because hk(t) = fk(t)− fk−1(t).

The idea of the second step is to bring (6.16) into a form that allows us to use the
sixth entry in table (6.14). That entry states that L[u(t− c)j(t− c)](s) = e−csL[j](s).
Therefore we must recast (6.16) into the form

(6.17a) f(t) = f0(t) + u(t− c1) j1(t− c1) + · · ·+ u(t− cm) jm(t− cm) .

Each function jk(t) is obtained from the hk(t) appearing in (??) by

(6.17b) jk(t) = hk(t+ ck) for k = 1, 2, · · · ,m .

Indeed, this formula implies that jk(t−ck) = hk(t), which is why (6.16) becomes (6.17a).
Once we have found all the jk(t) then the final step is to compute L[f0](s) and each
L[jk](s), and use the fact that the sixth entry of table (6.14) implies

L[u(t− ck)jk(t− ck)](s) = e−cksL[jk](s) for k = 1, 2, · · · ,m ,

to compute L[f ](s) as

(6.18) L[f ](s) = L[f0](s) + e−c1sL[j1](s) + · · ·+ e−cmsL[jm](s) .

Often we will have to use identities to express f0(t) and each jk(t) in forms that allows
us to compute their Laplace transforms from table (6.14).

Example. Find the Laplace transform Y (s) of the solution y(t) of the initial-value
problem

y′′ + 4y = f(t) , y(0) = 7 , y′(0) = 5 ,
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where

f(t) =


t2 for 0 ≤ t < 2 ,

2t for 2 ≤ t < 4 ,

4 for 4 ≤ t .

Solution. The Laplace transform of the initial-value problem is

L[y′′](s) + 4L[y](s) = F (s) ,

where F (s) = L[f ](s) and

L[y](s) = Y (s) ,

L[y′](s) = sL[y](s)− y(0) = sY (s)− 7 ,

L[y′′](s) = sL[y′](s)− y′(0) = s2Y (s)− 7s− 5 .

The Laplace transform of the initial-value problem thereby becomes

(s2 + 4)Y (s)− 7s− 5 = F (s) , =⇒ Y (s) =
1

s2 + 4

(
7s+ 5 + F (s)

)
.

All that remains to be done is to compute F (s). The first step is to use unit step
functions to express f(t) in the form (6.16) as

f(t) =
(
u(t)− u(t− 2)

)
t2 +

(
u(t− 2)− u(t− 4)

)
2t+ u(t− 4) 4

= t2 + u(t− 2) (2t− t2) + u(t− 4) (4− 2t) .

The second step is to write this in form (6.17) as

f(t) = t2 + u(t− 2) j1(t− 2) + u(t− 4) j2(t− 4) ,

where
j1(t) = 2(t+ 2)− (t+ 2)2 = 2t+ 4− t2 − 4t− 4 = −t2 − 2t ,

j2(t) = 4− 2(t+ 4) = −2t− 4 .

Here we obtained j1(t) by replacing t with t + 2 in the factor (2t − t2) and j2(t) by
replacing t with t + 4 in the factor (4− 2t). Finally, the above form for f(t) allows us
to use the sixth entry of table (??) to compute F (s) = L[f ](s) in the form (6.18) as

F (s) = L[t2](s) + L[u(t− 2) j1(t− 2)](s) + L[u(t− 4) j2(t− 4)](s)

= L[t2](s)− e−2sL[t2 + 2t](s)− e−4sL[2t+ 4](s)

=
2

s3
− e−2s

(
2

s3
+

2

s2

)
− e−4s

(
2

s2
+

4

s

)
=
(
1− e−2s

) 2

s3
−
(
e−2s + e−4s

) 2

s2
− e−4s 4

s
.

It follows that

Y (s) =
7s+ 5

s2 + 4
+
(
1− e−2s

) 2

s3(s2 + 4)
−
(
e−2s + e−4s

) 2

s2(s2 + 4)
− e−4s 4

s (s2 + 4)
.
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6.7. Inverse Transform. The process of determining y(t) from Y (s) is called taking
the inverse Laplace transform. It is important to know that this process has a unique
result. Indeed, we will use the following theorem.

Theorem. Let f(t) and g(t) be two functions over [0,∞) and α a real number
such that

• f(t) and g(t) are of exponential order α as t→∞,
• f(t) and g(t) are piecewise continuous over every [0, T ],
• L[f ](s) = L[g](s) for every s > α.

Then f(t) = g(t) for every t in [0,∞).

The proof of this result requires tools from complex variables that are beyond the scope
of this course. Fortunately, you do not need to know how to prove this result to use
it! Its usefulness stems from the fact that solutions y(t) to the initial-value problems
we are considering lie within the class of functions considered above — namely, they
are functions that are of exponential order as t→∞ and that are piecewise continuous
over every [0, T ]. In fact, they are continuous and piecewise differentiable over every
[0, T ]. This means that if we succeed in finding a function y(t) within this class such
that L[y](s) = Y (s) then it will be the unique solution of the initial-value problem that
we seek.

Because the above result states there is a unique f(t) that is of exponential order
as t → ∞ and is piecewise continuous over every [0, T ] such that L[f ](s) = F (s), we
introduce the notation

f(t) = L−1[F ](t) .

The operator L−1 denotes the inverse Laplace transform. Because it undoes the Laplace
transform L, it inherits many properties from L. For example, it is linear. We can also
easily read-off from the first and last three entries in table (6.14) of basic forms that

(6.19)

L−1
[
n!

sn+1

]
(t) = tn ,

L−1
[

s

s2 + b2

]
(t) = cos(bt) ,

L−1
[

b

s2 + b2

]
(t) = sin(bt) ,

L−1
[

n!

(s− a)n+1

]
(t) = eattn ,

L−1
[

s− a
(s− a)2 + b2

]
(t) = eat cos(bt) ,

L−1
[

b

(s− a)2 + b2

]
(t) = eat sin(bt) .

It is also clear from the sixth entry of table (6.14) that

(6.20) L−1[e−csJ(s)](t) = u(t− c) j(t− c) , where j(t) = L−1[J ](t) .

For us, the process of computing y(t) = L−1[Y ](t) for a given Y (s) will be one of
expressing Y (s) as a sum of terms that will allow us to read off y(t) from the basic
forms above. To illustrate this process, we will compute y(t) = L−1[Y ](t) for the Y (s)
found in the examples given in the previous section, thereby completing our solution of
the initial-value problems.

Example. Find y(t) = L−1[Y ](t) for

Y (s) =
1

(s− 2)(s− 5)
+

3

s− 2
.
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Solution. By the partial fraction identity

1

(s− 2)(s− 5)
=

1
3

s− 5
+
−1

3

s− 2
,

we can express Y (s) as

Y (s) = 1
3

1

s− 5
+ 8

3

1

s− 2
.

The top right entry of table (6.19) with a = 5 and a = 2 then yields

y(t) = L−1[Y (s)](t) = 1
3
L−1
[

1

s− 5

]
(t) + 8

3
L−1
[

1

s− 2

]
(t) = 1

3
e5t + 8

3
e2t .

Example. Find y(t) = L−1[Y ](t) for

Y (s) =
3s+ 1

s2 − 2s− 8
.

Solution. By the partial fraction identity

3s+ 1

s2 − 2s− 8
=

3s+ 1

(s− 4)(s+ 2)
=

13
6

s− 4
+

5
6

s+ 2
,

we can express Y (s) as

Y (s) = 13
6

1

s− 4
+ 5

6

1

s+ 2
.

The top right entry of table (6.19) with a = 4 and a = −2 then yields

y(t) = L−1[Y (s)](t) = 13
6
L−1
[

1

s− 4

]
(t) + 5

6
L−1
[

1

s+ 2

]
(t) = 13

6
e4t + 5

6
e−2t .

Example. Find y(t) = L−1[Y ](t) for

Y (s) =
3

(s2 + 4)(s2 + 9)
.

Solution. By the partial fraction identity

3

(z + 4)(z + 9)
=

3
5

(z + 4)
+
−3

5

(z + 9)
,

we can express Y (s) as

Y (s) =
3
5

s2 + 4
−

3
5

s2 + 9
= 3

10

2

s2 + 22
− 1

5

3

s2 + 32
.

The bottom left entry of table (6.19) with b = 2 and b = 3 then yields

y(t) = L−1[Y (s)](t) = 3
10
L−1
[

2

s2 + 22

]
(t)− 1

5
L−1
[

3

s2 + 32

]
(t) = 3

10
sin(2t)− 1

5
sin(3t) .

Example. Find y(t) = L−1[Y ](t) for

Y (s) =
7s+ 5

s2 + 4
+
(
1− e−2s

) 2

s3(s2 + 4)
−
(
e−2s + e−4s

) 2

s2(s2 + 4)
− e−4s 4

s (s2 + 4)
.
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Solution. We first derive the partial fraction identities

7s+ 5

s2 + 4
=

7s

s2 + 4
+

5

s2 + 4
,

2

s3(s2 + 4)
=

1
2

s3
−

1
8

s
+

1
8
s

s2 + 4
,

2

s2(s2 + 4)
=

1
2

s2
−

1
2

s2 + 4
,

4

s (s2 + 4)
=

1

s
− s

s2 + 4
.

The top left identity is straightforward. The top right identity only involves s2, so it is
simply the identity

2

z(z + 4)
=

1
2

z
−

1
2

z + 4
, evaluated at z = s2 .

The bottom right identity is simply 2s times the top right one. Finally, the bottom
left identity is obtained by first dividing the top right one by s and then employing the
bottom right one divided by 8 to the last term.

These partial fraction identites allow us to express Y (s) as

Y (s) =
7s

s2 + 4
+

5

s2 + 4
+
(
1− e−2s

)( 1
2

s3
−

1
8

s
+

1
8
s

s2 + 4

)
−
(
e−2s + e−4s

)( 1
2

s2
−

1
2

s2 + 4

)
− e−4s

(
1

s
− s

s2 + 4

)
= 7

s

s2 + 22
+

5

2

2

s2 + 22
+
(
1− e−2s

)(1

4

2

s3
− 1

8

1

s
+

1

8

s

s2 + 22

)
−
(
e−2s + e−4s

)(1

2

1

s2
− 1

4

2

s2 + 22

)
− e−4s

(
1

s
− s

s2 + 22

)
.

The formulas in the first column of table (6.19) show that

L−1
[
7

s

s2 + 22
+

5

2

2

s2 + 22

]
(t) = 7 cos(2t) + 5

2
cos(2t) ,

L−1
[

1

4

2

s3
− 1

8

1

s
+

1

8

s

s2 + 22

]
(t) = 1

4
t2 − 1

8
+ 1

8
cos(2t) ,

L−1
[

1

2

1

s2
− 1

4

2

s2 + 22

]
(t) = 1

2
t− 1

4
sin(2t) ,

L−1
[

1

s
− s

s2 + 22

]
(t) = 1− cos(2t) .

By combining these facts with formula (6.20), it follows that

y(t) = 7 cos(2t) + 5
2

cos(2t) +
(
1
4
t2 − 1

8
+ 1

8
cos(2t)

)
− u(t− 2)

(
1
4
(t− 2)2 − 1

8
+ 1

8
cos(2(t− 2))

)
− u(t− 2)

(
1
2
(t− 2)− 1

4
sin(2(t− 2))

)
− u(t− 4)

(
1
2
(t− 4)− 1

4
sin(2(t− 4))

)
− u(t− 4)

(
1− cos(2(t− 4))

)
.
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6.8. Computing Green Functions. The Laplace transform can be used to efficiently
compute Green functions for differential operators with constant coefficients. Recall
that given the nth-order differential operator L with constant coefficients given by

L = Dn + a1D
n−1 + · · ·+ an−1D + an ,

the Green function g(t) associated with L is the solution of the initial-value problem

g(n) + a1g
(n−1) + · · ·+ an−1g

′ + ang = 0 ,

g(0) = 0 , g′(0) = 0 , · · · g(n−2)(0) = 0 , g(n−1)(0) = 1 .

The Laplace transform of this initial-value problem is

L
[
g(n)
]
(s) + a1L

[
g(n−1)

]
(s) + · · ·+ an−1L[g′](s) + L[g](s) = 0 ,

where if G(s) = L[g](s) then

L[g′](s) = sL[g](s)− g(0) = sG(s) ,

L
[
g′′
]
(s) = sL[g′](s)− g′(0) = s2G(s) ,

...

L
[
g(n−1)

]
(s) = sL[g(n−2)](s)− g(n−2)(0) = sn−1G(s) ,

L
[
g(n)
]
(s) = sL[g(n−1)](s)− g(n−1)(0) = snG(s)− 1 .

We thereby see that G(s) satisfies

p(s)G(s)− 1 = 0 ,

where p(s) is the characteristic polynomial of L, which is given by

p(s) = sn + a1s
n−1 + · · ·+ an−1s+ an .

Therefore G(s) is given by

(6.21) G(s) =
1

p(s)
,

In other words, the Laplace transform of the Green function of L is the reciprocal of
the characteristic polynomial of L.

The problem of computing a Green function is thereby reduced to the problem of
finding an inverse Laplace transform. This can often be done quickly.

Example. Find the Green function g(t) for the operator L = D2 + 6D + 13.

Solution. Because p(s) = s2 + 6s+ 13 = (s+ 3)2 + 22, the bottom right entry of table
(6.19) with a = −3 and b = 2 and formula (6.21) shows that the Green function is
given by

g(t) = L−1
[

1

p(s)

]
=

1

2
L−1
[

2

(s+ 3)2 + 22

]
=

1

2
e−3t sin(2t) .

Example. Find the Green function g(t) for the operator L = D2 + 2D− 15.
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Solution. Because p(s) = s2 + 2s − 15 = (s − 3)(s + 5), we use the partial fraction
identity

1

(s− 3)(s+ 5)
=

1
8

s− 3
−

1
8

s+ 5
.

The top right entry of table (6.19) with a = 3 and with a = −5 and formula (6.21)
shows that the Green function is given by

g(t) = L−1
[

1

p(s)

]
=

1

8
L−1
[

1

s− 3

]
− 1

8
L−1
[

1

s+ 5

]
=
e3t − e−5t

8
.

Example. Find the Green function g(t) for the operator L = D4 + 13D2 + 36.

Solution. Because p(s) = s4 + 13s2 + 36 = (s2 + 4)(s2 + 9) only depends on s2, we can
use the partial fraction identity

1

(z + 4)(z + 9)
=

1
5

z + 4
−

1
5

z + 9
at z = s2 .

The bottom left entry of table (6.19) with b = 2 and with b = 3 and formula (6.21)
shows that the Green function is given by

g(t) = L−1
[

1

p(s)

]
=

1

10
L−1
[

2

s2 + 22

]
− 1

15
L−1
[

3

s2 + 32

]
=

sin(2t)

10
− sin(3t)

15
.

6.9. Convolutions. Let f(t) and g(t) be any two functions defined over the interval
[0,∞). Their convolution is a third function (f ∗ g)(t) that is defined by the formula

(6.22) (f ∗ g)(t) =

∫ t

0

f(t− τ)g(τ) dτ ,

whenever the above integral makes sense for every t ≥ 0. This will be the case whenever
both f and g are piecewise continuous over every [0, T ].

The convolution can be thought of a some kind of product between two functions. It is
easily checked that this so-called convolution product satisfies some of the properties of
ordinary multipulcation. For example, for any functions f , g, amd h that are piecewise
continuous over every [0, T ] we have

(6.23)

g ∗ f = f ∗ g
h ∗ (f + g) = h ∗ f + h ∗ g
h ∗ (g ∗ f) = (h ∗ g) ∗ f

commutative law ,

distributive law ,

associative law .

The commutative law is proved by introducing τ ′ = t−τ as a new variable of integration,
whereby we see that

(g ∗ f)(t) =

∫ t

0

g(t− τ)f(τ) dτ =

∫ t

0

g(τ ′)f(t− τ ′) dτ ′ = (f ∗ g)(t) .

Verification of the distributive and associative laws is left as an exercise.
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The convolution differs from ordinary multipulcation in some respects too. For ex-
ample, it is not generaly true that f ∗ 1 = f or that f ∗ f ≥ 0. Indeed, we see that

(1 ∗ 1)(t) =

∫ t

0

1 · 1 dτ = t 6= 1 ,

and that

(sin ∗ sin)(t) =

∫ t

0

sin(t− τ) sin(τ) dτ

= sin(t)

∫ t

0

cos(τ) sin(τ) dτ + cos(t)

∫ t

0

sin(τ)2 dτ

= 1
2

sin(t)3 + 1
2
t cos(t)− 1

2
sin(t) cos(t)2 6≥ 0 for every t > 0 .

In fact, we can show that 1 ∗ f = f if and only if f = 0.

The main result of this section is that the Laplace transform of a convolution of
two functions is the ordinary product of their Laplace transforms. In other words, the
Laplace transform maps convolutions to multiplication.

Convolution Theorem. Let f(t) and g(t) be

• piecewise continuous over every [0, T ]
• of exponential order α as t→∞.

Then f ∗ g(t) is continuous over [0,∞) and is of exponential order α as t → ∞.
Moreover, L[f ∗ g](s) is defined for every s > α with

(6.24) L[f ∗ g](s) = F (s)G(s) , where F (s) = L[f ](s) and G(s) = L[g](s) .

Proof of (6.24). For every T > 0 definition (6.22) of convolution implies that∫ T

0

e−st (f ∗ g)(t) dt =

∫ T

0

e−st
∫ t

0

f(t− τ)g(τ) dτ dt =

∫ T

0

∫ t

0

e−stf(t− τ)g(τ) dτ dt .

We now exchange the order of the definite integrals over τ and t on the right-hand side.
As you recall from multivariable Calculus, this should be done carefully because the
upper endpoint of the inner integral depends on the variable of integration t of the outer
integral. When viewed in the (τ, t)-plane, the domain over which the double integral
is being taken is the triangle given by 0 ≤ τ ≤ t ≤ T . In general, when the order of
definite integrals is exchanged over this domain we have∫ T

0

∫ t

0

• dτ dt =

∫ T

0

∫ T

τ

• dt dτ ,

where • denotes any appropriate integrand. We thereby obtain∫ T

0

e−st (f ∗ g)(t) dt =

∫ T

0

∫ T

τ

e−stf(t− τ)g(τ) dt dτ .



22

We now factor e−st as e−st = e−s(t−τ)e−sτ , and group the factor e−s(t−τ) with f(t − τ)
and the factor e−sτ with g(τ), whereby∫ T

0

e−st (f ∗ g)(t) dt =

∫ T

0

∫ T

τ

e−s(t−τ)f(t− τ) e−sτg(τ) dt dτ

=

∫ T

0

e−sτg(τ)

∫ T

τ

e−s(t−τ)f(t− τ) dt dτ .

We then make the change of variable t′ = t− τ in the inner definite integral to obtain∫ T

0

e−st (f ∗ g)(t) dt =

∫ T

0

e−sτg(τ)

∫ T−τ

0

e−st
′
f(t′) dt′ dτ .

Upon formally letting T → ∞ above, definition (6.2) of the Laplace transform shows
that the inner integral converges to F (s), which is independent of τ . The double integral
thereby converges to G(s)F (s), yielding (6.24). �

Remark. Because the upper endpoint of the inner integral depends on the variable of
integration τ of the outer integral, properly passing to the limit above requires greater
care than we took here. The techniques we need are taught in Advanced Calculus
courses. The argument given above suits our purposes because it illuminates why
(6.24) holds.

The convolution theorem can be used to help evaluate inverse Laplace transforms.
For example, suppose that we know for a given F (s) and G(s) that f(t) = L−1[F ](t)
and g(t) = L−1[G](t). Then (6.24) implies that

(6.25) L−1
[
F (s)G(s)

]
(t) = (f ∗ g)(t) .

This fact can be used to express inverse Laplace transforms as convolutions. We may
still have to evaluate the convolution integral, but some of people might find that easier
than using partial fraction identities to express F (s)G(s) in basic forms.

Example. Compute y(t) = L−1[Y ](t) for

Y (s) =
2

s2(s2 + 4)
.

Solution. Because we know from table (6.19) that

L−1
[

1

s2

]
= t , L−1

[
2

s2 + 22

]
= sin(2t) ,

it follows from (6.25) and an integration by parts that

y(t) = L−1
[

2

s2(s2 + 4)

]
= L−1

[
1

s2
2

s2 + 22

]
=

∫ t

0

(t− τ) sin(2τ) dτ

= (τ − t)cos(2τ)

2

∣∣∣∣t
0

−
∫ t

0

cos(2τ)

2
dτ =

t

2
− sin(2t)

4
.

This is the same result we got on page 18 using a partial fraction identity.
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The convolution theorem gives us another way to understand Green functions. We
have used the Green function to construct a particular solution of the nonhomogeneous
equation Ly = p(D) = f(t) by the formula

yP (t) =

∫ t

0

g(t− τ)f(τ) dτ .

Notice that the right-hand side above is exactly (g ∗ f)(t). Upon taking the Laplace
transform of this formula, the Convolution Theorem and formula (6.21) then yield

L[yP ](s) = L[g ∗ f ](s) = G(s)F (s) =
F (s)

p(s)
, where F (s) = L[f ](s) .

But this agrees with formula (6.13) with q(s) = 0. Indeed, recall that yP (t) given by
the Green function formula satisfies the initial conditions

yP (0) = 0 , y′P (0) = 0 , · · · y
(n−2)
P (0) = 0 , y

(n−1)
P (0) = 0 .

Because yP (t) satisfies the initial-value problem (6.12) with y0 = y1 = · · · = yn−1 = 0,
the polynomial q(s) appearing in (6.13) vanishes.

6.10. Impulse Forcing. Let us consider the family of piecewise-defined forcing func-
tions given by

(6.26) fτ (t) =
1

τ

(
u(t)− u(t− τ)

)
, for some τ > 0 .

This forcing fτ (t) has amplitude 1/τ that turns on at t = 0 and turns off at t = τ . The
subscript τ indicates this dependence. We want to consider the effect of such a forcing
on the solution of the initial-value problem

(6.27a) Ly = fτ (t) , y(0) = y′(0) = · · · = y(n−1)(0) = 0 ,

where L is the nth-order differential operator with constant coefficients given by

(6.27b) L = Dn + a1D
n−1 + · · ·+ an−1D + an .

More specifically, we want to understand the behavior of this solution when τ is very
small — that is, when there is a strong force of short duration. Such a force is called
an impulse.

The solution of the initial-value problem (6.27) will depend upon τ through fτ (t), so
we will denote it yτ . Then the Laplace transform of the initial-value problem is

L[y(n)τ ](s) + a1L[y(n−1)τ ](s) + · · ·+ an−1L[y′τ ](s) + anL[yτ ](s) = Fτ (s) ,

where
L[yτ ](s) = Yτ (s) ,

L[y′τ ](s) = sYτ (s)− yτ (0) = sYτ (s) ,

...

L[y(n−1)τ ](s) = sL[y(n−2)τ − y(n−2)τ (0) = sn−1Yτ (s) ,

L[y(n)τ ](s) = sL[y(n−1)τ − y(n−1)τ (0) = snYτ (s) ,
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and

Fτ (s) = L[fτ ](s) =
1

τ

(
L[u](s)− L[u(t− τ)](s)

)
=

1− e−τs

τs
for every s > 0 .

The Laplace transform of the initial-value problem thereby becomes

p(s)Yτ (s) =
1− e−τs

τs
,

where p(s) is the characteristic polynomial of L, which is given by

p(s) = sn + a1s
n−1 + · · ·+ an−1s+ an .

Therefore the Laplace transform Yτ (s) of the solution yτ (t) is given in terms of Fτ (s)
as

(6.28) Yτ (s) =
1

p(s)

1− e−τs

τs
.

Now let Y (s) denote the limit of Yτ (s) as τ becomes small. We see from (6.28) that

Y (s) = lim
τ→0

Yτ (s) =
1

p(s)
lim
τ→0

1− e−τs

τs
=

1

p(s)
,

where the last limit can be evaluated either by the l’Hospital rule or by making a Taylor
approximation of the numerator. But 1/p(s) is the Laplace transform of the Green
function g(t) associated with the differential operator (6.27b). Therefore it seems as if
the solution of the initial-value problem (6.27) will behave like the Green function g(t)
as τ becomes small.

If is natural to wonder if this result depends upon the particular form (6.26) of the
forcing that we considered. To explore this question we now consider the initial-value
problem (6.27) for the more general family of forcing functions given by

(6.29) fτ (t) =
1

τ
f

(
t

τ

)
, for some τ > 0 ,

where f(t) is any nonnegative piecewise integrable function of exponential order α < 0.
(The forcing (6.26) has this form with f(t) = u(t)− u(t− 1).)

Because α < 0 and F (s) = L[f ](s) is defined for every s > α, this implies that

F (0) =

∫ ∞
0

f(t) dt <∞ .

Then

Fτ (s) = L[fτ ](s) =

∫ ∞
0

e−stfτ (t) dt =
1

τ

∫ ∞
0

e−stf

(
t

τ

)
dt

=

∫ ∞
0

e−τst
′
f(t′) dt′ = F (τs) for every s >

α

τ
.

Notice that this is consistent with formula (6.28) that was derived for our original
forcing (6.26).
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The Laplace transform Yτ (s) of the solution yτ (t) to the initial-value problem (6.27)
with this general forcing is given in terms of Fτ (s) as

(6.30) Yτ (s) =
1

p(s)
Fτ (s) =

1

p(s)
F (τs) .

Again let Y (s) denote the limit of Yτ (s) as τ becomes small. We see from (6.30) that

Y (s) = lim
τ→0

Yτ (s) =
1

p(s)
lim
τ→0

F (τs) =
1

p(s)
F (0) =

1

p(s)

∫ ∞
0

f(t′) dt′ .

Because 1/p(s) is the Laplace transform of the Green function g(t), it seems that yτ (t)
behaves like a multiple of the Green function as τ becomes small. Specifically, it seems
that

yτ (t) ≈ g(t)

∫ ∞
0

f(t′) dt′ for small τ .

This shows that the details of an impulse do not matter. All that matters is the integral
of an impulse forcing.

Therefore for sufficiently small τ every forcing fτ (t) given by (6.29) for some f(t) can
be modeled by an idealized impulse forcing Mδ(t), where M is the magnitude of the
impulse, which is given by

M =

∫ ∞
0

f(t) dt ,

and δ(t) is commonly called either the unit impulse or Dirac delta function even though
it is not a function! For every interval [a, b] such that 0 ∈ [a, b] the unit impulse is
treated like it has the property

(6.31a)

∫ b

a

δ(t)φ(t) dt = φ(0) for every φ that is continuous over [a, b] .

For every interval [a, b] such that 0 /∈ [a, b] the unit impulse is treated like it has the
property

(6.31b)

∫ b

a

δ(t)φ(t) dt = 0 for every φ that is continuous over [a, b] .

Remark. The notion of a unit impulse goes back to Oliver Heaviside in 1899. Paul
Dirac introduced the delta notation in his work on quantum mechanics during the late
1920s. These early approaches raised as many questions as they answered. Subsequently
Soloman Bochner (1933), Sergei Sobolev (1938), and Kurt Friedrichs (1944), took im-
portant steps towards putting the notion on a firmer mathematical footing. Laurant
Schwartz developed the theory of distributions in the 1950s, which provides a framwork
in which the impulse function and other so-called generalized functions exist. These
theories lie far beyond the scope of this course. Our motivation comes from Heaviside,
our notation comes from Dirac, and our property (6.31) comes from Schwartz.

For every φ that is continuous over [a, b] the shift of the unit impulse function δ(t−c)
is treated like

(6.32)

∫ b

a

δ(t− c)φ(t) dt =

∫ b−c

a−c
δ(t)φ(t+ c) dt .
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Therefore for every φ that is continuous over [a, b] we have∫ b

a

δ(t− c)φ(t) dt =

{
φ(c) if c ∈ [a, b] ,

0 if c /∈ [a, b] .

These properties allow us to compute

L[δ](s) =

∫ ∞
0

e−stδ(t) dt = 1 ,

L[δ(t− c)](s) =

∫ ∞
0

e−stδ(t− c) dt = e−cs for every c > 0 .

Therefore the initial-value problem (6.27) with f(t) = Mδ(t) has solution y(t) = Mg(t).

Example. Solve the initial-value problem

y′′′ − 4y′′ + 3y′ = 5δ(t− 2) , y(0) = y′(0) = 0 , y′′(0) = 7 .

Solution. The Laplace transform of the initial-value problem is

L[y′′′](s)− 4L[y′′](s) + 3L[y′](s) = 5L[δ(t− 2)](s) ,

where
L[y](s) = Y (s) ,

L[y′](s) = sL[y](s)− y(0) = sY (s) ,

L[y′′](s) = sL[y′](s)− y′(0) = s2Y (s) ,

L[y′′′](s) = sL[y′′](s)− y′′(s) = s3Y (s)− 7 ,

and by property (6.32) we have

L[δ(t− 2)](s) =

∫ ∞
0

e−stδ(t− 2) dt = e−2s .

The Laplace transform of the initial-value problem thereby becomes

(s3 − 4s2 + 3s)Y (s) = 7 + 5e−2s .

Therefore the Laplace transform of the solution is

Y (s) =
7 + 5e−2s

s3 − 4s2 + 3s
.

By the partial fraction identity

1

s3 − 4s2 + 3s
=

1

s(s− 1)(s− 3)
=

1
3

s
−

1
2

s− 1
+

1
6

s− 3
,

we see that

Y (s) =

( 7
3

s
−

7
2

s− 1
+

7
6

s− 3

)
+ e−2s

( 5
3

s
−

5
2

s− 1
+

5
6

s− 3

)
.

By taking the inverse Laplace transform we find that the solution is

y(t) =
(
7
3
− 7

2
et + 7

6
e3t
)

+ u(t− 2)
(
5
3
− 5

2
et−2 + 5

6
e3(t−2)

)
.
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6.11. Green Functions and Natural Fundamental Sets. The initial-value problem
(6.12) is

(6.33a) Ly = f(t) , y(0) = y0 , y′(0) = y1 , · · · , y(n−1)(0) = yn−1 ,

where

(6.33b) L = Dn + a1D
n−1 + · · ·+ an−1D + an .

Formula (6.13) for the solution of initial-value problem can be recast as

(6.34a) y(t) = yH(t) + yP (t) ,

where

(6.34b) yH(t) = L−1
[
q(s)

p(s)

]
(t) , yP (t) = L−1

[
F (s)

p(s)

]
(t) ,

Here p(s) is the characterisitc polynomial of L, q(s) is the polynomial given in terms of
the initial data by

(6.35)

q(s) =
(
sn−1 + a1s

n−2 + · · ·+ an−3s
2 + an−2s+ an−1

)
y0

+
(
sn−2 + a1s

n−3 + · · ·+ an−3s+ an−2
)
y1

...

+
(
s2 + a1s+ a2

)
yn−3 +

(
s+ a1

)
yn−2 + yn−1 ,

and F (s) = L[f ](s) is the Laplace transform of the forcing f(t). In this section we show
how the decomposition of y(t) given by (6.34) can be expressed in terms of the Green
function g(t) for the differential operator L.

The Convolution Theorem and formula (6.21) imply that

yP (t) = L−1
[
F (s)

p(s)

]
(t) = L−1

[
1

p(s)

]
∗ L−1[F ](t) = g ∗ f(t) .

This is the particular solution of Ly = f(t) whose initial data are zero.

It follows that yH(t) is the solution of Ly = 0 whose initial data agree with y(t).
Because G(s) = 1/p(s) by formula (6.21), we have

Dkg(t) = L−1[skG(s)](t) = L−1[sk/p(s)](t) for every k = 0, 2, · · · , n− 1 .

The function yH(t) = L−1[q(s)/p(s)](t) can thereby be expressed in terms of g(t) by
using (6.35) as

yH(t) = y0

(
Dn−1 + a1D

n−2 + · · ·+ an−3D
2 + an−2D + an−1

)
g(t)

+ y1

(
Dn−2 + a1D

n−3 + · · ·+ an−3D + an−2

)
g(t)

...

+ yn−3

(
D2 + a1D + a2

)
g(t) + yn−2

(
D + a1

)
g(t) + yn−1g(t) .
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Therefore the natural fundamental set of solutions associated with the homogeneous
equation Ly = 0 is given in terms of the Green function g by

(6.36)

N0(t) =
(

Dn−1 + a1D
n−2 + · · ·+ an−3D

2 + an−2D + an−1

)
g(t) ,

N1(t) =
(

Dn−2 + a1D
n−3 + · · ·+ an−3D + an−2

)
g(t) ,

...

Nn−3(t) =
(

D2 + a1D + a2

)
g(t) ,

Nn−2(t) =
(
D + a1

)
g(t) ,

Nn−1(t) = g(t) .

The solution (6.34) of the initial-value problem (6.33) then can be expressed as

y(t) = y0N0(t) + y1N1(t) + · · ·+ yn−2Nn−2(t) + yn−1Nn−1(t) + (Nn−1 ∗ f)(t) ,

whereN0(t), N1(t), · · · , Nn−1(t) is the natural fundamental set of solutions to the associ-
ated homogeneous equation, which is given in terms of the Green function g(t) by (6.36).
Recall that W [N0, N1, · · · , Nn−1](0) = 1, which implies W [N0, N1, · · · , Nn−1](t) = e−a1t

by the Abel formula.
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