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7. THEORY FOR FIRST-ORDER EQUATIONS

7.1. Well-Posed Initial-Value Problems.

7.1.1. Notion of Well-Posedness. The notion of a well-posed problem is central to sci-
ence and engineering. It motivated by the idea that mathematical problems in science
and engineering are used to predict or explain something. A problem is called well-posed
if

(i) the problem has a solution,

(ii) the solution is unique,

(iii) the solution depends continuously upon all the parameters in the problem.

The motivations for the first two points are fairly clear: a problem with no solution
will not give a prediction, and a problem with many solutions gives too many. The
third point is crucial. It recognizes that mathematical problems are models of reality.
Nearby models are equally valid. To have predictive value, the solutions of nearby
models should lie close to each other. For example, if our model is an initial-value
problem associated with a differential equation then its solution should not change
much if the initial value is a bit different or if a coefficient in the differential equation
is altered slightly. This is what is meant by saying the solution depends continuously
upon the problem.

The solution of a well-posed problem can be approximated accurately by a wealth
of techniques. The solution of a problem that is not well-posed is very difficult, if not
impossible to approximate accurately. This is why scientists and engineers want to
know which problems are well-posed and which are not.

7.1.2. Classical Solutions of Initial-Value Problems. In this chapter we consider initial-
value problems that can be put into the normal form

(71) y/ - f(t7y) ’ y(tl) =Yr-

Notice that an initial-value problem consists of both a differential equation and an
initial condition. Recall that a differential equation by itself will not have a unique
solution.

Remark. We will often use t as the independent variable in our differential equations
because in many applications the independent variable is time. However, the inde-
pendent variable in a differential equation need not be time. Similarly, the dependent
variable in a differential equation need not be y. Be prepared for the roles of indepen-
dent and dependent variables in differential equations to be filled by many different
letters!

In order to understand what is meant by a solution of the initial-value problem (7.1),
we must understand what is meant by a solution of the differential equation in (7.1).
The classical notion of solution is the following.
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Definition 7.1. If Y (t) is a function defined for every t in an interval (a,b) then we
say Y (t) is a solution of the differential equation in (7.1) over (a,b) if

(1) Y'(t) is defined for everyt in (a,b),
(7.2) (i) f(t,Y(t)) is defined for every t in (a,b),
(i) Y'(t) = f(t,Y(t)) for every t in (a,b).

We say Y (t) is a solution of the initial-value problem (7.1) over (a,b) if it is a solution
of the differential equation that also satisfies the initial condition.

W

Remark. We can recast condition (i) as “the function Y is differentiable over (a,b)
This definition is very natural in that it simply states (i) the thing on left-hand side
of the equation makes sense, (ii) the thing on right-hand side of the equation makes
sense, and (iii) the two things are equal. This classical notion of solution will suit our
needs now. We will soon see that situations arise in which we will want to broaden this
notion of solution.

In this chapter we will give conditions on f(¢,y) that insure the initial-value problem
(7.1) has a unique classical solution. This theory underpins many of the graphical
and numerical methods by which the solutions of these problems can be studied when
analytical methods either do not apply or become complicated.

7.2. Linear Equations. We begin by specializing to linear differential equations. The
normal form for these initial-value problems is

(7.3) y+at)y=ft),  ylt)=ur.
These problems can be put into the normal form (7.1) by rewriting the differential
equation as

y = f(t) —a(t)y.

They are among the simplest of all intial-value problems.

7.2.1. Euxistence and Uniqueness Theorem. The classical existence and uniqueness re-
sult for initial-value problem (7.3) is the following.

Theorem 7.1. Let a(t) and f(t) be functions defined over the open interval (tr,tg)
that are also continuous over (tp,tg).

Then for every inital time tr in (tp,tg), and every initial value y; there exists a unique
solution y =Y (t) to initial-value problem (7.3) that is defined over (tr,tr).

Moreover, this solution is continuously differentiable and is given by the explicit formula

(7.4) y:exp(— /t;a(r) dr)y1+ /t;exp(— / ") dr) £(s)ds.

Proof. We begin by introducing two functions that play a leading role in our proof.
Because a(t) and f(t) are continuous over (t1,tg) and t; € (t1,tgr), we can define
functions A(t) and B(t) over (t1,tr) by

(7.5) A(t):/ a(r)dr, B(t):/ e f(s)ds.

tr tr
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The Second Fundamental Theorem of Calculus states that these functions are differen-
tiable at every t in (f1,tr) where their integrands are continuous, in which case

(7.6) A'(t) =alt), B'(t)=e*Wf(t).
But we have assumed that a(t) is continuous over (t1,tg), so that A(t) is continuously
differentiable over (t1,tg) with A’(t) = a(t). Because A(t) is continuously differentiable
over (tr,tgr) and we have assumed that f(t) is continuous over (t1,tg), we know that
eA® (1) is continuous over (t7,tg). It follows that B(t) is continuously differentiable
over (tp,tgr) with B'(t) = eA® f(t).

We now verify that formula (7.4) indeed gives a solution of the initial-value problem
(7.3). We use (7.5) and the fact that

to express formula (7.4) as

t
(7.7) y=e Wy, ¢ / e~ AWTAE) £(5) ds = e AWy 4 4O B(1).

tr

Because A(t) and B(t) are continuously differentiable over (t1,tr) with A’(t) and B'(t)
given by (7.6), we see that y is also continuously differentiable over (t1,tr) with

y = —A'(t)e Oy, — A(t)e AU B(t) + e 2O B/ (1)
= —a(t)e Oy, —a(t)e M WBt) + f(t) = —a(t)y + f(t).

Hence, y given by formula (7.4) is a solution of the differential equation in (7.3) over
(tr,tr). Moreover, because it is clear from (7.4) that A(t;) = B(t;) = 0, we see that

y(ty) = e Ay e A B = ey + e 0=y, .

Hence, y given by formula (7.4) also satisfies the initial condition in (7.3). Therefore
y given by (7.4) solves the initial-value problem (7.3). This insures the existence of at
least one continuously differentiable solution of initial-value problem (7.3) over (t1,tg).

What remains is to prove that this is a unique solution. Let y(¢) be any solution of
the initial-value (7.3) over (tr,tr). We want to show that this solution is the one given
by formula (7.4). We can do this by retracing the steps by which formula (7.4) was
derived. Because A(t) and y(t) are differentiable over (t.,tr) with A'(t) = a(t) and
y'(t) + a(t)y(t) = f(t) respecively, we know that

d

o (e10y(0) = "y (1) + AW Vy(t) = " (' (1) + a(t)y(t) = e f (1)
Because B(t) is differentiable over (tr,tz) with B'(t) = e4® f(t), the above equation
can be expressed as

d 4

T (e Oy (t) — B(t)) =0.

But any differentiable function whose derivative is zero over an interval must be constant
over that interval. Therefore there exists a constant ¢ such that

eAOy(t) — B(t)=c¢  over (t1,tg).



5

Because t; € (t,tg), we may find ¢ by evaluating the above expression at ¢ = t; and
using the fact that A(t;) = B(t;) = 0 and y(t;) = y;. We obtain

c= eA(tI)y(tI) — B(t;) = eoyf —0=y;s.
Therefore

y(t) = e (yr + B(1))

which is the solution given by formula (7.4). Therefore that solution is the unique
solution of initial-value problem (7.3) over (t.,tg). O

Remark. Theorem 7.1 proves only the existence and uniqueness of solutions to the
initial-value problem (7.3). However, because it gives an explicit formula for the solu-
tion, it goes a long way towards establishing the continuous dependence of the solution
on the parameters of the problem — namely, on t;, y;, a(t), and f(t). We will not
formulate such a result here.

7.2.2. Intervals of Definition. For linear equations we can usually identify the interval
of definition for the solution of the initial-value problem (7.3) by simply looking at a(t)
and f(t). Specifically, if Y'(¢) is the solution of the initial-value problem (7.3) then its
interval of definition will be (¢1,tr) whenever:

e the coefficient a(t) and forcing f(t) are continuous over (tr,tg),

e the initial time ¢ is in (t1,tR),

e cither the coefficient a(t) or the forcing f(¢) is not defined at both ¢ = ¢, and
t= tR-

This is because the first two bullets along with the formula (7.4) imply that the interval
of definition will be at least (t,tg), while the last two bullets along with Definition 7.1
of solution imply that the interval of definition can be no bigger than (¢,,tr) because
the equation is not defined at both t = t;, and ¢t = tg. This argument can be applied
when either ¢; = —o0 or tp = 0.

Example. Give the interval of definition for the solution of the initial-value problem

1
/
2"+ cot(t) z = log() z(4) = 3.
Solution. The coefficient cot(t) is not defined at ¢t = nm where n is any integer, and is
continuous everywhere else. The forcing 1/log(#?) is not defined at ¢t = 0 and ¢t = 1, and
is continuous everywhere else. Therefore the interval of definition is (7, 27) because:
both cot(t) and 1/log(t?) are continuous over this interval; the initial time is ¢t = 4,
which is in this interval; cot(t) is not defined at t = 7 and t = 2.

Example. Give the interval of definition for the solution of the initial-value problem

1
/ _ —
z—l—cot(t)z-w, 2(2) =3.
Solution. The interval of definition is (1,7) because: both cot(t) and 1/log(t?) are
continuous over this interval; the initial time is ¢ = 2, which is in this interval; cot(t) is
not defined at ¢t = 7 while 1/log(#?) is not defined at ¢t = 1.
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FIGURE 7.1. Solutions of 2’ + cot(t)z = 1/log(t?) that satisfy the initial
conditions 2z(2) = 3 and z(4) = 3. The interval of definitions are (1,7)
and (m, 2m) respectively. Notice that z(¢) blows up as t approaches 7 and
27, while z(t) does not blow up but z'(¢) does blow up as t approaches 1.

Remark. If y = Y(¢) is a solution of (7.3) whose interval of definition is ({1,tg) then
this does not mean that Y (¢) will become undefined at either ¢t = t; or t = tg when
those endpoints are finite. For example, y = t* solves the initial-value problem

ty —4y=0,  y(1)=1,
and is defined for every t. However, the interval of definition is just (0, c0) because the
initial time is ¢t = 1 and normal form of the equation is

4

/
——y=0,
Yy ty

the coefficient of which is undefined at ¢ = 0.

Remark. It is natural to ask why we do not extend our definition of solutions so that
y = t* is considered a solution of the initial-value problem in the preceding remark
for every t. For example, we might say that y = Y (¢) is a solution provided it is
differentiable and satisfies the above equation rather than its normal form. However by
this definition the function

Yit) = {t4 for t > 0

ct* fort <0

also solves the initial-value problem for any c. This shows that because the equation
breaks down at ¢ = 0, there are many ways to extend the solution y = t* to t < 0. We
avoid such complications by requiring the normal form of the equation to be defined.
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7.3. Separable Equations. We next specialize to separable differential equations. The
normal form for these initial-value problems is

(7.8) Yy =ft)gly),  yltr)=wyr.

These problems are already in the normal form (7.1). They are among the simplest of
intial-value problems, but they are more complicated than linear intial-value problems.

7.3.1. Recipe for Solutions. Separable differential equations to not have a general for-
mula for explicit solutions the way linear equations do. Rather, they have a recipe
that generally leads to implicit solutions. Here we apply that recipe to the initial-value
problem (7.8).

If g(y;) = 0 then it is clear that y(t) = y; is a solution of (7.8) that is defined for every
t. Because this solution does not depend on t it is called a stationary solution. Every
zero of ¢ is also called a stationary point because it yields such a stationary solution.
These points are also sometimes called either equilibrium points, critical points, or fixed
points. This wealth of names reflects the importance of stationary points in the study
of differential equations.

If g(yr) # 0 then a nonstationary solution can be constructed by first putting the
differential equation into its so-called separated differential form

1
Y= Ft)dt.

Then integrate both sides of this equation to obtain
1
—dy = / f(t)dt.
/ 9(y) @
This is equivalent to

(7.9) F(t) =G(y) +c,
where F' and G satisfy
F0) = 1), Gl = .

We then find ¢ by evaluating (7.9) at the initial data (¢7,y,). This yields ¢ = F(t;) —
G(yr), whereby (7.9) becomes

(7.10) Gy) = Glyr) = F(t) = F(tr).-

and c is any constant .

Equation (7.10) is called an implicit solution of (7.8).

In order to find an explicit solution, we must solve equation (7.10) for y as a function
of t. There may be more than one solution of this equation. If so, we must be sure to
take the one that satisfies the initial condition. This means we have to find the inverse
function of G that recovers y; — namely a function G~! with the property that

Gt (G(y)) =1y for every y in an interval within the domain of G that contains y; .
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In particular, G~ must satisfy G* (G(y])) = y;. There is a unique inverse function
with this property. The solution of the initial-value problem (7.8) is then given by

y =G (Gyr) + F(t) — F(t)) .

This will be valid for all times ¢ in some open interval that contains the initial time ¢;.
The largest such interval is the interval of definition for the solution.

7.3.2. Nonuniqueness of Solutions. Up until now we have mentioned that we must be
careful to check that the nonstationary solutions obtained from recipe (7.10) do not hit
any of the stationary points, but we have not said why this leads to trouble. The next
example illustrates the difficulty that arises.

Example. Find all solutions to the initial-value problem
dy
dt

Solution. We see that y = 0 is a stationary point of this equation. Therefore y(t) =0

is a stationary solution whose interval of definition is (—oo, 00). However, let us carry
out recipe (7.10 for nonstationary solutions to see where it leads. These solutions are

given implicitly by
d ~24 1
t e 3y 3 — 3 —|— C.

Upon solving this for y we ﬁnd y = (t — ¢)® where c is an arbitrary constant. Notice
that each of these solutions hits the statlonary point when ¢t = c¢. The initial condition
then implies that 0 = (0 — ¢)® = —¢?®, whereby ¢ = 0. We thereby have found two
solutions of the initial-value problem: y(¢) = 0 and y(t) = ¢3!

—3y5,  y(0)=0.

In fact, as we will now show, there are many more solutions of the initial-value
problem! Let a and b be any two numbers such that a < 0 < b and define y(t) by

(t—a)® fort<a,
y(t) =140 fora <t <b,

(t—10)% forb<t.
We can understand such functions better by looking at their graph in Figure 3.7 below.
It is clearly a differentiable function with

dy 3(t—a)? fort<a,

—(t)=+<0 fora<t<b,
dt

3(t—0)? forb<t,
whereby it clearly satisfies the initial-value problem. Its interval of definition is (—oo, 00).
When a = b = 0 this reduces to y(t) = 3.

Similarly, for every a < 0 we can construct the solution

y(t) = {(t—a)3 fort <a,

0 fora <t,



while for every b > 0 we can construct the solution

(1) = 0 fort <b,
= (t—b) forb<t.

The interval of definition for each of these solutions is also (—o0, 00).

0.5} i

-1 1 1 1 1 1 1
-2 -15 - -0.5 0 0.5 1 1.5 2

FiGUrReE 7.2. Illustration of nonuniqueness of solutions for the initial-
value problem ¢ = 3y%3, y(0) = 0. The solution y = > is shown in blue
while the solution given above with a = —1 and b = 1 is shown in red.

Remark. The above example shows a very important difference between nonlinear
and linear equations. Specifically, it shows that for nonlinear equations an initial-value
problem may not have a unique solution.

Remark. The above example also illustrates the general danger of simply constructing

a solution by a recipe without having any idea whether or not the constructed solution
is unique.

7.3.3. Existence and Uniqueness Theorem. The nonuniqueness seen in the foregoing
example arises because g(y) = 3y§ does not behave nicely at the stationary point
y = 0. It is clear that ¢ is continuous at 0, but because ¢'(y) = 2y~3, we see that g is
not differentiable at 0.

The following fact states the differentiablity of g is enough to ensure that the solution
of the initial-value problem exists and is unique. Indeed, the continuity of g plus the
differentiablity of g at each stationary point is enough.

Theorem 7.2. Let f(t) and g(y) be functions defined over the open intervals (tr,tg)
and (yr,yr) respecively such that

e f is continuous over (tp,tg),
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e g is continuous over (yr,yr),
e g is differentiable at each of its zeros in (yr,Yr).

Then for every inital time t; in (tp,tg), and every initial value y; in (yr,yr) there
exists a unique solution y =Y (t) to the initial-value problem (7.8) that is defined over
every time interval (a,b) such that

e {7 isin (a,b),

e (a,b) is contained within (ty,tg),

e Y (t) remains within (yp,yr) while t is in (a,b).
Moreover, this solution is continuously differentiable and is determined by our recipe.
This means either g(y;) = 0 and Y (t) = y; is a stationary solution, or g(y;) # 0 and
Y (t) is a nonstationary solution that satisfies

G(Y(t) =F(1), Y(tr) =uyr,
where F(t) is defined for every t in (tr,tr) by the definite integral

/f

while G(y) is defined by the definite integral
Y1
Gly) = [ e
Y1

9(x)
whenever the point y is in (yr,yr) and neither y nor any point between y and y; is a
stationary point of g.

In particular, if f is continuous over (—oo,00) while g is differentiable over (—oo, 00)
then the initial-value problem (7.8) has a unique solution that either exists for all time

r “blows up” at a finite time. Moreover, this solution is continuously differentiable
and is determined by our recipe. This “blow up” behavior can be seen when g(y) = y?
or g(y) = 1 +y*. Indeed, it can be seen whenever g(y) is a polynomial of degree two or
more.

Remark. The above theorem implies that if the initial point y; lies between two
stationary points within (y,yg) then the solution Y'(t) exists for all ¢ in (¢1,,tg). This
is because the uniqueness assertion implies Y (¢) cannot cross any stationary point, and
therefore is trapped within (yr,yg). In particular, if g is differentiable over (—o0, 00)
then the only solutions that might “blows up” in a finite time are those that are not
trapped above and below by stationary points.

Example. For ¢/ = y? the only stationary point is y = 0. Because g(y) = y* > 0 when
y # 0 we see that every nonstationary solution Y (¢) will be an increasing function of ¢.
This fact is verified by the explicit solution for the initial condition y(0) = y;, which is
Yr
Y(t) = .
(t)=1— il
When y; > 0 the interval of definition is (—oo, 1/y;) and we see that Y (t) — +oo as
t — 1/y; while Y(t) — 0 as t — —oo. In this case the solution is trapped below as
t — —oo by the stationary point y = 0. Similarly, when y; < 0 the interval of definition
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is (1/yr,00) and we see that Y (t) — —oo as ¢ — 1/y; while Y(¢) - 0 as t — oco. In
this case the solution is trapped above as t — co by the stationary point y = 0. Figure
3.2 shows these solutions for the initial values y; = —2 and y; = 2.

Example. For i/ = 4y — y? the stationary points are y = —2, y = 0, and y = 2. For
the initial condition y(0) = y; we obtain

1 yi )
c:——log( )
8 "\Md—yf

Typical nonstationary solution are plotted in Figure 3.1. That figure shows that each
nonstationary solution Y'(¢) is trapped within one of the intervals (—oo, —2), (—2,0),
(0,2), or (2,00). Notice that for the solutions trapped within either (—oo, —2) or (2, 00)
we have y? > 4, whereby ¢ < 0.
e If Y(¢) lies within (—oo, —2) then its interval of definition is (¢, c0). Moreover,
Y'(t) is increasing with
limY (t) = —o0, lim Y(t) = —2.

t—c t—o00

e If Y(¢) lies within (—2,0) then its interval of definition is (—o0, 00). Moreover,
Y'(t) is decreasing with

lim Y(¢) =0, lim Y (t) = —2.

t——o00 t—00

o If Y (¢) lies within (0,2) then its interval of definition is (—o0,00). Moreover,
Y'(t) is increasing with

lim Y(t) =0, lim Y(t) =2.

t——o0 t—o00

o If Y(¢) lies within (2,00,) then its interval of definition is (¢,00). Moreover,
Y(t) is decreasing with

limY(t) = oo, lim Y (t) = 2.

t—c t—o0

Remark. Even in such cases where we cannot find an explicit inverse function of
G(y) we often can determine the interval of definition of the solution directly from the

equation
Gly) = F(t), where F(t) = /t f(s)ds, G(y) = /yﬁdx.

For example, if g(y) > 0 over [y, 00) then G(y) will be increasing over [y;,c0) and
the solution Y'(¢) will be defined over the largest interval (a,b) such that ¢; is in (a, b),
(a,b) is contained within (¢7,tg), and

F(t) < lim G(y).

Yy—r—+00

If the above limit is finite and equal to F(b) then the solution “blows up” ast — b~.
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Similarly, if g(y) > 0 over (—oo,y;] then G(y) will be increasing over (—oo, y;] and
the solution Y'(t) will be defined over the largest interval (a,b) such that ¢; is in (a, b),
(a,b) is contained within (¢1,tg), and

lim G(y) < F(t).
Y——00
If the above limit is finite and equal to F'(b) then the solution “blows down” ast — b~.

7.4. General Equations. In this chapter we consider initial-value problems for first-
order differential equations that are in the normal form

dy
We will give conditions on f(t,y) that ensure this problem has a unique solution. This
theory is used to develop methods by which we can study solutions of these problems
when analytical methods either do not apply or become complicated.

7.4.1. Picard Fxistence and Uniqueness Theorem. For the separable initial-value prob-
lem (7.8) we added the hypothesis that g(y) be differentiable at every stationary point
in order to insure that its solutions were unique. The question now is what hypothesis
can we add to insure the more general initial-value problem (7.11) has unique solutions?
In order to state our hypotheses we will give three definitions.

We begin with the notion of continuity.
Definition 7.2. Let S be a set in the ty-plane. A function f(t,y) defined over S is said

to be continuous over S if for every point (t,y) € S and every sequence {(t,,yn)} C S
such that t, — t and y, — y we have f(t,,y,) — f(t,y).

Next, we define the interior of a set, which a picture should help clarify.

Definition 7.3. Let S be a set in the ty-plane. A point (t,,Yy,) is said to be in the
interior of S if there exists a rectangle (tp,tr) X (yr,yr) that contains the point (t,,y,)
and also lies within the set S.

Finally, we define what it means for a function to be locally Lipschitz in .

Definition 7.4. Let S be a set in the ty-plane. Let f(t,y) be a function defined over

S. We say that f(t,y) is locally Lipschitz in y if for every bounded rectangle B =

[tr,tr] X [yL, yr] that lies within the interior of S there exists a constant L such that
|f(t7y) - f(tWZ)l < L|y - Z| fOT every (tvy) and (t7 y) n B.

We call any such L a Lipschitz constant in y for B.

Remark. If f(¢,y) is differentiable in y over a rectangle B = [t;,tg] X [yL,yr] and
0, f(t,y) is bounded over B then the smallest Lipschitz constant in y for B is given by

L = sup{|9,f(t. )| : (t,y) € B}.

This fact is often proved in beginning analysis courses. In practice, f(t,y) is often
continuously differentiable over B, in which case 0, f(t,y) exists and is bounded over B
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We are now ready to state the Picard existence and uniqueness theorem. Its proof
will be given over the remainder of this section.

Theorem 7.3. Let f(t,y) be a function defined over a set S in the ty-plane such that

e f is continuous over S,
o f is locally Lipschitz in y over S.

Then for every inital time t; and every initial value yr such that (t;,yr) is in the interior
of S there exists a unique solutiony =Y (t) to initial-value problem (7.11) that is defined
over some time interval (a,b) such that

e t; isin (a,b),

o {(t,Y(t)) : t € (a,b)} lies within the interior of S.
Moreover, Y (t) extends to the largest such interval and Y'(t) is continuous over that
interval.

Remark. This is not the most general theorem we could state, but it is one that
applies to many equations you will face and is easy to apply. It asserts that Y (¢) will
exist until (¢, Y (t)) leaves S.

As the following examples show, applying this theorem is often a matter of simply
checking that f(¢,y) and 0, f(t,y) are continuous over the set S where they are defined.
When this is the case, Theorem 7.3 ensures that for every initial data (¢;,y;) in the
interior of S the initial-value problem has a unique solution y = Y'(¢) that is defined
over some time interval (a,b) that contains ;.

Example. Determine (¢7,y;) for which a unique solution exists to the initial-value
problem

dy _ log(ly])
A 1t —g y(tr) =y
Solution. Because f(t,y) = 12?%91’22 is defined everywhere except where 1+t% —y? =0

or y = 0, we try taking S to be all points in the ty-plane except those points on the
hyperbola 1 + t? — y? = 0 (where y = +1/1 + t2) and those points on the t-axis (where
y = 0). Clearly, f is continuous over S, f is differentiable with respect to y over S with

11 log(Jyl)
o flt,y) = -+ 2y,
) = Te gy (T+rez—y22
and 0, f is continuous over S. Every point in S is also in the interior of S. Therefore
Theorem 7.3 insures that for every (¢;,y;) in S the initial-value problem has a unique
solution y = Y'(¢) that is defined over some time interval (a,b) that contains ¢;. The

solution extends to the largest interval (a,b) for which (¢,Y(¢)) remains within S.

Example. Determine (¢;,y;) for which a unique solution exists to the initial-value

problem
d
d—‘z =V1i+t+y*,  ylt) =y

Solution. Because f(t,y) = /1 + t? 4+ y? is defined over (—o0, 00) X (—00, 00), we try
taking S to be the entire ty-plane. Clearly, f is continuous over S, f is differentiable
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with respect to y over S with

Y
ayf<t7 y) \/m ’
and 0, f is continuous over S. Every point in S is also in the interior of S. Therefore
Theorem 7.3 insures that for every (¢7,y;) in the ty-plane the initial-value problem has
a unique solution y = Y'(¢) that is defined over some time interval (a,b) that contains
t7. Either the solution extends to all ¢ or Y(¢) blows up in finite time because those are
the only ways for (¢,Y (t)) to leave S. (In fact, it extends to all t.)

Remark. The initial-value problems in the examples above cannot be solved by ana-
lytic methods. However, Theorem 7.3 insures that their solutions exist and are unique.

7.4.2. Integral Formulation. The theory of solutions for linear and separable equations
rested heavily upon the fact that we had formulas that gave either explicit or implicit
solutions to those equations. There are no such formulas in the general setting we are
now considering. The role that those formulas played in those theories will now be
played by the following integral formulation of the intial-value problem (7.11).

Let us suppose that y(t) is a classical solution of initial-value problem (7.11) over
a time interval (fr,tr) that contains ¢;. Moreover, let us suppose that f(t,y(t)) is
continuous over (tr,tr). Because y/(t) = f(t,y(t)), this means we are assuming that
y(t) is continuously differentiable over (t1,tg). Then for every t € (t;,tg) we may
integrate the differential equation between t; and ¢ to see that

(712) o) =ur+ [ 565,006 ds

Therefore every classical solution of initial-value problem (7.11) that satisfies the fore-
going assumptions is also a solution of integral equation (7.12).

The beauty of the above observation is that under mild assumptions on f(t,y), being
a solution of integral equation (7.12) is equivalent to being a solution of initial-value
problem (7.11).

Lemma 7.1. Let the function f(t,y) be continuous over a set S in the ty-plane. Let
(tr,yr) be in the interior of S. Let (a,b) be a time interval and Y (t) be continuous over
(a,b) such that

e t; isin (a,b),

o {(t,Y(t)) : t € (a,b)} lies within the interior of S.
Then y = Y (t) is a classical solution of initial-value problem (7.11) over (a,b) if and
only if it is a solution of integral equation (7.12). When this is the case Y (t) is contin-
uously differentiable over (a,b).

Proof. Let y = Y (¢) be a classical solution of initial-value problem (7.11) over (a,b).
Because Y'(t) is continuous over (a,b), {(t,Y(t)) : t € (a,b)} lies within the interior
of S, and f(t,y) is continuous over S, we know that f(¢,y(t)) is continuous over (a, b).
Then the argument given above (7.12) shows that y = Y'(¢) is a solution of the integral
equation (7.12) over (a,b) that is continuously differentiable.
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Conversely, let y = Y (t) be a solution of integral equation (7.12) over (a, b). Because
Y (t) is continuous over (a,b), {(¢,Y(t)) : t € (a,b)} lies within the interior of S, and
f(t,y) is continuous over S, we know that f(¢,y(t)) is continuous over (a,b). The
Second Fundamental Theorem of Calculus then implies that the right-hand side of
(7.12) is continuously differentiable over (a, b), which implies that Y (¢) is continuously
differentiable over (a,b). Moreover, for every t € (a,b) we have

vio =5 (et [ S ves) - ).

It is also clear from (7.12) that Y'(t;) = y;. Therefore y = Y (¢) is a classical solution
of initial-value problem (7.11) over (a,b) that is continuously differentiable. O

Remark. The idea behind this lemma is that it will be easier to prove that integral
equation (7.12) has a solution than to directly prove that initial-value problem (7.11)
has a solution because we only have to work with continuous functions rather than
differentiable functions.

7.4.3. Gronwall Lemma and Uniqueness. First we will illustrate the role played by the
locally Lipschitz hypothesis in proving the uniqueness asserted by the Picard Theorem.

Let y = Y (t) and y = Z(t) be continous solutions of the integral equation (7.12) over
rectangle B = [tr,t; + h| X [y, yr| for some h > 0. Let L be a Lipschitz constant in y
for B. Then we have

(7.13)  |Y( |</ F(5,Y(5)) — f(s, Z(s ))|ds<L/ V(s) — Z(s)|ds.

We want to show that this implies |Y (¢) — Z(t)| = 0 over [t7,t; + h]. That would imply
that Y (t) = Z(t) over [tr,t; + h], thereby proving the uniqueness of the solution.

The way we will show that |Y'(t) — Z(t)| = 0 over [t;,t; + h] is by using the Gronwall
Lemma, which we now state and prove.

Lemma 7.2. (Gronwall Lemma.) Let a(t), 5(t), and n(t) be nonnegative, continu-
ous functions over [t;,t; + h] that satisfy the integral inequality

(714 M®SMQ+MQZB@M@®
Then n(t) is bounded for every t € [tr,tr + h] by

(7.15) n(t) < a(t) exp ( / ta(s)ﬁ(s)ds) |
Proof. Define ¢(t) for every t € [t1, 1 + h] by

_1+/6

Because B(t) and n(t) are continuous over [t;, t;+ h], the Second Fundamental Theorem
of Calculus implies that ¢(t) is continuously differentiable over [t;,t; + h] with ¢'(¢t) =
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B(t)n(t). Then because B(t) is nonnegative and because the integral inequality (7.14)
can be recast as 7(t) < a(t)¢(t), we obtain

¢'(t) = Bt)n(t) < a(t)B(t)e(t).

But this is equivalent to

& (e(- /tjoc(s)ﬁ(s)ds> 60) <0,

Because ¢(t;) = 1, the above inequality implies that

ot0) < exp( [ als)si)as)

tr

When this bound is placed into n(t) < a(t)¢(t), we obtain bound (7.15). O

We now let § > 0 be arbitrary and apply the Gronwall Lemma with «a(t) = 9,
B(t) = L/d, and n(t) = |Y(t) — Z(t)|. Then integral inequality (7.14) is satisfied by
(7.13). The Gronwall Lemma then gives bound (7.15), which is

Y(t) = Z(t)| <5 for every t € [tr,tr + h].

But § > 0 was arbitrary. Therefore |Y(t) — Z(t)| = 0, completing our uniqueness
argument.

7.4.4. Picard Iteration. It is now time to show that integral equation (7.12) has a
continuous solution Y (¢) over a time interval [t;, t; 4+ k] for a sufficiently small i~ > 0.
This will be done by constructing a sequence {Y,,(t)} of approximate solutions and
showing that they converge to a solution of integral equation (7.12). The approximate
solutions that we will use are defined iteratively as follows.

Let Yy(t) be the first approximate solution. A common choice is Y5(t) = y; because it
satisfies the initial condition and is extremely simple, however any choice that satisfies
the initial condition will work. Given Y,,(t) we construct Y,,;1(¢) by

t
(7.16) Yoi1(t) = yr +/ f(s,Y,(s))ds for every t € [t;,t; + h].
tr

In other words, we construct Y,,1(t) to be the right-hand side of integral equation
(7.12) evaluated at Y, (¢). This method of constructing a sequence of approximate
solutions is commonly called Picard iteration or the Picard method of successive ap-
proximations. The approximations Y,,(¢) are commonly called Picard iterates or Picard
approximations.

Before we can hope to show that the Picard iterates converge to a solution of integral
equation (7.12), we must show that they exist! The problem is that we have to make
sure that each Y,,(t) takes values such that (¢,Y,(¢)) remains within the interior of S
for every t € [tr,t; + h]. We will do this by picking h > 0 sufficiently small.

Lemma 7.3. Let S and f(t,y) be as in the Picard Theorem. Then there exists h > 0
such that each Picard iterate Y, (t) is continuous over [t;,t; + h] and takes values such
that (t,Y,(t)) remains within the interior of S for every t € [t;, t; + h].
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Proof. Because the point (t;,y;) lies in the interior of S there exists a rectangle
(tr,tr) X (yr,yr) that contains the point (¢;,yr) and is contained in the set S. We then
pick 4 > 0 and n > 0 such that

(7.17) R=1tr,tr +n] x [yr —0,yr + 0] C (tr,tr) X (Yr,Yr) -

Because f(t,y) is continuous over the closed, bounded set R, it takes on its extreme
values. Let

(7.18) M =max{|f(t,y)| : (t,y) € R}.

Now pick h € (0,7] so that Mh < §. We claim that every Picard iterate is continuous
over [t;,t; + h] and satisfies the bound

(7.19) Yo (t) —yr| <0 forevery t € [tr,tr + h].

We prove this by induction. By choosing Yy(t) = yr, this obviously holds for n = 0.
Now suppose that it holds for Y;,(t). We want to show that it holds for Y, (¢). Because
it holds for Y,,(¢), we know that (¢,Y,(t)) € R for every t € [t;,t; + h], which by (7.18)
implies that |f(¢,Y,(t))] < M for every t € [t;,t; + h]. But then from definition (7.16)
of Y,11(t) we see that

Yor(t) — it < / (s, Ya(s))| ds < M(t —tr) < Mh <6

Therefore bound (7.19) holds for Y,,11(¢). In addition, Y;,;1(¢) is continous over [t;, t; +
h]. Indeed, because f(t,Y,(t)) is continuous over [t;, t; + h], it is clear from definition
(7.16) that Y, ;1(t) is continously differentiable over [t;,t; + h]. By induction, each
Picard iterate is continuous over [t7,t; + h] and satisfies bound (7.19). O

Remark. The restriction of h by the conditions ~ < n and Mh < ¢ has simple
interpretation of keeps (¢, y(t)) within the rectangle R. Specifically, the condition h < 7
keeps t within [t;, t; + 7], while the condition Mh < ¢ keeps y(t) within [y; — d,yr + 6].
Indeed, because M is the maximum absolute value of 3/, the maximum amount that
y(t) can change over a time interval of length h is Mh.

It remains to be shown that the Picard iterates converge to a solution of integral
equation (7.12). This has two steps: showing the Picard iterates converge, and showing
the limiting function solves integral equation (7.12). The first step uses the Cauchy
Criterton for the convergence of sequences. The second step uses the fact that the
convergence is uniform. These are concepts are often introduced in analysis courses.

The first step is contained in the following lemma.
Lemma 7.4. Let S and f(t,y) be as in the Picard Theorem. Let h > 0 and § > 0 be
as in the proof of Lemma 7.5. Let {Y,} be the sequence of Picard iterates constructed
in Lemma 7.3. Then for each t € [tr,t; + h the sequence of real numbers {Y,(t)} is

Cauchy, and thereby is convergent by the Cauchy Criterion. Moreover, for everyn > m
and every t € [t;,t; + h we have the bound

(7.20) Y, (1) = Yu(t)] < % seth,

where L is a Lipshitz constant in y for the rectangle B = [ty t; + h] X [y; — d,y + ¢].
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Proof. Let ¢ > 0 be arbitrary. Because the Picard iterates are generated by definition
(7.16), for every n > 1 and t € [t;,t; + h] we have

Yo (1) |</ £(5,Ya(s)) — f(s.Y, |ds<L/ [Ya(s) = Yaoa(s)] ds.

Because |Y1(t) —y;| < 6, we can use this inequality to show by induction that for every
n >0 and every t € [t;,t; + h] we have

Lt — ;)"

Yoia(t) = Ya(t)] < 0.

Then for every n > m and every t € [t;,t; + h] we have

n—1
Ya(t) = Vi(®)] < ) [Yea (1) — Yi(D)]
k=m
n—1 k(y k
RSP AGN
- k!
k=m
Lm(t t[)m Lk m(t o t[)k m
)
- m! l;n (k—m)!
Lt —t)m IS LR — )
= )
m! kZ:O k!
Lm(t — tl) 5 L(t—tr) < (Lh)m 5 elh
- m! - m!

This proves (7.20). Finally, by picking m large enoungh the right-hand side will be
smaller than e. Hence, for each t € [t;,t; + h] the sequence of real numbers {Y,,(t)} is
Cauchy, and thereby is convergent by the Cauchy Criterion.

The second step is contained in the following lemma.

Lemma 7.5. Let S and f(t,y) be as in the Picard Theorem. Let h > 0 and 6 > 0 be
as in the proof of Lemma 7.5. Let {Y,} be the sequence of Picard iterates constructed
in Lemma 7.3. Define Y (t) by

Y(t) = tlim Y, (%) for every t € [tr,t; + h].
—00
Then Y (t) is continuous over [tr,t; + h] and satisfies integral equation (7.12).

Proof. By Lemma 7.4 the sequence {Y,,(¢)} is convergent for every ¢ € [t;,t; + h], so
that the limit above that defines the function Y'(¢) exists over this interval. We can
then let n — oo in (7.20) to obtain the uniform bound

(7.21) Y (8) = You(t)] < %5&’1,

where L is a Lipshitz constant in y for the rectangle B = [t;,t; + h] X [yr — d,y + 4.
The right-hand side of this bound is independent of ¢ and vanishes as m — oo. This
shows that Y,,(t) converges to Y (¢) uniformly in t.
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Next we argue that Y is continuous over [t7, t;+h]. This follows from the general fact
that the uniform limit of a sequence of continuous functions is also continuous. This
fact is often taught in analysis courses. Rather than use this general fact, we present
an independent proof that Y is continuous over [t;,t; + h| which only requires that
you know the e-d definition of continuity at a point. The triangle inequality and the
uniform bound (7.21) imply that for every s,t € [t;,¢; + h]

Y (s) =Y (@) <[Y(s) = Ya(s)| + [Ya(s) = Ya()] + [Ya(t) = V()]
< sy pvas) - v + ER s o

Let t € [tr,t; + h]. Let € > 0. Pick n large enough so that
n! 3
Because Y,, is continuous at t we can pick J. > 0 small enough so that for every
S € [t[, tr + h]
s —t| < 6. => |Ya(s) — Ya(t)| < %

By combining the three lines above we see that

s —t] <d = |Y(S)—Y(t)|<§+§+§:e

Hence, Y is continuous at t. But ¢ € [t;,t;+h] was arbitrary. Therefore Y is continuous
over [tr,tr + hl.

Fianlly, we show that Y'(¢) solves integral equation (7.12) by letting n — oo in the
defining relation (7.16) of the Picard iterates. It is clear that

Tim Yo (8) = V(1)

By using the uniform bound we have

t f(s,Yn(s))ds—/t f(s,Y(s))ds

< / (5. Ya(s)) — F(s.Y(s))] ds

Ya(s) = Y(s)|ds

tr
(Lh)n+1

<
n!

Lh
oe ™,

which implies that

lim f(s,Yn ds-/ f(s,Y(s

n—oo
Therefore Y (t) solves mtegral equation (7.12). O

Lemmas 7.1 through 7.5 combine to give a proof of the main conclusions of the Picard
Theorerm, Theorem 7.3. 0]
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