Final Exam: MATH 410 Tuesday, 15 December 2015 Professor David Levermore

- 1. [10] Let $\{x_n\}_{n\in\mathbb{N}}$ be a sequence in \mathbb{R} . Give negations of each of the following assertions.
 - (a) For every $\epsilon > 0$ there exists an $n_{\epsilon} \in \mathbb{N}$ such that

$$m, n > n_{\epsilon} \implies |x_m - x_n| < \epsilon$$
.

- (b) $\lim_{n\to\infty} x_n = -\infty$.
- 2. [20] State whether each of the following statements is true or false. Give a proof when true and a counterexample when false.
 - (a) If the interval (a, b) is bounded, $f:(a, b) \to \mathbb{R}$ is differentiable, and $f':(a, b) \to \mathbb{R}$ is bounded over (a, b) then the function f is bounded over (a, b).
 - (b) If $\{f_n\}_{n=1}^{\infty}$ is a sequence of functions such that each $f_n:[a,b]\to\mathbb{R}$ is Riemann integrable over [a,b], and $f_n\to f$ pointwise over [a,b] where $f:[a,b]\to\mathbb{R}$ is Riemann integrable over [a,b], then

$$\lim_{n \to \infty} \int_a^b f_n = \int_a^b f \,.$$

3. [25] Consider a function g defined by

$$g(x) = \sum_{k=1}^{\infty} \frac{1}{2^k} \sin(kx),$$

for every $x \in \mathbb{R}$ for which the above series converges.

- (a) Show that g is defined for every $x \in \mathbb{R}$.
- (b) Show that g is continuously differentiable over \mathbb{R} and that

$$g'(x) = \sum_{k=1}^{\infty} \frac{k}{2^k} \cos(kx).$$

- 4. [25] For every $n \in \mathbb{Z}_+$ define $f_n(x) = ne^{-nx}$ for every $x \in [0, 1]$.
 - (a) Prove for every $\delta > 0$ that

$$\lim_{n \to \infty} f_n = 0 \quad \text{uniformly over } [\delta, 1].$$

(b) Show that

$$\lim_{n\to\infty} \int_0^1 f_n = 1.$$

(c) Let $g:[0,1]\to\mathbb{R}$ be continuous. Show that

$$\lim_{n\to\infty} \int_0^1 f_n g = g(0) .$$

More problems are on the back.

1

- 5. [20] Let $f:[a,b] \to \mathbb{R}$ and $g:[a,b] \to \mathbb{R}$ be Riemann integrable over [a,b]. Prove that f+g is Riemann integrable over [a,b].
- 6. [20] For every $n \in \mathbb{Z}_+$ define $h_n(x) = nxe^{-nx}$ for every $x \in [0, 1]$.
 - (a) Prove that $h_n \to 0$ pointwise over [0,1].
 - (b) Prove that this limit is not uniform over [0,1].
- 7. [20] Determine all $a \in \mathbb{R}$ for which the following formal infinite series converge. Give your reasoning.

(a)
$$\sum_{n=2}^{\infty} \frac{a^n}{4^n \log(n)}$$

(b)
$$\sum_{k=1}^{\infty} \left(\frac{k}{k^2 + 1} \right)^a$$

- 8. [20] Let $f:(a,b)\to\mathbb{R}$ be uniformly continuous over (a,b). Let $\{x_k\}_{k\in\mathbb{N}}$ be a Cauchy sequence contained in (a,b). Show that $\{f(x_k)\}_{k\in\mathbb{N}}$ is a Cauchy sequence.
- 9. [20] Let $\alpha \in (0,1]$ and $K \in \mathbb{R}_+$ such that the function $f:[a,b] \to \mathbb{R}$ satisfy the Hölder bound

$$|f(x) - f(y)| < K |x - y|^{\alpha}$$
 for every $x, y \in [a, b]$.

- (a) Show that f is uniformly continuous over [a, b].
- (b) Show that for every partition P of [a, b] one has

$$0 \le U(f,P) - L(f,P) < |P|^{\alpha}K(b-a).$$

10. [20] Show that

$$\log(1+x^2) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} x^{2k} \quad \text{for every } x \in [-1, 1].$$

Hint: Consider $\log(1+y)$ first.