
Numerical Methods to Solve Initial-Value Problems
for Systems of Ordinary Differential Equations

C. David Levermore
Department of Mathematics

University of Maryland

November 18, 2016

Contents

1. Initial-Value Problems for First-Order Systems

1.1. First-Order Systems of Ordinary Differential Equations

1.2. Solutions of First-Order Systems

1.3. Theory for Initial-Value Problems

2. Recasting Higher-Order Problems as First-Order Systems

3. Numerical Approximation

4. Explicit and Implicit Euler Methods

4.1. Explicit Euler Method

4.2. Implicit Euler Method

5. Explicit One-Step Methods Based on Taylor Approximation

5.1. Explicit Euler Method Revisited

5.2. Local and Global Errors

5.3. Higher-Order Taylor-Based Methods

6. Explicit One-Step Methods Based on Quadrature

6.1. Explicit Euler Method Revisited Again

6.2. Runge Trapeziodal Method

6.3. Runge Midpoint Method

6.4. Classical Runge-Kutta Method

7. General Explicit Runge-Kutta Methods

7.1. Two-Stage Methods

7.2. Three-Stage Methods

7.3. Four-Stage Methods

7.4. Higher-Stage Methods

c©2016 C. David Levermore

1



2

1. Initial-Value Problems for First-Order Systems

1.1. First-Order Systems of Ordinary Differential Equations. We will study
first-order systems of n ordinary differential equations for functions xj(t), j = 1, 2, · · · , n
that can be put into the normal form

(1.1)

x′1 = f1(t, x1, x2, · · · , xn) ,

x′2 = f2(t, x1, x2, · · · , xn) ,

...

x′n = fn(t, x1, x2, · · · , xn) .

We say that n is the dimension of this system.

System (1.1) can be expressed more compactly in vector notation as

(1.2)
dx

dt
= f(t,x) ,

where x and f(t,x) are given by the n-dimensional column vectors

x =


x1
x2
...
xn

 , f(t,x) =


f1(t, x1, x2, · · · , xn)
f2(t, x1, x2, · · · , xn)

...
fn(t, x1, x2, · · · , xn)

 .

We thereby express the system of n equations (1.1) as the single vector equation (1.2).
We say x1, x2, · · · , xn are the entries of the vector x. Similarly, we say that the functions
f1(t, x1, x2, · · · , xn), f2(t, x1, x2, · · · , xn), · · · , fn(t, x1, x2, · · · , xn) are the entries of the
vector-valued function f(t,x).

Remark. We will use boldface, lowercase letters like x and f to denote column vectors.
Many advanced books do not use any special notation for vectors, but expect the reader
to recall what each letter represents from when it was introduced.

1.2. Solutions of First-Order Systems. Here we recall from multi-variable calculus
what it means for a vector-valued function u(t) to be either continuous or differentiable
at a point.

• We say u(t) is continuous at time t if every entry of u(t) is continuous at t.
• We say u(t) is differentiable at time t if every entry of u(t) is differentiable at t.

Given these definitions, we define what it means for a vector-valued function u(t) to be
either continuous, differentiable, or continuously differentiable over a time interval.

• We say u(t) is continuous over a time interval (tL, tR) if it is continuous at every
t in (tL, tR).
• We say u(t) is differentiable over a time interval (tL, tR) if it is differentiable at

every t in (tL, tR).
• We say u(t) is continuously differentiable over a time interval (tL, tR) if it is

differentiable over (tL, tR) and its derivative is continuous over (tL, tR).



3

We are now ready to define what we mean by a solution of system (1.2).

Definition. We say that x(t) is a solution of system (1.2) over a time interval
(t

L
, t

R
) when

1. x(t) is differentiable at every t in (t
L
, t

R
);

2. f(t,x(t)) is defined for every t in (t
L
, t

R
);

3. equation (1.2) holds at every t in (t
L
, t

R
).

Remark. The first point states that the left-hand side of the equation makes sense.
The second point states that the right-hand side of the equation makes sense. The third
point states that the two sides are equal.

1.3. Theory for Initial-Value Problems. We will consider initial-value problems of
the form

(1.3)
dx

dt
= f(t,x) , x(tI) = xI .

Here tI is the initial time, xI is the initial value or initial data, and x(tI) = xI is the
initial condition. It is rare that solutions of (1.3) can be found analytically. In these
notes we present ways to approximate solutions of such systems numerically. However,
before trying to approximate the solution to an initial-value problem, it is worth asking
if the solution exists, or if it does exist, is it unique. This is because if the solution
either does not exist or is not unique then seeking a numerical approximation is a waste
of time.

Fortunately there are conditions on f(t,x) that insure the initial-value problem (1.3)
has a unique solution that exists over some time interval that contains tI . Moreover,
these conditions are often easy to verify. We begin with a definition.

Definition 1.1. Let S be a set in R×Rn. A point (to,xo) is said to be in the interior of
S if there exists a box (tL, tR)× (xL1 , x

R
1 )× · · · × (xLn , x

R
n ) that contains the point (to,xo)

and also lies within the set S.

Our basic existence and uniqueness theorem is the following.

Theorem 1.1. Let f(t,x) be a vector-valued function defined over a set S in R × Rn

such that

• f is continuous over S,
• f is differentiable with respect to each xi over S,
• each ∂xi

f is continuous over S.

Then for every inital time tI and every initial value xI such that (tI ,x
I) is in the

interior of S there exists a unique solution x(t) to initial-value problem (1.3) that is
defined over some time interval (a, b) such that

• tI is in (a, b),
• {(t,x(t)) : t ∈ (a, b)} lies within the interior of S.

Moreover, x(t) extends to the largest such time interval and x′(t) is continuous over
that time interval.



4

Remark. This is not the most general theorem we could state, but it applies to the
first-order systems you will face in this course. It asserts that the initial-value problem
(1.3) has a unique solution x(t) that will exist until (t,x(t)) leaves the interior of S.

2. Recasting Higher-Order Problems as First-Order Systems

Many higher-order differential equation problems can be recast in terms of a first-
order system in the normal form (1.2). For example, every nth-order ordinary differential
equation in the normal form

y(n) = g
(
t, y, y′, · · · , y(n−1)

)
,

can be expressed as an n-dimensional first-order system in the form (1.2) with

dx

dt
= f(t,x) =


x2
...
xn

g(t, x1, x2, · · · , xn)

 , where x =


x1
x2
...
xn

 =


y
y′

...
y(n−1)

 .

Notice that the first-order system is expressed solely in terms of the entries of x. The
“dictionary” that relates x to y, y′, · · · , y(n−1) is given as a separate equation.

Example. Recast as a first-order system

y′′′ + yy′ + ety2 = cos(3t) .

Solution. Because this single equation is third order, the first-order system will have
dimension three. It will be

d

dt

x1x2
x3

 =

 x2
x3

cos(3t)− x1x2 − etx 2
1

 , where

x1x2
x3

 =

 y
y′

y′′

 .

More generally, every d-dimensional mth-order ordinary differential system in the
normal form

y(m) = g
(
t,y,y′, · · · ,y(n−1)) ,

can be expressed as an md-dimensional first-order system in the form (1.2) with

dx

dt
= f(t,x) =


x2
...

xm

g(t,x1,x2, · · · ,xm)

 , where x =


x1

x2
...

xm

 =


y
y′

...
y(m−1)

 .

Here each xk is a d-dimensional vector while x is the md-dimensional vector constructed
by stacking the vectors x1 through xm on top of each other.

Example. Recast as a first-order system

q′′1 + f1(q1, q2) = 0 , q′′2 + f2(q1, q2) = 0 .



5

Solution. Because this two dimensional system is second order, the first-order system
will have dimension four. It will be

d

dt


x1
x2
x3
x4

 =


x3
x4

−f1(x1, x2)
−f2(x1, x2)

 , where


x1
x2
x3
x4

 =


q1
q2
q′1
q′2

 .

When faced with a higher-order initial-value problem, we use the dictionary to obtain
the initial values for the first-order system from those for the higher-order problem.

Example. Recast as an initial-value problem for a first-order system

y′′′′ − ey = 0 , y(0) = 2 , y′(0) = −1 , y′′(0) = 5 , y′′′(0) = −4 .

Solution. The first-order initial-value problem is

d

dt


x1
x2
x3
x4

 =


x2
x3
x4
ex1

 ,


x1(0)
x2(0)
x3(0)
x4(0)

 =


2
−1
5
−4

 , where


x1
x2
x3
x4

 =


y
y′

y′′

y′′′

 ,

Remark. We can also find single higher-order equations that are satisfied by the entries
of a first-order system. We will not discuss how this is done because it is not as useful.

3. Numerical Approximation

Analytic methods are either difficult or impossible to apply to most first-order differ-
ential systems. Sometimes graphical methods can be applied. For example, direction
fields can be applied when there is a single equation (n = 1). However, it can be hard to
understand how any particular solution behaves from the direction field of its govern-
ing equation. If we are interested in understanding how a particular solution behaves
then a numerical method can be used to construct an accurate approximation to the
solution. This approximation then can be graphed much like an explicit solution.

Suppose we are interested in the solution x(t) of the initial-value problem

(3.1) x′ = f(t,x) , x(tI) = xI ,

over the time interval [tI , tF ] — i.e. for tI ≤ t ≤ tF . Here tI is called the initial time
while tF is called the final time. A numerical method selects times {tn}Nn=0 such that

tI = t0 < t1 < t2 < · · · < tN−1 < tN = tF ,

and computes values {xn}Nn=0 such that

x0 = x(t0) = xI ,

xn approximates x(tn) for n = 1, 2, · · · , N .

For good numerical methods, these approximations will improve as N increases. So for
sufficiently large N we can plot the points {(tn,xn)}Nn=0 and “connect the dots” to get
an accurate picture of how x(t) behaves over the time interval [tI , tF ].



6

Here we will introduce a few basic numerical methods in simple settings. The nu-
merical methods used in software packages such as MATLAB are generally far more
sophisticated than those we will study here. They are however built upon the same
fundamental ideas as the simpler methods we will study. Throughout this chapter we
will make the following two basic simplifications.

• We will employ uniform time steps. This means that given N we set

(3.2) h =
tF − tI
N

, and tn = tI + nh for n = 0, 1, · · · , N ,

where h is called the step size.
• We will employ one-step methods. This means that given f(t,x) and h the value

of xn+1 for n = 0, 1, · · · , N − 1 will depend only on xn.

Sophisticated software packages use methods in which the step size is chosen adaptively.
In other words, the choice of tn+1 will depend on the behavior of recent approximations
— for example, on (tn,xn) and (tn−1,xn−1). Employing uniform time steps greatly
simplifies the algorithms, and thereby simplifies the programming we have to do. If we
do not like the way a run looks, we will simply try again with a larger N .

Similarly, sophisticated software packages sometimes use so-called multi-step methods
for which the value of xn+1 for n = m,m+ 1, · · · , N − 1 will depend on xn, xn−1, · · · ,
and xn−m for some positive integer m. Employing one-step methods again simplifies
the algorithms, and thereby simplifies the programming we have to do.

4. Explicit and Implicit Euler Methods

The simplest (and least accurate) numerical methods are the Euler methods. These
can be derived many ways. Here we give a simple approach based on the definition of
the derivative through difference quotients.

4.1. Explicit Euler Method. If we start with the fact that

lim
h→0

x(t+ h)− x(t)

h
= x′(t) = f(t,x(t)) ,

then for small positive h we have

x(t+ h)− x(t)

h
≈ f(t,x(t)) .

Upon solving this for x(t+ h) we find that

x(t+ h) ≈ x(t) + hf(t,x(t)) .

If we let t = tn above (so that t+ h = tn+1) this is equivalent to

x(tn+1) ≈ x(tn) + hf(tn,x(tn)) .

Because xn and xn+1 approximate x(tn) and x(tn+1) respectively, this suggests setting

(4.1) xn+1 = xn + hf(tn,xn) for n = 0, 1, · · · , N − 1 .

This so-called Euler method was introduced by Leonhard Euler in 1768.



7

In practice, the explicit Euler method is implemented by initializing x0 = xI and
then for n = 0, · · · , N − 1 cycling through the instructions

fn = f(tn,xn) , xn+1 = xn + hfn ,

where tn = tI + nh. You should know the explicit Euler method and be able to carry
out one or two steps of it by hand.

Example. Let Y (t) be the solution of the initial-value problem

y′ = t2 + y2 , y(0) = 1 .

Use the explicit Euler method with h = .1 to approximate Y (.2).

Solution. We initialize t0 = 0 and y0 = 1. The explicit Euler method then gives

f0 = f(t0, y0) = 02 + 12 = 1

y1 = y0 + hf0 = 1 + .1 · 1 = 1.1

f1 = f(t1, y1) = (.1)2 + (1.1)2 = .01 + 1.21 = 1.22

y2 = y1 + hf1 = 1.1 + .1 · 1.22 = 1.1 + .122 = 1.222

Therefore Y (.2) ≈ y2 = 1.222. �

Remark. Of course, when many time steps are to be taken then the explicit Euler
method should be implemented on a computer. However, when using a computer you
should understand what it is doing, or what it is supposed to be doing. Without such
understanding you will not be able to spot when the compter is returning nonsense,
or how to fix the computer program when it is. Indeed, hand calculations like in the
above example still play an important role in debugging computer code.

The explicit Euler method is implemented by the following MATLAB function M-file.

function [t,y] = EulerExplicit(f, tI, yI, tF, N)

t = zeros(N + 1, 1); y = zeros(N + 1, 1);
t(1) = tI; y(1) = yI; h = (tF - tI)/N;
for j = 1:N
t(j + 1) = t(j) + h;
y(j + 1) = y(j) + h*f(t(j), y(j));
end

This M-file assumes that an anonymous function f is defined that gives the right-hand
side of the differential equation. For example, if the right-hand side of the differential
equation is t2 + y2 then we would type

>> f = @(t, y) t̂ 2 + ŷ 2

The values of tI, yI, tF, and N are the initial time tI , initial value yI , final time tF , and
the number of time steps N . Given that f is defined as above, the foregoing example
can be carried out using this M-file by typing

>> [t, y] = EulerExplicit(f, 0.0, 1.0, 0.2, 2)



8

The vector t would return the values (t(1), t(2), t(3)) = (t0, t1, t2) = (0.0, 0.1, 0.2) and
the vector y would return the values (y(1), y(2), y(3)) = (y0, y1, y2) = (1.0, 1.1, 1.222).

Remark. There are some things you should notice. First, t(j) is tj−1 and y(j) is yj−1,
the approximation of Y (tj−1). In particular, y(j) is not the same as Y (j), which denotes
the solution Y (t) evaluated at t = j. (You must pay attention to the font in which a
letter is written!) The shift of the indices by one is needed because indexed variables in
MATLAB begin with the index 1. In particular, t(1) and y(1) denote the initial time
t0 and value y0. Consequently, all subsequent indices are shifted too, so that t(2) and
y(2) denote t1 and y1, t(3) and y(3) denote t2 and y2, etc.

4.2. Implicit Euler Method. Alternatively, we could have started with the fact that

lim
h→0

x(t)− x(t− h)

h
= x′(t) = f(t,x(t)) .

Then for small positive h we have

x(t)− x(t− h)

h
≈ f(t,x(t)) .

Upon solving this for x(t− h) we find that

x(t− h) ≈ x(t)− hf(t,x(t)) .

If we let t = tn+1 above (so that t− h = tn) this is equivalent to

x(tn+1)− hf(tn+1,x(tn+1)) ≈ x(tn) .

Because xn and xn+1 approximate x(tn) and x(tn+1) respectively, this suggests setting

(4.2) xn+1 − hf(tn+1,xn+1) = xn for n = 0, 1, · · · , N − 1 .

This method is called the implicit Euler or backward Euler method. It is called the
implicit Euler method because equation (4.2) implicitly relates xn+1 to xn. It is called
the backward Euler method because the difference quotient upon which it is based steps
backward in time (from t to t−h). In contrast, the Euler method (4.1) sometimes called
the explicit Euler or forward Euler method because it gives xn+1 explicitly and because
the difference quotient upon which it is based steps forward in time (from t to t+ h).

Remark. One step of the implicit Euler method will be much slower than one step of
the explicit Euler method unless equation (4.2) can be explicitly solved for xn+1. This
can be done when f(t,x) is a fairly simple function if x. For example, this can be done
when f(t,x) is linear in x. In general equation (4.2) must be solved for xn+1 numerically
(say by the Newton method), which takes time. However, there are equations for which
the implicit Euler method outperforms the explicit Euler method because the explicit
Euler method has to take so many more time steps that its speed advantage per time
step cannot compensate.



9

y

ttn+2tn+1tn

yn+2

yn+1

yn

Y (t)

Figure 5.1. Illustration of the explicit Euler method.

5. Explicit One-Step Methods Based on Taylor Approximation

The explicit (or forward) Euler method can be understood as the first in a sequence
of explicit methods that can be derived from the Taylor approximation formula. This
view gives a better understanding of how errors arise and accumulate in a numerical
approximation.

5.1. Explicit Euler Method Revisited. The explicit Euler method can be derived
from the first-order Taylor approximation, which is also known as the tangent line ap-
proximation. This approximation states that if x(t) is twice continuously differentiable
then

(5.1) x(t+ h) = x(t) + hx′(t) +O(h2) .

Here the O(h2) means that the remainder vanishes at least as fast as h2 as h tends to
zero. It is clear from (5.1) that for small positive h we have

x(t+ h) ≈ x(t) + hx′(t) .

Because x(t) satisfies (3.1), this is the same as

x(t+ h) ≈ x(t) + hf(t,x(t)) .

If we let t = tn above (so that t+ h = tn+1) this is equivalent to

x(tn+1) ≈ x(tn) + hf(tn,x(tn)) .

Because xn and xn+1 approximate x(tn) and x(tn+1) respectively, this suggests setting

(5.2) xn+1 = xn + hf(tn,xn) for n = 0, 1, · · · , N − 1 ,

which is exactly the Euler method (4.1). This view of the Euler method is illustrated
by the Figure 5.1.



10

O(h2)

O(h)
h

y

t

Y (t)

tn tn+1 . . . tN

yn

yn+1

yN

Figure 5.2. Illustration of global error arising through the accumulation
of local errors for the explicit Euler method.

5.2. Local and Global Errors. One advantage of viewing the Euler method through
the tangent line approximation (5.1) is that we gain some understanding of how its
error behaves as we increase N , the number of time steps — or what is equivalent by
(3.2), as we decrease h, the step size. The O(h2) term in (5.1) represents the local error,
which is error the approximation makes at each step.

Roughly speaking, if we halve the step size h then by (5.1) the local error will reduce
by a factor of one quarter, while by (3.2) the number of steps N we must take to get to
a prescribed time (say tF ) will double. If we assume that errors add (which is often the
case) then the error at tF will reduce by a factor of one half. In other words, doubling
the number of time steps will reduce the error by about a factor of one half. Similarly,
tripling the number of time steps will reduce the error by about a factor of one third.
Indeed, it can be shown (but we will not do so) that the error of the explicit Euler
method is O(h) over the interval [tI , tF ]. The best way to think about this is that if
we take N steps and the error made at each step is O(h2) then we can expect that
the acummulation of the local errors will lead to a global error of O(h2)N . This is
illustrated in Figure 5.2. Because (3.2) states that hN = tF − tI , which is a number
that is independent of h and N , we see that global error of the explicit Euler method
is O(h). This was shown by Cauchy in 1824. Moreover, it can be shown that the error
of the implicit Euler method behaves the same way.

Global error is a more meaningful concept than local error because it tells us how fast
a method converges over the entire interval [tI , tF ]. Therefore we identify the order of
a method by the order of its global error. In particular, methods like the Euler methods
with global errors of O(h) are first-order methods. By reasoning similar to that given in
the previous paragraph, methods whose local error is O(hm+1) will have a global error
of O(hm+1)N = O(hm) and thereby are mth-order methods.



11

Higher-order methods are more complicated than the explicit Euler method. The
hope is that this cost is overcome by the fact that its error improves faster as you
increase N — or what is equivalent by (3.2), as you decrease h. For example, if we
halve the step size h of a fourth-order method then the global error will reduce by a
factor of 1/16. Similarly, tripling the number of time steps will reduce the error by
about a factor of 1/81.

5.3. Higher-Order Taylor-Based Methods. The second-order Taylor approxima-
tion states that if x(t) is thrice continuously differentiable then

(5.3) x(t+ h) = x(t) + hx′(t) + 1
2
h2x′′(t) +O(h3) .

Here the O(h3) means that the remainder vanishes at least as fast as h3 as h tends to
zero. It is clear from (5.3) that for small positive h we have

(5.4) x(t+ h) ≈ x(t) + hx′(t) + 1
2
h2x′′(t) .

Because x(t) satisfies (3.1), we see by the chain rule from multivariable calculus that

x′′(t) =
d

dt

(
x′(t)

)
=

d

dt
f(t,x(t)) = ∂tf(t,x(t)) + x′(t)·∂xf(t,x(t))

= ∂tf(t,x(t)) + f(t,x(t))·∂xf(t,x(t)) .

Hence, equation (5.4) is the same as

x(t+ h) ≈ x(t) + hf(t,x(t)) + 1
2
h2
(
∂tf(t,x(t)) + f(t,x(t))·∂xf(t,x(t))

)
.

If we let t = tn above (so that t+ h = tn+1) this is equivalent to

x(tn+1) ≈ x(tn) + hf(tn,x(tn)) + 1
2
h2
(
∂tf(tn,x(tn)) + f(tn,x(tn))·∂xf(tn,x(tn))

)
.

Because xn and xn+1 approximate x(tn) and x(tn+1) respectively, this suggests setting

(5.5)
xn+1 = xn + hf(tn,xn) + 1

2
h2
(
∂tf(tn,xn) + f(tn,xn)·∂xf(tn,xn)

)
for n = 0, 1, · · · , N − 1 .

We call this the second-order Taylor-based method.

Remark. We can generalize the above derivation by using the mth-order Taylor ap-
proximation to derive an explicit numerical method whose error is O(hm) over the
interval [tI , tF ] — a so-called mth-order method. The formulas for these methods grow
in complexity. For example, the third-order method is

(5.6)

xn+1 = xn + hf(tn,xn) + 1
2
h2
(
∂tf(tn,xn) + f(tn,xn)·∂xf(tn,xn)

)
+ 1

6
h3
[
∂ttf(tn,xn) + 2f(tn,xn)·∂txf(tn,xn) + f(tn,xn)⊗2 :∂xxf(tn,xn)

+
(
∂tf(tn,xn) + f(tn,xn)·∂xf(tn,xn)

)
·∂xf(tn,xn)

]
for n = 0, 1, · · · , N − 1 .

This complexity makes these methods far less practical for general algorithms than the
next class of methods we will study.



12

6. Explicit One-Step Methods Based on Quadrature

The starting point for our next class of methods will be the Fundamental Theorem
of Calculus — specifically, the fact

x(t+ h)− x(t) =

∫ t+h

t

x′(s) ds .

Because x(t) satisfies (3.1), this becomes

(6.1) x(t+ h) = x(t) +

∫ t+h

t

f(s,x(s)) ds .

In 1895 Carl Runge proposed using quadrature rules (numerical integration) to con-
struct approximations to the definite integral above in the form

(6.2)

∫ t+h

t

f(s,x(s)) ds = k(h, t,x(t)) +O(hm+1) ,

where m is some positive integer. The key point here is that k(h, t,x(t)) depends on
x(t), but does not depend on x(s) for any s 6= t. When approximation (6.2) is placed
into (6.1) we obtain

x(t+ h) = x(t) + k(h, t,x(t)) +O(hm+1) .

If we let t = tn above (so that t+ h = tn+1) this is equivalent to

x(tn+1) = x(tn) + k(h, tn,x(tn)) +O(hm+1) .

Because xn and xn+1 approximate x(tn) and x(tn+1) respectively, this suggests setting

(6.3) xn+1 = xn + k(h, tn,xn) for n = 0, 1, · · · , N − 1 ,

Hence, every approximation of the form (6.2) yields the mth-order explicit one-step
method (6.3) for approximating solutions of (3.1). Here we will present methods asso-
ciated with four basic quadrature rules that are covered in most calculus courses: the
left-hand rule, the trapezoidal rule, the midpoint rule, and the Simpson rule.

6.1. Explicit Euler Method Revisited Again. The left-hand rule approximates the
definite integral on the left-hand side of (6.2) as∫ t+h

t

f(s,x(s)) ds = hf(t,x(t)) +O(h2) .

This approximation is already in the form (6.2) with k(h, t,x) = hf(t,x). Method (6.3)
thereby becomes

xn+1 = xn + hf(tn,xn) for n = 0, 1, · · · , N − 1 ,

which is exactly the explicit Euler method (4.1).



13

y

ttn+1tn

Y (t)
yn+1

ỹn+1

yn + hf̃n+1yn

Figure 6.1. Illustration of the Runge-trapazoidal method. The method
is described as follows: First evaluate yn+1 using the explicit Euler
method, then find f̃n+1 by evaluating f(y, t) at ỹn+1 and tn+1. Finally

yn+1 is the midpoint of ỹn+1 and the “correction” yn +hf̃n+1. Notice how
the line leaving ỹn+1 is parallel to the segment between yn and yn+hf̃n+1.

6.2. Runge-Trapezoidal Method. The trapezoidal rule approximates the definite
integral on the left-hand side of (6.2) as∫ t+h

t

f(s,x(s)) ds =
h

2

[
f(t,x(t)) + f(t+ h,x(t+ h))

]
+O(h3) .

This approximation is not in the form (6.2) because of the x(t + h) on the right-hand
side. If we approximate this x(t+ h) by the explicit Euler method then we obtain∫ t+h

t

f(s, Y (s)) ds =
h

2

[
f(t,x(t)) + f

(
t+ h,x(t) + hf(t,x(t))

)]
+O(h3) .

This approximation is in the form (6.2) with

k(h, t,x) =
h

2

[
f(t,x) + f

(
t+ h,x + hf(t,x)

)]
.

Method (6.3) thereby becomes

xn+1 = xn +
h

2

[
f(tn,xn) + f

(
tn+1,xn + hf(tn,xn)

)]
for n = 0, 1, · · · , N − 1 .

This is sometimes called the improved Euler method. However, that name is also used
for other methods and is not very descriptive. Rather, we will call this the Runge-
trapezoidal method because it was proposed by Runge based on the trapeziodal rule.
This name makes the origins of the method clear.



14

In practice, the Runge-trapezoidal method is implemented by initializing x0 = xI

and then for n = 0, · · · , N − 1 cycling through the instructions

fn = f(tn,xn) ,

f̃n+1 = f(tn+1, x̃n+1) ,

x̃n+1 = xn + hfn ,

xn+1 = xn + 1
2
h[fn + f̃n+1] ,

where tn = tI + nh.

Example. Let y(t) be the solution of the initial-value problem

y′ = t2 + y2 , y(0) = 1 .

Use the Runge-trapezoidal method with h = .2 to approximate y(.2).

Solution. We initialize t0 = 0 and y0 = 1. The Runge-trapezoidal method then gives

f0 = f(t0, y0) = 02 + 12 = 1

ỹ1 = y0 + hf0 = 1 + .2 · 1 = 1.2

f̃1 = f(t1, ỹ1) = (.2)2 + (1.2)2 = .04 + 1.44 = 1.48

y1 = y0 + 1
2
h
[
f0 + f̃1

]
= 1 + .1 · (1 + 1.48) = 1 + .1 · 2.48 = 1.248

We then have y(.2) ≈ y1 = 1.248. �

Remark. Notice that two steps of the explicit Euler method with h = .1 gave y(.2) ≈
1.222, while one step of the Runge-trapezoidal method with h = .2 gave y(.2) ≈ 1.248,
which is much closer to the exact value. As these two calculations required similar
computational effort, this shows the advantange of using the second-order method.

The Runge-trapezoidal method is implemented by the following MATLAB function
M-file.

function [t,y] = RungeTrap(f, tI, yI, tF, N)

t = zeros(N + 1, 1); y = zeros(N + 1, 1);
t(1) = tI; y(1) = yI; h = (tF - tI)/N; hhalf = h/2;
for j = 1:N
t(j + 1) = t(j) + h;
fnow = f(t(j), y(j)); yplus = y(j) + h*fnow;
fplus = f(t(j + 1), yplus); y(j + 1) = y(j) + hhalf*(fnow + fplus);
end

Remark. Here t(j) and y(j) have the same meaning as they did in the M-file for the
explicit Euler method. In particular, we have the same shift of the indices by one. Here
we have introduced the so-called working variables fnow, yplus, and fplus to temporarily
hold the values of fj−1, ỹj, and f̃j during each cycle of the loop. These values do not
have to be saved, and so are overwritten with each new cycle. Here we have isolated
the function evaluations for fnow and fplus into two separate instructions. This is
good coding practice that makes adaptations easier. For example, you can replace the
function calls to f(t,y) by explicit formulas in those two lines without changing the rest
of the coding.



15

y

ttn+1tn

Y (t)

yn+1

yn

tn+ 1
2

yn+ 1
2

Figure 6.2. Illustration of the Runge-midpoint method. The method
is described as follows: First evalute yn+ 1

2
by taking the midpoint of the

segment between yn and the value yn+hf(yn, tn) predicted by the explicit
Euler method. Next, find fn+ 1

2
by evaluating f(y, t) at yn+ 1

2
and tn+ 1

2
.

Fnally, find yn+1 by stepping from yn in the direction of fn+ 1
2
, that is

yn+1 = yn + hfn+ 1
2
. Notice how the line leaving yn+ 1

2
is parallel to the

segment between yn and yn+1.

6.3. Runge-Midpoint Method. The midpoint rule approximates the definite inte-
gral on the left-hand side of (6.2) as∫ t+h

t

f(s,x(s)) ds = hf
(
t+ 1

2
h,x(t+ 1

2
h)
)

+O(h3) .

This approximation is not in the form (6.2) because of the x(t+ 1
2
h) on the right-hand

side. If we approximate this x(t+ 1
2
h) by the explicit Euler method then we obtain∫ t+h

t

f(s,x(s)) ds = hf
(
t+ 1

2
h,x(t) + 1

2
hf(t,x(t))

)
+O(h3) .

This approximation is in the form (6.2) with

k(h, t,x) = hf
(
t+ 1

2
h,x + 1

2
hf(t,x)

)
.

Method (6.3) thereby becomes

xn+1 = xn + hf
(
tn+ 1

2
,xn + 1

2
hf(tn,xn)

)
for n = 0, 1, · · · , N − 1 .

This is sometimes called the modified Euler method. However, that name is also used
for other methods and is not very descriptive. Rather, we will call this the Runge-
midpoint method because it was proposed by Runge based on the midpoint rule. This
name makes the origins of the method clear.



16

In practice, the Runge-midpoint method is implemented by initializing y0 = yI and
then for n = 0, · · · , N − 1 cycling through the instructions

fn = f(tn,xn) ,

fn+ 1
2

= f(tn+ 1
2
,xn+ 1

2
) ,

xn+ 1
2

= xn + 1
2
hfn ,

xn+1 = xn + hfn+ 1
2
,

where tn = tI + nh and tn+ 1
2

= tI + (n+ 1
2
)h.

Remark. The half-integer subscripts on tn+ 1
2
, xn+ 1

2
, and fn+ 1

2
indicate that those

variables are associated with t = tn + 1
2
h, which is halfway between tn and tn+1. This

notational device helps keep track of the meanings of different variables.

Example. Let y(t) be the solution of the initial-value problem

y′ = t2 + y2 , y(0) = 1 .

Use the Runge-midpoint method with h = .2 to approximate y(.2).

Solution. We initialize t0 = 0 and y0 = 1. Then the Runge-midpoint method gives

f0 = f(t0, y0) = 02 + 12 = 1

y 1
2

= y0 + 1
2
hf0 = 1 + .1 · 1 = 1.1

f 1
2

= f(t 1
2
, y 1

2
) = (.1)2 + (1.1)2 = .01 + 1.21 = 1.22 ,

y1 = y0 + hf 1
2

= 1 + .2 · (1.22) = 1 + .244 = 1.244 .

We then have y(.2) ≈ y1 = 1.244. �

Remark. Notice that the Runge-trapezoidal method gave y(.2) ≈ 1.248 while the
Runge-midpoint method gave y(.2) ≈ 1.244. The results are similar because both meth-
ods are second-order. Here the Runge-trapezoidal method gave a better approximation.
For other problems the Runge-midpoint method might give a better approximation.

The Runge-midpoint method is implemented by the following MATLAB function
M-file.

function [t,y] = RungeMid(f, tI, yI, tF, N)

t = zeros(N + 1, 1); y = zeros(N + 1, 1);
t(1) = tI; y(1) = yI; h = (tF - tI)/N; hhalf = h/2;
for j = 1:N
thalf = t(j) + hhalf; t(j + 1) = t(j) + h;
fnow = f(t(j), y(j)); yhalf = y(j) + hhalf*fnow;
fhalf = f(thalf, yhalf); y(j + 1) = y(j) + h*fhalf;
end

Remark. Here t(j) and y(j) have the same meaning as they did in the M-file for the
explicit Euler method. In particular, we have the same shift of the indices by one. Here
we have introduced the working variables fnow, thalf, yhalf, and fhalf to temporarily
hold the values of fj−1, tj− 1

2
, yj− 1

2
, and fj− 1

2
during each cycle of the loop. These values

do not have to be saved, and so are overwritten with each new cycle.



17

6.3.1. Classical Runge-Kutta Method. The Simpson rule approximates the definite in-
tegral on the left-hand side of (6.2) as∫ t+h

t

f(s,x(s)) ds =
h

6

[
f(t,x(t)) + 4f

(
t+ 1

2
h,x(t+ 1

2
h)
)

+ f
(
t+ h,x(t+ h)

)]
+O(h5) .

This approximation is not in the form (6.2) because of the x(t + 1
2
h) and x(t + h)

on the right-hand side. If we approximate these with the explicit Euler method as
we did before then we will degrade the local error to O(h3). We would like to find an
approximation that is consistent with the O(h5) local error of the Simpson rule. In 1901
Wilhelm Kutta found such an approximation, which led to the so-called Runge-Kutta
method. We will not give a derivation of this method here. Such derivations can be
found in numerical analysis books.

In practice the Runge-Kutta method is implemented by initializing x0 = xI and then
for n = 0, · · · , N − 1 cycling through the instructions

fn = f(tn,xn) ,

f̃n+ 1
2

= f(tn+ 1
2
, x̃n+ 1

2
) ,

fn+ 1
2

= f(tn+ 1
2
,xn+ 1

2
) ,

f̃n+1 = f(tn+1, x̃n+1) ,

x̃n+ 1
2

= xn + 1
2
hfn ,

xn+ 1
2

= xn + 1
2
hf̃n+ 1

2
,

x̃n+1 = xn + hfn+ 1
2
,

xn+1 = xn + 1
6
h
[
fn + 2f̃n+ 1

2
+ 2fn+ 1

2
+ f̃n+1

]
,

where tn = tI + nh and tn+ 1
2

= tI + (n+ 1
2
)h.

Remark. This Runge-Kutta method requires four evaluations of f(t, y) to advance
each time step, whereas the second-order methods each required only two. Therefore
it requires about twice as much computational work per time step as those methods.

Remark. Notice that because

xn ≈ x(tn) ,

x̃n+ 1
2
≈ x(tn + 1

2
h) ,

xn+ 1
2
≈ x(tn + 1

2
h) ,

x̃n+1 ≈ x(tn + h) ,

fn ≈ f
(
tn,x(tn)

)
f̃n+ 1

2
≈ f
(
tn + 1

2
h,x(tn + 1

2
h)
)
,

fn+ 1
2
≈ f
(
tn + 1

2
h, f(tn + 1

2
h)
)
,

f̃n+1 ≈ f
(
tn + h, f(tn + h)

)
,

we see that

xn+1 ≈ x(tn) +
h

6

[
f(tn,x(tn)) + 4f

(
tn + 1

2
h,x(tn + 1

2
h)
)

+ f
(
tn + h,x(tn + h)

)]
.

This Runge-Kutta method thereby looks consistent with the Simpson rule approxima-
tion. This argument does not show that the Runge-Kutta method is fourth order, but
it is.

Example. Let y(t) be the solution of the initial-value problem

y′ = t2 + y2 , y(0) = 1 .

Use the Runge-Kutta method with h = .2 to approximate y(.2).



18

Solution. We initialize t0 = 0 and y0 = 1. The Runge-Kutta method then gives

f0 = f(t0, y0) = 02 + 12 = 1

ỹ 1
2

= y0 + 1
2
hf0 = 1 + .1 · 1 = 1.1

f̃ 1
2

= f(t 1
2
, ỹ 1

2
) = (.1)2 + (1.1)2 = .01 + 1.21 = 1.22

y 1
2

= y0 + 1
2
hf̃ 1

2
= 1 + .1 · 1.22 = 1.122

f 1
2

= f(t 1
2
, y 1

2
) = (.1)2 + (1.122)2 = .01 + 1.258884 = 1.268884

ỹ1 = y0 + hf 1
2

= 1 + .2 · 1.268884 = 1 + .2517768 = 1.2517768

f̃1 = f(t1, ỹ1) = (.2)2 + (1.2517768)2 ≈ .04 + 1.566945157 = 1.606945157

y1 = y0 + 1
6
h
[
f0 + 2f̃ 1

2
+ 2f 1

2
+ f̃1

]
≈ 1 + .033333333

[
1 + 2 · 1.22 + 2 · 1.268884 + 1.606945157

]
.

We then have y(.2) ≈ y1 ≈ 1.252823772. Of course, you would not be expected to carry
out such arithmetic calculations to nine decimal places on an exam. �

Remark. One step of this Runge-Kutta method with h = .2 yielded the approximation
y(.2) ≈ 1.252823772. This is more accurate than the approximations we had obtained
with either second-order method. However, that is not a fair comparison because the
Runge-Kutta method required about twice the computational work. A better compar-
ison would be with the approximation produced by two steps of either second-order
method with h = .1.

This Runge-Kutta method is implemented by the following MATLAB function M-file.

function [t,y] = RungeKutta(f, tI, yI, tF, N)

t = zeros(N + 1, 1); y = zeros(N + 1, 1);
t(1) = tI; y(1) = yI; h = (tF - tI)/N; hhalf = h/2; hsixth = h/6;
for j = 1:N
thalf = t(j) + hhalf;
t(j + 1) = t(j) + h;
fnow = f(t(j), y(j)); yhalfone = y(j) + hhalf*fnow;
fhalfone = f(thalf, yhalfone); yhalftwo = y(j) + hhalf*fhalfone;
fhalftwo = f(thalf, yhalftwo); yplus = y(j) + h*fhalftwo;
fplus = f(t(j + 1), yplus);
y(j + 1) = y(j) + hsixth*(fnow + 2*fhalfone + 2*fhalftwo + fplus);
end

Remark. Here t(j) and y(j) have the same meaning as they did in the M-file for
the explicit Euler method. In particular, we have the same shift of the indices by one.
Here we have introduced the working variables fnow, thalf, yhalfone, fhalfone, yhalftwo,
fhalftwo, yplus, and fplus to temporarily hold the values of fj−1, tj− 1

2
, ỹj− 1

2
, f̃j− 1

2
, yj− 1

2
,

fj− 1
2
, ỹj, and f̃j.



19

7. General Explicit Runge-Kutta Methods

All the methods presented in the previous section are members of the family of general
Runge-Kutta methods. The MATLAB command “ode45” uses the Dormand-Prince
method, which is another member of this Runge-Kutta family that was discovered in
1980! The Runge-Kutta family continues to be enlarged by new methods, some of
which might replace the Dormand-Prince method in future versions of MATLAB. An
introduction to these modern methods requires a graduate course in numerical analysis.
Here we have the more modest goal of introducing those family members presented by
Wilhelm Kutta in his 1901 paper.

Carl Runge had described just a few methods in his 1895 paper, including the Runge
trapezoid and midpoint methods. In 1900 Karl Heun presented a family of methods
that included all those studied by Runge as special cases. Heun characterized the
computational effort of these methods by how many evaluations of f(t,x) are needed
to compute k(h, t,x). A method that requires s evaluations of f(t,x) is called an s-
stage method. The explicit Euler method, for which k(h, t,x) = hf(t,x), is the only
one-stage method.

7.1. Two-Stage Methods. Heun considered the family of two-stage methods in the
form

(7.1a) k(h, t,x) = α1k1 + α2k2 , with α1 + α2 = 1 ,

where k1 and k2 are given by two evaluations of f(t,x) as

(7.1b) k1 = hf(t,x) , k2 = hf(t+ βh,x + βk1) , for some β > 0 .

Heun showed the two-stage method (7.1) is second-order for every f(t,x) if and only if

α1 = 1− 1

2β
, α2 =

1

2β
.

These include the Runge trapeziodal method, which is given by α1 = α2 = 1
2

and β = 1,

and the Runge midpoint method, which is given by α1 = 0, α2 = 1, and β = 1
2
. Heun

also showed that no two-stage method (7.1) is third-order for every f(t, y).

Remark. Second-order, two-stage methods are often called Heun methods in recogni-
tion of his work.

Heun favored the second-order method given by

α1 = 1
4
, α2 = 3

4
, β = 2

3
,

which is third-order in the special case when ∂yf = 0. It is implemented by initializing
x0 = xI and for n = 0, · · · , N − 1 cycling through

fn = f(tn,xn) ,

fn+ 2
3

= f(tn+ 2
3
,xn+ 2

3
) ,

xn+ 2
3

= xn + 2
3
hfn ,

xn+1 = xn + 1
4
h
[
fn + 3fn+ 2

3

]
,

where tn = tI + nh and tn+ 2
3

= tI + (n+ 2
3
)h.



20

7.2. Three-Stage Methods. Heun also considered families of three- and four-stage
methods in his 1900 paper. However in 1901 Kutta introduced families of s-stage
methods that are more general when s ≥ 3. For example, Kutta considered the family
of three-stage methods in the form

(7.2a) k(h, t,x) = α1k1 + α2k2 + α3k3 , with α1 + α2 + α3 = 1 ,

where k1, k2, and k3 are given by three evaluations of f(t,x) as

(7.2b)

k1 = hf(t,x) ,

k2 = hf(t+ β2h,x + γ21k1) , with β2 = γ21 ,

k3 = hf(t+ β3h,x + γ31k1 + γ32k2) , with β3 = γ31 + γ32 .

Kutta showed the three-stage method (7.2) is second-order for every f(t,x) if and only
if

α2β2 + α3β3 = 1
2

;

and is third-order for every f(t,x) if and only if in addition

α2β
2
2 + α3β

2
3 = 1

3
, α3γ32β2 = 1

6
.

Kutta also showed that no three-stage method (7.2) is fourth-order for every f(t,x).
Heun had shown the analogus results restricted to the case γ31 = 0.

Heun favored the third-order method given by

α1 = 1
4
, α2 = 0 , α3 = 3

4
, β2 = γ21 = 1

3
, β3 = γ32 = 2

3
, γ31 = 0 ,

which is the third-order method that requires the fewest arithmetic operations. It is
implemented by initializing x0 = xI and for n = 0, · · · , N − 1 cycling through

fn = f(tn,xn) ,

fn+ 1
3

= f(tn+ 1
3
,xn+ 1

3
) ,

fn+ 2
3

= f(tn+ 2
3
,xn+ 2

3
) ,

xn+ 1
3

= xn + 1
3
hfn ,

xn+ 2
3

= xn + 2
3
hfn+ 1

3
,

xn+1 = xn + 1
4
h
[
fn + 3fn+ 2

3

]
,

where tn = tI + nh, tn+ 1
3

= tI + (n+ 1
3
)h, and tn+ 2

3
= tI + (n+ 2

3
)h.

Kutta favored the third-order method given by

α1 = 1
6
, α2 = 2

3
, α3 = 1

6
, β2 = γ21 = 1

2
, β3 = 1 , γ31 = −1 , γ32 = 2 ,

which agrees with the Simpson rule in the special case when ∂xf = 0. It is implemented
by initializing x0 = xI and for n = 0, · · · , N − 1 cycling through

fn = f(tn,xn) ,

fn+ 1
2

= f(tn+ 1
2
,xn+ 1

2
) ,

f̃n+1 = f(tn+1, x̃n+1) ,

xn+ 1
2

= xn + 1
2
hfn ,

x̃n+1 = xn + h
[
− fn + 2fn+ 1

2

]
,

xn+1 = xn + 1
6
h
[
fn + 4fn+ 1

2
+ f̃n+1

]
,

where tn = tI + nh and tn+ 1
2

= tI + (n+ 1
2
)h.



21

7.3. Four-Stage Methods. Similarly, Kutta considered the family of four-stage meth-
ods in the form

(7.3a) k(h, t,x) = α1k1 + α2k2 + α3k3 + α4k4 , with α1 + α2 + α3 + α4 = 1 ,

where k1, k2, k3, and k4 are given by four evaluations of f(t,x) as

(7.3b)

k1 = hf(t,x) ,

k2 = hf(t+ β2h,x + γ21k1) , with β2 = γ21 ,

k3 = hf(t+ β3h,x + γ31k1 + γ32k2) , with β3 = γ31 + γ32 ,

k4 = hf(t+ β4h,x + γ41k1 + γ42k2 + γ43k3) , with β4 = γ41 + γ42 + γ43 .

Kutta showed the four-stage method (7.3) is second-order for every f(t,x) if and only
if

α2β2 + α3β3 + α4β4 = 1
2

;

is third-order for every f(t,x) if and only if in addition

α2β
2
2 + α3β

2
3 + α4β

2
4 = 1

3
, α3γ32β2 + α4

(
γ42β2 + γ43β3

)
= 1

6
;

and is fourth-order for every f(t,x) if and only if in addition

α2β
3
2 + α3β

3
3 + α4β

3
4 = 1

4
, α3γ32β

2
2 + α4

(
γ42β

2
2 + γ43β

2
3

)
= 1

12
,

α3β3γ32β2 + α4β4
(
γ42β2 + γ43β3

)
= 1

8
, α4γ43γ32β2 = 1

24
.

Kutta also showed that no four-stage method (7.3) is fifth-order for every f(t,x). Heun
had shown the analogus results restricted to the case γ31 = γ41 = γ42 = 0. Kutta
favored the classical Runge-Kutta method presented in the previous subsection, which
is given by

α1 = 1
6
, α2 = 1

3
, α3 = 1

3
, α4 = 1

6
,

β2 = γ21 = 1
2
, β3 = γ32 = 1

2
, γ31 = 0 , β4 = γ43 = 1 , γ41 = γ42 = 0 .

This is the fourth-order method that both requires the fewest arithmetic operations
and is consistant with the Simpson rule.

7.4. Higher-Stage Methods. More generally, Kutta considered the family of s-stage
methods in the form

(7.4a) k(h, t,x) =
s∑

j=1

αjkj , with
s∑

j=1

αj = 1 ,

where kj for j = 1, · · · , s are given by s evaluations of f(t,x) as

(7.4b)

k1 = hf(t,x) ,

kj = hf

(
t+ βjh , x +

j−1∑
i=1

γjiki

)
, with βj =

j−1∑
i=1

γji , for j = 2, · · · , s .

Kutta showed that no five-stage method (7.4) is fifth-order for every f(t,x). This result
was surprising because for s = 1, 2, 3, and 4 there were s-stage methods that were
sth-order. Kutta then characterized those six-stage methods (7.4) that are fifth-order
for every f(t,x). We will not give the conditions he found here.



22

Remark. Programmable electrionic computers were invented over fifty years after
Runge, Heun, and Kutta carried out their work. Early numerical computations had
less precision than they do today. Higher-order methods suffer from round-off error
more than lower-order methods. Because round-off error is larger on machines with less
precision, there was little advantage to using higher-order methods on early machines.
As machines became more precise, the classical Runge-Kutta method became widely
used to solve differential equations because it offers a nice balance between order and
round-off error.

Remark. One of the most important developments in Runge-Kutta methods since their
invention is embedded methods, which emerged in the 1950s. These methods maintain
a prescribed error tolerance by selecting a different h for each time step based upon an
error estimate made by comparing related Runge-Kutta methods of orders m and m+1.
By “related” we mean that the methods are built from the same evaluations of f(t, y),
so that they can be computed simultaneously. The MATLAB command “ode45” uses
a fourth-order/fifth-order Runge-Kutta embedded method. Originally it used a fourth-
order method invented by Fehlberg in 1969, sometimes denoted RKF4(5). Currently
it uses a fifth-order method invented by J.R. Dormand and P.J. Prince in 1980, some-
times denoted RKDP5(4). This method might be replaced by a higher-order embedded
method as faster machines with smaller round-off error become more common. One
candidate to fill this role is an eighth-order method invented by Dormand and Prince in
1981, a seventh-order/eighth-order Runge-Kutta embedded method sometimes denoted
RKDP8(7). There are other candidates.


	Contents
	1. Initial-Value Problems for First-Order Systems
	1.1. First-Order Systems of Ordinary Differential Equations
	1.2. Solutions of First-Order Systems
	1.3. Theory for Initial-Value Problems

	2. Recasting Higher-Order Problems as First-Order Systems
	3. Numerical Approximation
	4. Explicit and Implicit Euler Methods
	4.1. Explicit Euler Method
	4.2. Implicit Euler Method

	5. Explicit One-Step Methods Based on Taylor Approximation
	5.1. Explicit Euler Method Revisited
	5.2. Local and Global Errors
	5.3. Higher-Order Taylor-Based Methods

	6. Explicit One-Step Methods Based on Quadrature
	6.1. Explicit Euler Method Revisited Again
	6.2. Runge-Trapezoidal Method
	6.3. Runge-Midpoint Method

	7. General Explicit Runge-Kutta Methods
	7.1. Two-Stage Methods
	7.2. Three-Stage Methods
	7.3. Four-Stage Methods
	7.4. Higher-Stage Methods


