
Third In-Class Exam Solutions
Math 246, Professor David Levermore

Tuesday, 25 April 2017

(1) [10] The vertical displacement of an unforced mass on a spring is given by

h(t) = −5e−3t cos(4t)− 12e−3t sin(4t) .

(a) [2] Is this system undamped, under damped, critically damped, or over damped?
(Give your reasoning!)

(b) [5] Express h(t) in the amplitude-phase form h(t) = Ae−3t cos(4t−δ) with A > 0
and 0 ≤ δ < 2π. Label the amplitude and phase. (The phase may be expressed
in terms of an inverse trig function.)

(c) [3] Give the natural frequency and natural period of this spring-mass system.

Solution (a). The system is under damped because the vertical displacement h(t)
arises from a characteristic polynomial with the conjugate pair of roots −3± i4.

Alternative Solution (a). The system is under damped because the displacement
h(t) is a decaying oscillation, which is evident from the decaying exponential e−3t

multiplying the oscillatory trigonometric functions cos(4t) and sin(4t).

Remark. Both the e−3t and the cos(4t) and sin(4t) must play a role in your reasoning
for full credit!

Solution (b). By comparing

Ae−3t cos(4t− δ) = Ae−3t cos(δ) cos(4t) + Ae−3t sin(δ) sin(4t) ,

with h(t) = −5e−3t cos(4t)− 12e−3t sin(4t), we see that

A cos(δ) = −5 , A sin(δ) = −12 .

This shows that (A, δ) are the polar coordinates of the point in the plane whose
Cartesian coordinates are (−5,−12). Clearly A is given by

A =
√

(−5)2 + (−12)2 =
√

25 + 144 =
√

169 = 13 .

Because (−5,−12) lies in the third quadrant, the phase δ must satisfy π < δ < 3
2
π.

We can express δ several ways. A picture shows that if we use π as a reference then

cos(δ − π) = 5
13
, sin(δ − π) = 12

13
, tan(δ − π) = 12

5
,

whereby we can express the phase by any one of the formulas

δ = π + cos−1
(

5
13

)
, δ = π + sin−1

(
12
13

)
, δ = π + tan−1

(
12
5

)
.

The same picture shows that if we use 3
2
π as a reference then

cos
(
3
2
π − δ

)
= 12

13
, sin

(
3
2
π − δ

)
= 5

13
, tan

(
3
2
π − δ

)
= 5

12
,

whereby we can express the phase by any one of the formulas

δ = 3
2
π − cos−1

(
12
13

)
, δ = 3

2
π − sin−1

(
5
13

)
, δ = 3

2
π − tan−1

(
5
12

)
.

Only one expression for δ is required.

Remark. It is incorrect to give the phase by one of the formulas

δ = cos−1
(
− 5

13

)
, δ = sin−1

(
− 12

13

)
, δ = tan−1

(
12
5

)
,

1
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because, by our conventions for the range of the inverse trigonometric functions,
cos−1

(
− 5

13

)
lies in (π

2
, π), sin−1

(
− 12

13

)
lies in (−π

2
, 0), and tan−1

(
12
5

)
lies in (0, π

2
).

Solution (c). Because the underlying characteristic polynomial has the conjugate
pair of roots −3± i4, it must be

p(z) = (z + 3)2 + 42 = z2 + 6z + 9 + 16 = z2 + 6z + 25 .

Therefore the vertical displacement h(t) satisfies the differential equation

ḧ+ 6ḣ+ 25h = 0 .

We can read off that the natural frequency is ωo =
√

25 = 5 radians per sec, whereby
the natural period To is given by

To =
2π

ωo
=

2π

5
sec .

(2) [6] When a 10 gram mass is hung vertically from a spring, at rest it stretches the
spring 5.0 cm. (Gravitational acceleration is g = 980 cm/sec2.) The medium imparts
a damping force of 160 dynes (1 dyne = 1 gram cm/sec2) when the speed of the mass
is 2 cm/sec. At t = 0 the mass is displaced 3 cm below its rest position and is released
with a upward velocity of 2 cm/sec. Assume that the spring force is proportional to
displacement, that the damping is proportional to veloicity, and that there are no
other forces. Formulate an initial-value problem that governs the motion of the mass
for t > 0. (DO NOT solve this initial-value problem, just write it down!)

Solution. Let h(t) be the displacement (in centimeters) of the mass from its rest
position at time t (in seconds), with upward displacements being positive. The
governing initial-value problem then has the form

mḧ+ γḣ+ kh = 0 , h(0) = −3 , ḣ(0) = 2 ,

where m is the mass, γ is the damping coefficient, and k is the spring constant. We
are given that m = 10 grams. We obtain k by balancing the force applied by the
spring when it is stetched 5.0 cm with the weight of the mass (mg = 10 · 980 dynes).
This gives k 5.0 = 10 · 980, or

k =
10 · 980

5.0
= 2 · 980 dynes/cm .

We obtain γ by balancing the damping force when the speed of the mass is 2 cm/sec
with 160 dynes. This gives γ 2 = 160, or

γ =
160

2
dynes sec/cm .

Therefore the governing initial-value problem is

10ḧ+ 160
2
ḣ+ 2 · 980h = 0 , h(0) = −3 , ḣ(0) = 2 .

Remark. Had we chosen the convention of downward displacements being positive
then the governing initial-value problem is

10ḧ+ 160
2
ḣ+ 2 · 980h = 0 , h(0) = 3 , ḣ(0) = −2 .
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(3) [6] Recast the ordinary differential equation v′′′′ = sin(v)v′′′ + v3v′′ + t2 cos(v′) as a
first-order system of ordinary differential equations.

Solution. Because the equation is fourth order, the first-order system must have
dimension at least four. The simplest such first-order system is

d

dt


x1
x2
x3
x4

 =


x2
x3
x4

sin(x1)x4 + x 3
1x3 + t2 cos(x2)

 , where


x1
x2
x3
x4

 =


v
v′

v′′

v′′′

 .

(4) [12] Consider the vector-valued functions x1(t) =

(
t2

−1

)
, x2(t) =

(
e−t

e−t

)
.

(a) [2] Compute the Wronskian W [x1,x2](t).
(b) [4] Find A(t) such that x1, x2 is a fundamental set of solutions to the system

x′ = A(t)x wherever W [x1,x2](t) 6= 0.
(c) [2] Give a general solution to the system that you found in part (b).
(d) [4] Find the natural fundamental matrix associated with the initial time 0 for

the system that you found in part (b).

Solution (a). The Wronskian is

W [x1,x2](t) = det

(
t2 e−t

−1 e−t

)
= t2 · e−t − (−1) · e−t = (t2 + 1)e−t .

Solution (b). Let Ψ(t) =

(
t2 e−t

−1 e−t

)
. Because Ψ′(t) = A(t)Ψ(t), we have

A(t) = Ψ′(t)Ψ(t)−1 =

(
2t −e−t
0 −e−t

)(
t2 e−t

−1 e−t

)−1
=

1

(1 + t2)e−t

(
2t −e−t
0 −e−t

)(
e−t −e−t
1 t2

)
=

1

(1 + t2)e−t

(
2te−t − e−t −2te−t − t2e−t
−e−t −t2e−t

)
=

1

1 + t2

(
2t− 1 −t2 − 2t
−1 −t2

)
.

Solution (c). A general solution is

x(t) = c1x1(t) + c2x2(t) = c1

(
t2

−1

)
+ c2

(
e−t

e−t

)
.

Solution (d). By using the fundamental matrix Ψ(t) from part (b) we find that the
natural fundamental matrix associated with the initial time 0 is

Φ(t) = Ψ(t)Ψ(0)−1 =

(
t2 e−t

−1 e−t

)(
0 1
−1 1

)−1
=

(
t2 e−t

−1 e−t

)(
1 −1
1 0

)
=

(
t2 + e−t −t2
e−t − 1 1

)
.
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(5) [8] Find a general solution of the system

d

dt

(
x
y

)
=

(
1 4
3 −3

)(
x
y

)
.

Solution. The characteristic polynomial of A =

(
1 4
3 −3

)
is

p(z) = z2 − tr(A)z + det(A) = z2 + 2z − 15 = (z − 3)(z + 5) .

The eigenvalues of A are the roots of this polynomial, which are 3 and −5. These
can be expressed as −1± 4. Then

etA = e−t
[
cosh(4t)I +

sinh(4t)

4

(
A− (−1)I

)]
= e−t

[
cosh(4t)

(
1 0
0 1

)
+

sinh(4t)

4

(
2 4
3 −2

)]

= e−t

cosh(4t) + 1
2

sinh(4t) sinh(4t)

3
4

sinh(4t) cosh(4t)− 1
2

sinh(4t)

 .

(Check that A− (−1)I has trace zero!) Therefore a general solution of the system is

x(t) = etAc = c1

(
cosh(4t) + 1

2
sinh(4t)

3
4

sinh(4t)

)
+ c2

(
sinh(4t)

cosh(4t)− 1
2

sinh(4t)

)
.

(6) [8] Find a general solution of the system

d

dt

(
x
y

)
=

(
0 −1
4 4

)(
x
y

)
.

Solution. The characteristic polynomial of A =

(
0 −1
4 4

)
is

p(z) = z2 − tr(A)z + det(A) = z2 − 4z + 4 = (z − 2)2 .

The eigenvalues of A are the roots of this polynomial, which is only 2. Then

etA = e2t [I + t (A− 2I)]

= e2t
[(

1 0
0 1

)
+ t

(
−2 −1
4 2

)]
= e2t

(
1− 2t −t

4t 1 + 2t

)
,

(Check that A− 2I has trace zero!) Therefore a general solution of the system is

x(t) = etAc = c1e
2t

(
1− 2t

4t

)
+ c2e

2t

(
−t

1 + 2t

)
.

(7) [10] Solve the initial-value problem

d

dt

(
x
y

)
=

(
1 1
−4 1

)(
x
y

)
,

(
x(0)
y(0)

)
=

(
3
3

)
.
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Solution. The characteristic polynomial of A =

(
1 1
−4 1

)
is

p(z) = z2 − tr(A)z + det(A) = z2 − 2z + 5 = (z − 1)2 + 22 .

The eigenvalues of A are the roots of this polynomial, which are 1 + i2 and 1 − i2.
Then

etA = et
[
cos(2t)I +

sin(2t)

2
(A− 1I)

]
= et

[
cos(2t)

(
1 0
0 1

)
+

sin(2t)

2

(
0 1
−4 0

)]
= et

(
cos(2t) 1

2
sin(2t)

−2 sin(2t) cos(2t)

)
.

(Check that A − I has trace zero!) Therefore a general solution of the initial-value
problem is

x(t) = etAxI = et
(

cos(2t) 1
2

sin(2t)
−2 sin(2t) cos(2t)

)(
3
3

)
= et

(
3 cos(2t) + 3

2
sin(2t)

−6 sin(2t) + 3 cos(2t)

)
.

(8) [6] Two interconnected tanks are filled with brine (salt water). At t = 0 the first tank
contains 45 liters and the second contains 30 liters. Brine with a salt concentration
of 5 grams per liter flows into the first tank at 6 liters per hour. Well-stirred brine
flows from the first tank into the second at 8 liters per hour, from the second into
the first at 7 liters per hour, from the first into a drain at 4 liter per hour, and from
the second into a drain at 3 liters per hour. At t = 0 there are 27 grams of salt in
the first tank and 18 grams in the second. Give an initial-value problem that governs
the amount of salt in each tank as a function of time.

Solution. Let V1(t) and V2(t) be the volumes (lit) of brine in the first and second
tank at time t hours. Let S1(t) and S2(t) be the mass (gr) of salt in the first and
second tank at time t hours. Because mixtures are assumed to be well-stirred, the
salt concentration of the brine in the tanks at time t are C1(t) = S1(t)/V1(t) and
C2(t) = S2(t)/V2(t) respectively. In particular, these are the concentrations of the
brine that flows out of these tanks. We have the following picture.

5 gr/lit
6 lit/hr

→

C1(t) gr/lit
4 lit/hr

←

V1(t) lit
S1(t) gr

→ C1(t) gr/lit
8 lit/hr

→

← C2(t) gr/lit
7 lit/hr

←

V2(t) lit
S2(t) gr

→ C2(t) gr/lit
3 lit/hr

V1(0) = 45 lit
S1(0) = 27 gr

V2(0) = 30 lit
S2(0) = 18 gr

We are asked to write down an initial-value problem that governs S1(t) and S2(t).

The rates work out so there will be V1(t) = 45 + t liters of brine in the first tank
and V2(t) = 30 − 2t liters in the second. Then S1(t) and S2(t) are governed by the
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initial-value problem

dS1

dt
= 5 · 6 +

S2

30− 2t
7− S1

45 + t
8− S1

45 + t
4 , S1(0) = 27 ,

dS2

dt
=

S1

45 + t
8− S2

30− 2t
7− S2

30− 2t
3 , S2(0) = 18 .

You could leave the answer in the above form. However, it can be simplified to

dS1

dt
= 30 +

7

30− 2t
S2 −

12

45 + t
S1 , S1(0) = 27 ,

dS2

dt
=

8

45 + t
S1 −

5

15− t
S2 , S2(0) = 18 .

Notice that the interval of definition for this initial-value problem is (−45, 15).

(9) [12] Consider the following MATLAB commands.

>> syms t s Y; f = [’t̂ 3 + heaviside(t − 2)*(8 − t̂ 3)’];
>> diffeqn = sym(’D(D(y))(t) − 6*D(y)(t) + 13*y(t) = ’ f);
>> eqntrans = laplace(diffeqn, t, s);
>> algeqn = subs(eqntrans, {’laplace(y(t),t,s),t,s)’, ’y(0)’, ’D(y)(0)’}, {Y, −2, 5});
>> ytrans = simplify(solve(algeqn, Y));
>> y = ilaplace(ytrans, s, t)

(a) [4] Give the initial-value problem for y(t) that is being solved.
(b) [8] Find the Laplace transform Y (s) of the solution y(t).

You may refer to the table on the last page. DO NOT take the inverse Laplace
transform to find y(t), just solve for Y (s)!

Solution (a). The initial-value problem for y(t) that is being solved is

y′′ − 6y′ + 13y = f(t) , y(0) = −2 , y′(0) = 5 ,

where the forcing f(t) can be expressed either as

f(t) =

{
t3 for 0 ≤ t < 2 ,

8 for 2 ≤ t ,

or in terms of the unit step function as f(t) = t3 + u(t− 2)(8− t3).

Solution (b). The Laplace transform of the initial-value problem is

L[y′′](s)− 6L[y′](s) + 13L[y](s) = L[f ](s) .

Because

L[y](s) = Y (s) ,

L[y′](s) = sY (s)− y(0) = sY (s) + 2 ,

L[y′′](s) = s2Y (s)− sy(0)− y′(0) = s2Y (s) + 2s− 5 ,

the Laplace transform of the initial-value problem becomes(
s2Y (s) + 2s− 5

)
− 6
(
sY (s) + 2

)
+ 13Y (s) = L[f ](s) .
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This simplifies to

(s2 − 6s+ 13)Y (s) + 2s− 17 = L[f ](s) ,

whereby

Y (s) =
1

s2 − 6s+ 13

(
− 2s+ 17 + L[f ](s)

)
.

To compute L[f ](s), we write f(t) as

f(t) = t3 + u(t− 2)(8− t3) = t3 + u(t− 2)j(t− 2) ,

where by setting j(t− 2) = 8− t3 we see that

j(t) = 8− (t+ 2)3 = 8−
(
t3 + 6t2 + 12t+ 8

)
= −t3 − 6t2 − 12t .

Referring to the table on the last page, item 1 with a = 0 and n = 3, with a = 0 and
n = 2, and with a = 0 and n = 1 shows that

L[t3](s) =
6

s4
, L[t2](s) =

2

s3
, L[t](s) =

1

s2
,

whereby item 6 with c = 2 and j(t) = −t3 − 6t2 − 12t shows that

L
[
u(t− 2)j(t− 2)

]
(s) = e−2sL[j](s) = −e−2sL

[
t3 + 6t2 + 12t

]
(s)

= −e−2s
(

6

s4
+

12

s3
+

12

s2

)
.

Therefore

L[f ](s) = L
[
t3 + u(t− 2)j(t− 2)

]
(s) =

6

s4
− e−2s

(
6

s4
+

12

s3
+

12

s2

)
.

Upon placing this result into the expression for Y (s) found earlier, we obtain

Y (s) =
1

s2 − 6s+ 13

(
− 2s+ 17 +

6

s4
− e−2s

(
6

s4
+

12

s3
+

12

s2

))
.

(10) [6] Compute the Green function g(t) for the differential operator (D + 4)3 where

D =
d

dt
.

Solution. The operator (D + 4)3 has characteristic polynomial p(s) = (s + 4)3.
Therefore its Green function g(t) is given by

g(t) = L−1
[

1

p(s)

]
(t) = L−1

[
1

(s+ 4)3

]
(t) .

Referring to the table on the last page, item 1 with a = −4 and n = 2 gives

g(t) = 1
2
L−1

[
2

(s+ 4)3

]
(t) = 1

2
t2e−4t .
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(11) [8] Compute the Laplace transform of f(t) = u(t− 4) e−2t from its definition. (Here
u is the unit step function.)

Solution. The definition of Laplace transform gives

L[f ](s) = lim
T→∞

∫ T

0

e−stu(t− 4) e−2t dt = lim
T→∞

∫ T

4

e−(s+2)t dt .

When s ≤ −2 this limit diverges to +∞ because in that case we have for every T > 4∫ T

4

e−(s+2)t dt ≥
∫ T

4

dt = T − 4 ,

which clearly diverges to +∞ as T →∞.

When s > −2 we have for every T > 4∫ T

4

e−(s+2)t dt = −e
−(s+2)t

s+ 2

∣∣∣∣T
4

= −e
−(s+2)T

s+ 2
+
e−(s+2)4

s+ 2
,

whereby

L[f ](s) = lim
T→∞

[
− e−(s+2)T

s+ 2
+
e−(s+2)4

s+ 2

]
=
e−(s+2)4

s+ 2
for s > −2 .

(12) [8] Find the inverse Laplace transform L−1[Y (s)](t) of the function

Y (s) = e−3s
3s+ 13

s2 − 3s− 4
.

You may refer to the table on the last page.

Solution. Referring to the table on the last page, item 6 with c = 3 implies that

L−1
[
e−3s J(s)

]
= u(t− 3)j(t− 3) , where j(t) = L−1[J(s)](t) .

We apply this formula to

J(s) =
3s+ 13

s2 − 3s− 4
.

Because the denominator factors as (s−4)(s+1), we have the partial fraction identity

3s+ 13

s2 − 3s− 4
=

3s+ 13

(s− 4)(s+ 1)
=

5

s− 4
+
−2

s+ 1
.

Referring to the table on the last page, item 1 with a = 4 and n = 0, and with
a = −1 and n = 0 implies that

L−1
[

1

s− 4

]
(t) = e4t , L−1

[
1

s+ 1

]
(t) = e−t .

These formulas also can be obtained from item 2 with a = 4 and b = 0, and with
a = −1 and b = 0.
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The above formulas and the linearity of the inverse Laplace transform yield

j(t) = L−1[J(s)](t) = L−1
[

3s+ 13

s2 − 3s− 4

]
(t)

= L−1
[

5

s− 4
+
−2

s+ 1

]
(t)

= 5L−1
[

1

s− 4

]
(t)− 2L−1

[
1

s+ 1

]
(t) = 5e4t − 2e−t .

Therefore

L−1
[
Y (s)

]
(t) = L−1[e−3sJ(s)](t) = u(t− 3)j(t− 3)

= u(t− 3)
(

5e4(t−3) − 2e−(t−3)
)
.

A Short Table of Laplace Transforms

L[tneat](s) =
n!

(s− a)n+1
for s > a .

L[eat cos(bt)](s) =
s− a

(s− a)2 + b2
for s > a .

L[eat sin(bt)](s) =
b

(s− a)2 + b2
for s > a .

L[tnj(t)](s) = (−1)nJ (n)(s) where J(s) = L[j(t)](s) .

L[eatj(t)](s) = J(s− a) where J(s) = L[j(t)](s) .

L[u(t− c)j(t− c)](s) = e−csJ(s) where J(s) = L[j(t)](s)

and u is the unit step function .


