Third In-Class Exam Solutions
Math 246, Professor David Levermore
Tuesday, 25 April 2017

(1) [10] The vertical displacement of an unforced mass on a spring is given by
h(t) = —5e " cos(4t) — 12e " sin(4t) .

(a) [2] Is this system undamped, under damped, critically damped, or over damped?
(Give your reasoning!)

(b) [5] Express h(t) in the amplitude-phase form h(t) = Ae™3 cos(4t—4§) with A > 0
and 0 < § < 27. Label the amplitude and phase. (The phase may be expressed
in terms of an inverse trig function.)

(c) [3] Give the natural frequency and natural period of this spring-mass system.

Solution (a). The system is under damped because the vertical displacement h(t)
arises from a characteristic polynomial with the conjugate pair of roots —3 =4 4.

Alternative Solution (a). The system is under damped because the displacement
h(t) is a decaying oscillation, which is evident from the decaying exponential e3¢
multiplying the oscillatory trigonometric functions cos(4t) and sin(4t).

Remark. Both the e73! and the cos(4t) and sin(4¢) must play a role in your reasoning
for full credit!

Solution (b). By comparing
Ae 3 cos(4t — §) = Ae 3 cos(8) cos(4t) + Ae™* sin(0) sin(4t),
with h(t) = —5e 3! cos(4t) — 12e 73! sin(4t), we see that
Acos(0) = -5, Asin(9) = —12.
This shows that (A,d) are the polar coordinates of the point in the plane whose
Cartesian coordinates are (—5, —12). Clearly A is given by
A= /(=52 + (—12)2 = /25 + 144 = V169 = 13.

Because (—5,—12) lies in the third quadrant, the phase § must satisfy 7 < § < %w.
We can express § several ways. A picture shows that if we use 7 as a reference then

sin(6 —m) = 13, tan(d —m) = 2,

5

cos(6 — ) = 53,

whereby we can express the phase by any one of the formulas

5=7T+COS_1(1—53), 5:W+sin_1(%), 6:7T+tan_1(%).
The same picture shows that if we use g’/T as a reference then
cos(%ﬁ—é) = %, sin(%w—é) = 1%, tan(%w—é) = %,

whereby we can express the phase by any one of the formulas

0= %7‘(‘ — cos_l(%) , 0= %7? — sin_l(%) , 0= %ﬂ' — tan_l(%) )

Only one expression for ¢ is required.
Remark. It is incorrect to give the phase by one of the formulas

S (<), bosn(<B). bon (),



because, by our conventions for the range of the inverse trigonometric functions,
cos™!(— ) lies in (§,7), sin~"( — 12) lies in (—%,0), and tan~"(%2) lies in (0, 7).
Solution (c). Because the underlying characteristic polynomial has the conjugate
pair of roots —3 + 44, it must be

p(z) = (243 +4° =22 +624+9+16 = 2> + 62+ 25.
Therefore the vertical displacement h(t) satisfies the differential equation
h+6h +25h = 0.

We can read off that the natural frequency is w, = V25 = 5 radians per sec, whereby
the natural period T}, is given by

2 2
TO:—W:—W sec .
Wo 5

(2) [6] When a 10 gram mass is hung vertically from a spring, at rest it stretches the
spring 5.0 cm. (Gravitational acceleration is g = 980 cm/sec?.) The medium imparts
a damping force of 160 dynes (1 dyne = 1 gram cm/sec®) when the speed of the mass
is 2 ecm/sec. At t = 0 the mass is displaced 3 cm below its rest position and is released
with a upward velocity of 2 cm/sec. Assume that the spring force is proportional to
displacement, that the damping is proportional to veloicity, and that there are no
other forces. Formulate an initial-value problem that governs the motion of the mass
for t > 0. (DO NOT solve this initial-value problem, just write it down!)

Solution. Let Ah(t) be the displacement (in centimeters) of the mass from its rest
position at time ¢ (in seconds), with upward displacements being positive. The
governing initial-value problem then has the form

mh+~yh+kh=0,  h0)=-3, h(0)=2,

where m is the mass, v is the damping coefficient, and k is the spring constant. We
are given that m = 10 grams. We obtain k£ by balancing the force applied by the
spring when it is stetched 5.0 cm with the weight of the mass (mg = 10 - 980 dynes).
This gives £5.0 = 10 - 980, or

10 -

b 0 - 980
5.0
We obtain v by balancing the damping force when the speed of the mass is 2 cm/sec
with 160 dynes. This gives 72 = 160, or
160
v=— dynes sec/cm.

Therefore the governing initial-value problem is

= 2-980 dynes/cm .

10h + 0% +2.980h =0,  h(0)=-3, h(0)=2.

Remark. Had we chosen the convention of downward displacements being positive
then the governing initial-value problem is

10h + 280 +2.980h =0,  h(0)=3, h(0)=-2.



3
(3) [6] Recast the ordinary differential equation v = sin(v)v” + v3v” + t? cos(v') as a
first-order system of ordinary differential equations.

Solution. Because the equation is fourth order, the first-order system must have
dimension at least four. The simplest such first-order system is

I i) T v
d |z x T v’
2 3 2
— = ,  Where = /)
dt | 3 Ty x3 v
Ty sin(z1)ry + xixs + t cos(s) Ty V"

2 —t
(4) [12] Consider the vector-valued functions x;(t) = (t ), xa(t) = (et)

-1 e
(a) [2] Compute the Wronskian W [xy, Xa](t).
(b) [4] Find A(t) such that x;, X2 is a fundamental set of solutions to the system
x' = A(t)x wherever W[xy,x2|(t) # 0.
(c) [2] Give a general solution to the system that you found in part (b).
(d) [4] Find the natural fundamental matrix associated with the initial time 0 for
the system that you found in part (b).

Solution (a). The Wronskian is

t? et

Wixy, Xo](t) = det <_1 et> =t? et —(=1)-et=(+1)e".

2 et

-1 e_t
s v - (2 =) (4 0)
e () ()

B 1 2te t —et —2te t — t2et
(14 2)et —e —t?e

L (2e—1 =2t
T4z \ -1 -2 )

Solution (c). A general solution is

x(t) = e1x1 (t) + caxa(t) = ¢4 (i) + e (21) .

Solution (b). Let ¥(t) = ( ) Because W'(t) = A(t)¥(t), we have

Solution (d). By using the fundamental matrix W(¢) from part (b) we find that the
natural fundamental matrix associated with the initial time 0 is

®(t) = P(t)¥(0)" = (i Zi) (—01 1)_1

(et (1 -1\ [(tHet -2
“\-1 et 0) \et—-1 1 )"



(5) [8] Find a general solution of the system
d fz\ _ (1 4 x
dt \y/ \3 -3 y/)
. . : 1 4.
Solution. The characteristic polynomial of A = (3 _3> is

p(z) =22 — tr(A)z + det(A) = 2 +22 — 15 = (2 — 3)(z + 5).

The eigenvalues of A are the roots of this polynomial, which are 3 and —5. These
can be expressed as —1 £ 4. Then

et =t {cosh(élt)I + M(A — (—1)1)}

R 10 sinh(4t) (2 4
=e {cosh(élt) (O 1) + —1 \3 2
_, [ cosh(4t) + 5 sinh(4t) sinh(4t)
3 sinh(4¢) cosh(4t) — 3 sinh(4¢)

=€

(Check that A — (—1)I has trace zero!) Therefore a general solution of the system is

A cosh(4¢) + 5 sinh(4¢) sinh(4¢)
x(t) = e = ( 3 sinh(4¢) to cosh(4t) — £ sinh(4t) ) -

(6) [8] Find a general solution of the system
d fz\ _ (0 =1\ (z
dt\y) \4 4 )\y)"
Solution. The characteristic polynomial of A = (2 _41) is
p(z) =22 — tr(A)z + det(A) = 22 — 4z +4 = (2 — 2)%.

The eigenvalues of A are the roots of this polynomial, which is only 2. Then

eh =M I+t (A —2I)

Ca(1 0 —2 —1\] o (1-2t —t
= [(0 )T e 2 )T e 1)

(Check that A — 2T has trace zero!) Therefore a general solution of the system is

tA o (1 —2¢ 2 —t
x(t) = ec = e ( a ) ree o)

(7) [10] Solve the initial-value problem

a ()= ()0 o) 6)



Solution. The characteristic polynomial of A = (_1 4 i) is

p(z) = 2% — tr(A)z +det(A) = 22 — 22+ 5 = (z — 1)? + 2%,

The eigenvalues of A are the roots of this polynomial, which are 1 + 2 and 1 — 2.
Then
sin(2t)

et = ¢ {cos(Qt)I +

(A — 11)}

_ et [Cos(zt) (é (1)) n sinézt) ( _04 é)]

:et( cos(2t) %m(m)) .

—2sin(2t) cos(2t)

(Check that A — T has trace zero!) Therefore a general solution of the initial-value
problem is

x(t) = eAx! = f <_§O:if(t2)t) %CZZE%)) (3) =¢ (—360 511(252)1338222?%) |

(8) [6] Two interconnected tanks are filled with brine (salt water). At ¢ = 0 the first tank
contains 45 liters and the second contains 30 liters. Brine with a salt concentration
of 5 grams per liter flows into the first tank at 6 liters per hour. Well-stirred brine
flows from the first tank into the second at 8 liters per hour, from the second into
the first at 7 liters per hour, from the first into a drain at 4 liter per hour, and from
the second into a drain at 3 liters per hour. At t = 0 there are 27 grams of salt in
the first tank and 18 grams in the second. Give an initial-value problem that governs
the amount of salt in each tank as a function of time.

Solution. Let Vi(t) and V5(t) be the volumes (lit) of brine in the first and second
tank at time ¢ hours. Let S;(t) and S(t) be the mass (gr) of salt in the first and
second tank at time ¢ hours. Because mixtures are assumed to be well-stirred, the
salt concentration of the brine in the tanks at time ¢ are Cy(t) = S1(¢)/Vi(t) and
Cy(t) = So(t)/Va(t) respectively. In particular, these are the concentrations of the
brine that flows out of these tanks. We have the following picture.

5 gr/lit Cy(t) gr/lit
. — — .
6 lit/hr Vi(#) lit 8 lit/hr Va(t) lit
Ci(t) ar/lit SO e | POE ) e
4 1it /hr 7 lit/hr 3 lit/hr
Vi (0) = 45 lit V5(0) = 30 Lit

We are asked to write down an initial-value problem that governs S;(t) and Sx(?).

The rates work out so there will be V;(t) = 45 + t liters of brine in the first tank
and V5(t) = 30 — 2¢ liters in the second. Then S;(¢) and Sy(t) are governed by the



initial-value problem

dSl_ SQ Sl Sl
E_5'6+30—2t7 45+t8 45+t
ds, S, S, S,

_ _ _ —18.
dt — 45+t 302t T 30_2° 52(0) =18

You could leave the answer in the above form. However, it can be simplified to

4, S1(0) = 27,

ds, 7 12
E‘30+30—2t52_45+t51’ 51(0) =27,
ds, 8 5

TR Tl 5:(0) =18

Notice that the interval of definition for this initial-value problem is (—45, 15).

(9) [12] Consider the following MATLAB commands.

>>syms t s Y; f=[t"3 + heaviside(t — 2)*(8 — t"3)];

>> diffeqn = sym('D(D(y))(t) — 6*D(y)(t) + 13*y(t) =" 1);

>> eqntrans = laplace(diffeqn, t, s);

>> algeqn = subs(equtrans, {’laplace(y(t),t,3),t,8)’, 'y(0)’, 'D(y)(0)’}, {Y, =2, 5});
>> ytrans = simplify(solve(algeqn, Y));

>> y = ilaplace(ytrans, s, t)

(a) [4] Give the initial-value problem for y(¢) that is being solved.
(b) [8] Find the Laplace transform Y'(s) of the solution y(t).

You may refer to the table on the last page. DO NOT take the inverse Laplace
transform to find y(¢), just solve for Y (s)!

Solution (a). The initial-value problem for y(t) that is being solved is

y"' — 6y + 13y = f(1), y(0)=-2, ¢'(0)=5,

where the forcing f(t) can be expressed either as

3 for0<t<?
t: — )
1(#) {8 for2 <t,

or in terms of the unit step function as f(t) = t* + u(t — 2)(8 — ¢?).

Solution (b). The Laplace transform of the initial-value problem is

Lly"|(s) = 6Ly 1(s) + 13L[y](s) = LI[](s) -

Because

Llyl(s) =Y (s),
L[y (s) = sY(s) —y(0) = sY(s) + 2,
L[y"(s) = s°Y (s) — sy(0) — ¢/(0) = s’V (s) + 25 — 5,
the Laplace transform of the initial-value problem becomes

(s°Y(s) +2s — 5) — 6(sY (s) +2) + 13Y (s) = L[f](s).



(10)

This simplifies to
(s — 65 + 13)Y(s) + 25 — 17 = L[f](s)

whereby

Y(s) = m(—2s+17+£[ﬂ(s)).

To compute L[f](s), we write f(t) as
f@) =t +ut—2)8 1) =t +u(t—2)jt—2),
where by setting j(t — 2) = 8 — t3 we see that
jt)=8—(t+2)° =8— (£ +6t> + 12t + 8) = —t* — 6t — 12¢.

Referring to the table on the last page, item 1 with a = 0 and n = 3, with a = 0 and
n = 2, and with a = 0 and n = 1 shows that

IO = 1 N S R

st’
whereby item 6 with ¢ = 2 and j(t) = —t* — 6t> — 12t shows that
Llu(t —2)j(t —2)](s) = e > L[j](s) = —e *L[t? + 6t* + 12t](s)

B _9s [ 6 12 12
= —¢ ;—F?—f—? .

LI)(s) = L[+ ult = 2)j(t - 2)](s) = = — 2 (E + o 1—2) |

s

Therefore

Upon placing this result into the expression for Y'(s) found earlier, we obtain

1 6 _9sf 6 12 12

[6] Compute the Green function g(t) for the differential operator (D + 4)* where

d
D=—.
dt

Solution. The operator (D + 4)3 has characteristic polynomial p(s) = (s + 4)3.
Therefore its Green function g(t) is given by

1 1
t — Eil R t = Eil _—_— t .
o) =27 g5 0= 55 0
Referring to the table on the last page, item 1 with a = —4 and n = 2 gives

R (U




(11) [8] Compute the Laplace transform of f(t) = u(t —4) e~ from its definition. (Here
w is the unit step function.)
Solution. The definition of Laplace transform gives
T T
L[f](s) = lim e *tu(t —4)e ' dt = lim e~ e

T—oo J T—oo Jy

When s < —2 this limit diverges to +00 because in that case we have for every 7' > 4

T T
/ e(S”)tdtz/ dt=T-4,
4 4

which clearly diverges to +o0o as T" — oo.

When s > —2 we have for every T' > 4

T (42t 4 _e—(s+2)t T B _e—(s+2)T e~ (s+2)4
e dt = = + ’
4 s+2 |, s+2 s+2
whereby
' e—(s+2)T e—(5+2)4 6_(S+2)4
E[f](s):Tlggo[— P + s+2}: ST for s > —2.

(12) [8] Find the inverse Laplace transform £7[Y(s)](¢) of the function

3s+13

Y(s)=e» 5.
(s)=e §2—3s—14

You may refer to the table on the last page.

Solution. Referring to the table on the last page, item 6 with ¢ = 3 implies that
L7 e J(s)] = u(t—3)j(t—3), where  j(t) = L7 [J(s)](¢).

We apply this formula to

3s + 13
J(S)_52—35—4'

Because the denominator factors as (s —4)(s+1), we have the partial fraction identity

3s+13 3s+13 D -2

$2—-3s—4 (s—4)(s+1) 3—4+s+1'

Referring to the table on the last page, item 1 with a = 4 and n = 0, and with
a = —1 and n = 0 implies that

£_1[8i4}(t):e4t, L‘l{ ! ](t):e—t.

s+ 1

These formulas also can be obtained from item 2 with a = 4 and b = 0, and with
a=—1and b=0.



The above formulas and the linearity of the inverse Laplace transform yield

j<t>=c-1w<s>J<t>:£—1[ 35 13 ](t)

s2—-3s5s—4

:L“l[ > . _2}@)

s—4 s+1

=5L7" L i 41 (t) —2L£71 L i 1] (t) = 5e*t — 27",

Therefore
LY (s)](t) = L7 e > T (s)](2)

u(t —3)j(t —3)
u(t — 3) (564(t_3) — 26_(t_3)> .

A Short Table of Laplace Transforms

n!

Llte)(s) = =gy for s >a.
L[e™ cos(bt)](s) = ﬁ for s > a.
Lle™ sin(bt)](s) = wﬁ for s> a.
LIE"j(1)](s) = (=1)"T"(s) where J(s) = L[j(t)](s)
L[e*j()(s) = J(s — a) where J(s) = LLj(1)](s).
Llu(t = )j(t — o)](s) = e~ J(s) where J(s) = L[j(t)](s)

and w is the unit step function.



