
Solutions of Sample Problems for Third In-Class Exam
Math 246, Spring 2017, Professor David Levermore

(1) The vertical displacement of a mass on a spring is given by

h(t) = 4e−t cos(7t)− 3e−t sin(7t) ,

where positive displacements are upward.

(a) Express h(t) in the form h(t) = Ae−t cos(ωt − δ) with A > 0 and 0 ≤ δ < 2π,
identifying the quasiperiod and phase of the oscillation. (The phase may be
expressed in terms of an inverse trig function.)

(b) Sketch the solution over 0 ≤ t ≤ 2.

Solution (a). By comparing

Ae−t cos(ωt− δ) = Ae−t cos(δ) cos(ωt) + Ae−t sin(δ) sin(ωt) ,

with h(t) = 4e−t cos(7t)− 3e−t sin(7t), we see that ω = 7 and that

A cos(δ) = 4 , A sin(δ) = −3 .

This shows that (A, δ) are the polar coordinates of the point in the plane whose
Cartesian coordinates are (4,−3). Clearly A is given by

A =
√

42 + 32 =
√

16 + 9 =
√

25 = 5 .

Because (4,−3) lies in the fourth quadrant, the phase δ satisfies 3π
2
< δ < 2π. There

are several ways to express δ. A picture shows that if we use 2π as a reference then

sin(2π − δ) = 3
5
, tan(2π − δ) = 3

4
, cos(2π − δ) = 4

5
,

and we can express the phase by any one of the formulas

δ = 2π − sin−1
(
3
5

)
, δ = 2π − tan−1

(
3
4

)
, δ = 2π − cos−1

(
4
5

)
.

Finally, because the quasifrequency is ω = 7, the quasiperiod T is given by

T =
2π

ω
=

2π

7
.

Solution (b). This will be shown during the review session if someone asks for it.

(2) When a mass of 4 grams is hung vertically from a spring, at rest it stretches the
spring 9.8 cm. (Gravitational acceleration is g = 980 cm/sec2.) At t = 0 the mass is
displaced 3 cm above its equilibrium position and is released with no initial velocity.
It moves in a medium that imparts a drag force of 2 dynes (1 dyne = 1 gram cm/sec2)
when the speed of the mass is 4 cm/sec. There are no other forces. (Assume that the
spring force is proportional to displacement and that the drag force is proportional
to velocity.)

(a) Formulate an initial-value problem that governs the motion of the mass for t > 0.
(DO NOT solve this initial-value problem, just write it down!)

(b) What is the natural frequency of the spring?

(c) Show that the system is under damped and find its quasifrequency.
1
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Solution (a). Let h(t) be the displacement of the mass from its equilibrium (rest)
position at time t in centimeters, with upward displacements being positive. The
governing initial-value problem then has the form

m
d2h

dt2
+ γ

dh

dt
+ kh = 0 , h(0) = 3 , h′(0) = 0 ,

where m is the mass, γ is the drag coefficient, and k is the spring constant. The
problem says that m = 4 grams. The spring constant is obtained by balancing the
weight of the mass (mg = 4 · 980 dynes) with the force applied by the spring when
it is stetched 9.8 cm. This gives k 9.8 = 4 · 980, or

k =
4 · 980

9.8
= 400 dynes/cm .

The drag coefficient is obtained by balanceing the force of 2 dynes with the drag force
imparted by the medium when the speed of the mass is 4 cm/sec. This gives γ 4 =
2, or

γ =
2

4
=

1

2
dynes sec/cm .

Therefore the governing initial-value problem is

4
d2h

dt2
+

1

2

dh

dt
+ 400h = 0 , h(0) = 3 , h′(0) = 0 ,

If we had chosen downward displacements to be positive then the governing initial-
value problem would be the same except for the first initial condition, which would
then be h(0) = −3.

Solution (b). The natural frequency of the spring is given by

ωo =

√
k

m
=

√
4 · 980

4 · 9.8
=
√

100 = 10 1/sec .

Solution (c). The characteristic polynomial is

p(z) = z2 +
1

8
z + 100 =

(
z +

1

16

)2

+ 100− 1

162
,

which has a conjugate pair of roots. Therefore the system is under damped. The
roots are − 1

16
± iν where

ν =

√
100− 1

162
1/sec .

This is the quasifrequency.

(3) Compute the Laplace transform of f(t) = t e3tu(t− 2) from its definition.

Solution. The definition of the Laplace transform gives

L[f ](s) = lim
T→∞

∫ T

0

e−stt e3tu(t− 2) dt = lim
T→∞

∫ T

2

t e−(s−3)t dt .
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This limit diverges to +∞ for s ≤ 3 because in that case for every T > 2 we have∫ T

2

t e−(s−3)t dt ≥
∫ T

2

t dt =
T 2

2
− 2 ,

which clearly diverges to +∞ as T →∞.

For s > 3 an integration by parts shows that∫ T

2

t e−(s−3)t dt = −t e
−(s−3)t

s− 3

∣∣∣∣T
2

+

∫ T

2

e−(s−3)t

s− 3
dt

=

(
− t e

−(s−3)t

s− 3
− e−(s−3)t

(s− 3)2

)∣∣∣∣T
2

=

(
− T e−(s−3)T

s− 3
− e−(s−3)T

(s− 3)2

)
+

(
2
e−(s−3)2

s− 3
+
e−(s−3)2

(s− 3)2

)
.

Hence, for s > 3 we have that

L[f ](s) = lim
T→∞

[(
− T e−(s−3)T

s− 3
− e−(s−3)T

(s− 3)2

)
+

(
2
e−(s−3)2

s− 3
+
e−(s−3)2

(s− 3)2

)]
=
e−(s−3)2

(s− 3)2
+ 2

e−(s−3)2

s− 3
− lim

T→∞

(
T
e−(s−3)T

s− 3
+
e−(s−3)T

(s− 3)2

)
=
e−(s−3)2

(s− 3)2
+ 2

e−(s−3)2

s− 3
.

(4) Consider the following MATLAB commands.

>> syms t s Y; f = [’heaviside(t)*t̂ 2 + heaviside(t − 3)*(3*t − t̂ 2)’];
>> diffeqn = sym(’D(D(y))(t) − 6*D(y)(t) + 10*y(t) = ’ f);
>> eqntrans = laplace(diffeqn, t, s);
>> algeqn = subs(eqntrans, {’laplace(y(t),t,s),t,s)’, ’y(0)’, ’D(y)(0)’}, {Y, 2, 3});
>> ytrans = simplify(solve(algeqn, Y));
>> y = ilaplace(ytrans, s, t)

(a) Give the initial-value problem for y(t) that is being solved.
(b) Find the Laplace transform Y (s) of the solution y(t).

You may refer to the table on the last page. DO NOT take the inverse Laplace
transform to find y(t), just solve for Y (s)!

Solution (a). The initial-value problem for y(t) that is being solved is

y′′ − 6y′ + 10y = f(t) , y(0) = 2 , y′(0) = 3 ,

where the forcing f(t) can be expressed either as

f(t) =

{
t2 for 0 ≤ t < 3 ,

3t for 3 ≤ t ,

or in terms of the unit step function as f(t) = t2 + u(t− 3)(3t− t2).
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Solution (b). The Laplace transform of the initial-value problem is

L[y′′](s)− 6L[y′](s) + 10L[y](s) = L[f ](s) ,

where

L[y](s) = Y (s) ,

L[y′](s) = sY (s)− y(0) = sY (s)− 2 ,

L[y′′](s) = s2Y (s)− sy(0)− y′(0) = s2Y (s)− 2s− 3 .

To compute L[f ](s), we first write f(t) as

f(t) = t2 + u(t− 3)(3t− t2) = t2 + u(t− 3)j(t− 3) ,

where by setting j(t− 3) = 3t− t2 we see that

j(t) = 3(t+ 3)− (t+ 3)2 = 3t+ 9− t2 − 6t− 9 = −t2 − 3t .

Referring to the table on the last page, item 1 with a = 0 and n = 2 and with a = 0
and n = 1 shows that

L[t2](s) =
2

s3
, L[t](s) =

1

s2
,

whereby item 6 with c = 3 and j(t) = −t2 − 3t shows that

L
[
u(t− 3)j(t− 3)

]
(s) = e−3sL[j](s) = −e−3sL

[
t2 + 3t

]
(s) = −e−3s

(
2

s3
+

3

s2

)
.

Therefore

L[f ](s) = L
[
t2 + u(t− 3)j(t− 3)

]
(s) =

2

s3
− e−3s

(
2

s3
+

3

s2

)
.

The Laplace transform of the initial-value problem then becomes(
s2Y (s)− 2s− 3

)
− 6
(
sY (s)− 2

)
+ 10Y (s) =

2

s3
− e−3s

(
2

s3
+

3

s2

)
,

which becomes

(s2 − 6s+ 10)Y (s)− 2s+ 9 =
2

s3
− e−3s

(
2

s3
+

3

s2

)
.

Therefore Y (s) is given by

Y (s) =
1

s2 − 6s+ 10

(
2s− 9 +

2

s3
− e−3s

(
2

s3
+

3

s2

))
.

(5) Find the Laplace transform Y (s) of the solution y(t) of the initial-value problem

y′′ + 4y′ + 13y = f(t) , y(0) = 4 , y′(0) = 1 ,

where

f(t) =

{
cos(t) for 0 ≤ t < 2π ,

t− 2π for t ≥ 2π .

You may refer to the table on the last page. DO NOT take the inverse Laplace
transform to find y(t), just solve for Y (s)!
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Solution. The Laplace transform of the initial-value problem is

L[y′′](s) + 4L[y′](s) + 13L[y](s) = L[f ](s) ,

where

L[y](s) = Y (s) ,

L[y′](s) = sY (s)− y(0) = sY (s)− 4 ,

L[y′′](s) = s2Y (s)− sy(0)− y′(0) = s2Y (s)− 4s− 1 .

To compute L[f ](s), first write f as

f(t) =
(
1− u(t− 2π)

)
cos(t) + u(t− 2π)(t− 2π)

= cos(t)− u(t− 2π) cos(t) + u(t− 2π)(t− 2π)

= cos(t)− u(t− 2π) cos(t− 2π) + u(t− 2π)(t− 2π) .

Referring to the table on the last page, item 6 with c = 2π and j(t) = cos(t), item 6
with c = 2π and j(t) = t, item 2 with a = 0 and b = 1, and item 1 with n = 1 and
a = 1 then show that

L[f ](s) = L[cos(t)](s)− L[u(t− 2π) cos(t− 2π)](s) + L[u(t− 2π)(t− 2π)](s)

= L[cos(t)](s)− e−2πsL[cos(t)](s) + e−2πsL[t](s)

=
(
1− e−2πs

) s

s2 + 1
+ e−2πs

1

s2
.

The Laplace transform of the initial-value problem then becomes(
s2Y (s)− 4s− 1

)
+ 4
(
sY (s)− 4

)
+ 13Y (s) =

(
1− e−2πs

) s

s2 + 1
+ e−2πs

1

s2
,

which becomes

(s2 + 4s+ 13)Y (s)− 4s− 1− 16 =
(
1− e−2πs

) s

s2 + 1
+ e−2πs

1

s2
.

Hence, Y (s) is given by

Y (s) =
1

s2 + 4s+ 13

(
4s+ 17 +

(
1− e−2πs

) s

s2 + 1
+ e−2πs

1

s2

)
.

(6) Find the inverse Laplace transforms of the following functions. You may refer to the
table on the last page.

(a) F (s) =
2

(s+ 5)2
,

(b) F (s) =
3s

s2 − s− 6
,

(c) F (s) =
(s− 2)e−3s

s2 − 4s+ 5
.
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Solution (a). Referring to the table on the last page, item 1 with n = 1 and a = −5
gives

L[t e−5t](s) =
1

(s+ 5)2
.

Therefore we conclude that

L−1
[

2

(s+ 5)2

]
(t) = 2L−1

[
1

(s+ 5)2

]
(t) = 2t e−5t .

Solution (b). Because the denominator factors as (s−3)(s+2), we have the partial
fraction identity

3s

s2 − s− 6
=

3s

(s− 3)(s+ 2)
=

9
5

s− 3
+

6
5

s+ 2
.

Referring to the table on the last page, item 1 with n = 0 and a = 3, and with n = 0
and a = −2 gives

L[e3t](s) =
1

s− 3
, L[e−2t](s) =

1

s+ 2
.

Therefore we conclude that

L−1
[

3s

s2 − s− 6

]
(t) = L−1

[ 9
5

s− 3
+

6
5

s+ 2

]
(t)

= 9
5
L−1

[
1

s− 3

]
(t) + 6

5
L−1

[
1

s+ 2

]
(t)

= 9
5
e3t + 6

5
e−2t .

Solution (c). Complete the square in the denominator to get (s−2)2 +1. Referring
to the table on the last page, item 2 with a = 2 and b = 1 gives

L[e2t cos(t)](s) =
s− 2

(s− 2)2 + 1
.

Item 6 with c = 3 and j(t) = e2t cos(t) then gives

L[u(t− 3)e2(t−3) cos(t− 3)](s) = e−3s
s− 2

(s− 2)2 + 1
.

Therefore we conclude that

L−1
[
e−3s

s− 2

s2 − 4s+ 5

]
(t) = u(t− 3)e2(t−3) cos(t− 3) .

(7) Compute the Green function g(t) for the following differential operators.

(a) L = (D− 2)3 ,

(b) L = D4 + 8D2 − 9 .
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Solution (a). The characteristic polynomial of L = (D − 2)3 is p(s) = (s − 2)3.
Therefore its Green function g(t) is given by

g(t) = L−1
[

1

p(s)

]
(t) = L−1

[
1

(s− 2)3

]
(t) .

Referring to the table on the last page, item 1 with a = 2 and n = 2 gives

g(t) = 1
2
L−1

[
2

(s− 2)3

]
= 1

2
t2e2t .

Solution (b). The characteristic polynomial of L = D4+8D2−9 is p(s) = s4+8s2−9.
Therefore its Green function g(t) is given by

g(t) = L−1
[

1

p(s)

]
(t) = L−1

[
1

s4 + 8s2 − 9

]
(t) .

Because p(s) factors as p(s) = (s2 − 1)(s2 + 9) we have the partial fraction identity

1

s4 + 8s2 − 9
=

1

(s2 − 1)(s2 + 9)
=

1
10

s2 − 1
+
− 1

10

s2 + 9
.

Because s2− 1 factors as s2− 1 = (s− 1)(s+ 1) we have the partial fraction identity

1

s2 − 1
=

1

(s− 1)(s+ 1)
=

1
2

s− 1
+
−1

2

s+ 1
.

By combining the above partial fraction identities we obtain

1

s4 + 8s2 − 9
= 1

20

1

s− 1
− 1

20

1

s+ 1
− 1

10

1

s2 + 9
.

Referring to the table on the last page, item 1 with a = 1 and n = 0 and with a = −1
and n = 0 gives

L−1
[

1

s− 1

]
(t) = et , L−1

[
1

s+ 1

]
(t) = e−t ,

while item 3 with a = 0 and b = 3 gives

L−1
[

3

s2 + 9

]
(t) = sin(3t) .

Therefore the Green function g(t) is given by

g(t) = L−1
[

1

s4 + 8s2 − 9

]
(t)

= 1
20
L−1

[
1

s− 1

]
(t)− 1

20
L−1

[
1

s+ 1

]
(t)− 1

30
L−1

[
3

s2 + 9

]
(t)

= 1
20
et − 1

20
e−t − 1

30
sin(3t) .
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(8) Transform the equation u′′′+ t2u′−3u = sinh(2t) into a first-order system of ordinary
differential equations.

Solution. Because the equation is third order, the first-order system must have
dimension three. The simplest such first-order system is

d

dt

x1x2
x3

 =

 x2
x3

sinh(2t) + 3x1 − t2x2

 , where

x1x2
x3

 =

 u
u′

u′′

 .

(9) Consider two interconnected tanks filled with brine (salt water). The first tank
contains 100 liters and the second contains 50 liters. Brine flows with a concentration
of 2 grams of salt per liter flows into the first tank at a rate of 3 liters per hour. Well
stirred brine flows from the first tank to the second at a rate of 5 liters per hour,
from the second to the first at a rate of 2 liters per hour, and from the second into a
drain at a rate of 3 liters per hour. At t = 0 there are 5 grams of salt in the first tank
and 20 grams in the second. Give an initial-value problem that governs the amount
of salt in each tank as a function of time.

Solution. The rates work out so there will always be 100 liters of brine in the first
tank and 50 liters in the second. Let S1(t) be the grams of salt in the first tank and
S2(t) be the grams of salt in the second tank. These are governed by the initial-value
problem

dS1

dt
= 2·3 +

S2

50
2− S1

100
5 , S1(0) = 5 ,

dS2

dt
=

S1

100
5− S2

50
2− S2

50
3 , S2(0) = 20 .

You could leave the answer in the form given above. However, it can be simplified to

dS1

dt
= 6 +

S2

25
− S1

20
, S1(0) = 5 ,

dS2

dt
=
S1

20
− S2

10
, S2(0) = 20 .

(10) Consider the matrices

A =

(
−i2 1 + i
2 + i −4

)
, B =

(
7 6
8 7

)
.

Compute the matrices
(a) AT ,
(b) A ,
(c) A∗ ,
(d) 5A−B ,
(e) AB ,
(f) B−1 .

Solution (a). The transpose of A is

AT =

(
−i2 2 + i
1 + i −4

)
.
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Solution (b). The conjugate of A is

A =

(
i2 1− i

2− i −4

)
.

Solution (c). The Hermitian transpose of A is

A∗ =

(
i2 2− i

1− i −4

)
.

Solution (d). The difference of 5A and B is given by

5A−B =

(
−i10 5 + i5

10 + i5 −20

)
−
(

7 6
8 7

)
=

(
−7− i10 −1 + i5

2 + i5 −27

)
.

Solution (e). The product of A and B is given by

AB =

(
−i2 1 + i
2 + i −4

)(
7 6
8 7

)
=

(
−i2·7 + (1 + i)·8 −i2·6 + (1 + i)·7

(2 + i)·7− 4·8 (2 + i)·6− 4·7

)
=

(
8− i6 7− i5
−18 + i7 −16 + i6

)
.

Solution (f). Observe that it is clear that B has an inverse because

det(B) = det

(
7 6
8 7

)
= 7 · 7− 6 · 8 = 49− 48 = 1 .

Then the inverse of B is given by

B−1 =
1

det(B)

(
7 −6
−8 7

)
=

(
7 −6
−8 7

)
.

(11) Consider the vector-valued functions x1(t) =

(
t4 + 3

2t2

)
, x2(t) =

(
t2

3

)
.

(a) Compute the Wronskian W [x1,x2](t).

(b) Find A(t) such that x1, x2 is a fundamental set of solutions to
dx

dt
= A(t)x

wherever W [x1,x2](t) 6= 0.
(c) Give a fundamental matrix Ψ(t) for the system found in part (b).
(d) For the system found in part (b), solve the initial-value problem

dx

dt
= A(t)x , x(1) =

(
1
0

)
.
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Solution (a).

W [x1,x2](t) = det

(
t4 + 3 t2

2t2 3

)
= 3t4 + 9− 2t4 = t4 + 9 .

Solution (b). Let Ψ(t) =

(
t4 + 3 t2

2t2 3

)
. Because

dΨ(t)

dt
= A(t)Ψ(t), we have

A(t) =
dΨ(t)

dt
Ψ(t)−1 =

(
4t3 2t
4t 0

)(
t4 + 3 t2

2t2 3

)−1
=

1

t4 + 9

(
4t3 2t
4t 0

)(
3 −t2
−2t2 t4 + 3

)
=

1

t4 + 9

(
8t3 6t− 2t5

12t −4t3

)
.

Solution (c). Because x1(t), x2(t) is a fundamental set of solutions to the system
found in part (b), a fundamental matrix for the system found in part (b) is simply
given by

Ψ(t) =
(
x1(t) x2(t)

)
=

(
t4 + 3 t2

2t2 3

)
.

Solution (d). Because a fundamental matrix Ψ(t) for the system found in part (b)
was given in part (c), the solution of the initial-value problem is

x(t) = Ψ(t)Ψ(1)−1x(1) =

(
t4 + 3 t2

2t2 3

)(
4 1
2 3

)−1(
1
0

)
=

(
t4 + 3 t2

2t2 3

)
1

10

(
3 −1
−2 4

)(
1
0

)
=

1

10

(
t4 + 3 t2

2t2 3

)(
3
−2

)
=

1

10

(
3t4 + 9− 2t2

6t2 − 6

)
.

Alternative Solution (d). Because x1(t), x2(t) is a fundamental set of solutions
to the system found in part (b), a general solution is given by

x(t) = c1x1(t) + c2x2(t) = c1

(
t4 + 3

2t2

)
+ c2

(
t2

3

)
.

The initial condition then implies that

x(1) = c1

(
4
2

)
+ c2

(
1
3

)
=

(
4c1 + c2
2c1 + 3c2

)
=

(
1
0

)
,

from which we see that c1 = 3
10

and c2 = −1
5
. The solution of the initial-value problem

is thereby

x(t) = 3
10

(
t4 + 3

2t2

)
− 1

5

(
t2

3

)
=

(
3
10
t4 − 1

5
t2 + 9

10
3
5
t2 − 3

5

)
.

(12) Compute etA for the following matrices.
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(a) A =

(
1 4
1 1

)

(b) A =

(
6 4
−1 2

)
Solution (a). The characteristic polynomial of A is given by

p(z) = z2 − tr(A)z + det(A) = z2 − 2z − 3 = (z − 1)2 − 4 .

The eigenvalues of A are the roots of this polynomial, which are 1± 2. Hence,

etA = et
[

cosh(2t)I +
sinh(2t)

2
(A− I)

]
= et

[
cosh(2t)

(
1 0
0 1

)
+

sinh(2t)

2

(
0 4
1 0

)]
= et

(
cosh(2t) 2 sinh(2t)
1
2

sinh(2t) cosh(2t)

)
.

Natural Fundamental Set Method Solution (a). The characteristic polynomial
of A is

p(z) = z2 − tr(A)z + det(A) = z2 − 2z − 3 = (z + 1)(z − 3) .

The associated second-order general initial-value problem is

y′′ − 2y′ − 3y = 0 , y(0) = y0 , y′(0) = y1 .

This has the general solution y(t) = c1e
3t + c2e

−t. Because y′(t) = 3c1e
3t− c2e−t, the

general initial conditions yield

y0 = y(0) = c1 + c2 , y1 = y′(0) = 3c1 − c2 .

This system can be solved to obtain

c1 =
y0 + y1

4
, c2 =

3y0 − y1
4

.

The solution of the general initial-value problem is thereby

y(t) =
y0 + y1

4
e3t +

3y0 − y1
4

e−t =
e3t + 3e−t

4
y0 +

e3t − e−t

4
y1 .

Therefore the associated natural fundamental set of solutions is

N0(t) =
e3t + 3e−t

4
, N1(t) =

e3t − e−t

4
,

whereby

etA = N0(t)I +N1(t)A =
e3t + 3e−t

4

(
1 0
0 1

)
+
e3t − e−t

4

(
1 4
1 1

)
=

1

4

(
2e3t + 2e−t 4e3t − 4e−t

e3t − e−t 2e3t + 2e−t

)
.
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Eigen Method Solution (a). The characteristic polynomial of A is

p(z) = z2 − tr(A)z + det(A) = z2 − 2z − 3 = (z + 1)(z − 3) .

The eigenvalues of A are the roots of this polynomial, which are −1 and 3. Because

A + I =

(
2 4
1 2

)
, A− 3I =

(
−2 4
1 −2

)
,

we can read off that A has the eigenpairs(
−1 ,

(
2
−1

))
,

(
3 ,

(
2
1

))
.

Set

V =

(
2 2
−1 1

)
, D =

(
−1 0
0 3

)
.

Because det(V) = 4, we see that

etA = VetDV−1 =

(
2 2
−1 1

)(
e−t 0
0 e3t

)(
2 2
−1 1

)−1
=

(
2 2
−1 1

)(
e−t 0
0 e3t

)
1

4

(
1 −2
1 2

)
=

1

4

(
2 2
−1 1

)(
e−t −2e−t

e3t 2e3t

)
=

1

4

(
2e−t + 2e3t 4e3t − 4e−t

e3t − e−t 2e−t + 2e3t

)
.

Solution (b). The characteristic polynomial of A is given by

p(z) = z2 − tr(A)z + det(A) = z2 − 8z + 16 = (z − 4)2 .

The eigenvalues of A are the roots of this polynomial, which is 4, a double root.
Hence,

etA = e4t
[
I + t

(
A− 4I

)]
= e4t

[(
1 0
0 1

)
+ t

(
2 4
−1 −2

)]
= e4t

(
1 + 2t 4t
−t 1− 2t

)
.

Natural Fundamental Set Method Solution (b). The characteristic polynomial
of A is

p(z) = z2 − tr(A)z + det(A) = z2 − 8z + 16 = (z − 4)4 .

The associated second-order general initial-value problem is

y′′ − 8y′ + 16y = 0 , y(0) = y0 , y′(0) = y1 .

This has the general solution y(t) = c1e
4t + c2te

4t. Because y′(t) = 4c1e
3t + 4c2te

−t +
c2e

4t, the general initial conditions yield

y0 = y(0) = c1 , y1 = y′(0) = 4c1 + c2 .

This system can be solved to obtain c1 = y0 and c2 = y1 − 4y0. The solution of the
general initial-value problem is thereby

y(t) = y0 e
4t + (y1 − 4y0)t e

4t = (1− 4t)e4t y0 + t e4t y1 .
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Therefore the associated natural fundamental set of solutions is

N0(t) = (1− 4t)e4t , N1(t) = t e4t ,

whereby

etA = N0(t)I +N1(t)A = (1− 4t)e4t
(

1 0
0 1

)
+ t e4t

(
6 4
−1 2

)
= e4t

(
1 + 2t 4t
−t 1− 2t

)
.

(13) Solve each of the following initial-value problems.

(a)
d

dt

(
x
y

)
=

(
2 2
5 −1

)(
x
y

)
,

(
x(0)
y(0)

)
=

(
1
−1

)
.

(b)
d

dt

(
x
y

)
=

(
1 1
−4 1

)(
x
y

)
,

(
x(0)
y(0)

)
=

(
1
1

)
.

Solution (a). The characteristic polynomial of A =

(
2 2
5 −1

)
is given by

p(z) = z2 − tr(A)z + det(A) = z2 − z − 12 = (z + 3)(z − 4) .

The eigenvalues of A are the roots of this polynomial, which are −3 and 4. These
have the form 1

2
± 7

2
, whereby

etA = e
1
2
t

[
cosh

(
7
2
t
)
I +

sinh
(
7
2
t
)

7
2

(
A− 1

2
I
)]

= e
1
2
t

[
cosh

(
7
2
t
)(1 0

0 1

)
+

sinh
(
7
2
t
)

7
2

(
3
2

2
5 −3

2

)]

= e
1
2
t

(
cosh

(
7
2
t
)

+ 3
7

sinh
(
7
2
t
)

4
7

sinh
(
7
2
t
)

10
7

sinh
(
7
2
t
)

cosh
(
7
2
t
)
− 3

7
sinh

(
7
2
t
)) .

Therefore the solution of the initial-value problem is(
x(t)
y(t)

)
= etA

(
x(0)
y(0)

)
= etA

(
1
−1

)
= e

1
2
t

(
cosh

(
7
2
t
)

+ 3
7

sinh
(
7
2
t
)

4
7

sinh
(
7
2
t
)

10
7

sinh
(
7
2
t
)

cosh
(
7
2
t
)
− 3

7
sinh

(
7
2
t
))( 1

−1

)
= e

1
2
t

(
cosh

(
7
2
t
)
− 1

7
sinh

(
7
2
t
)

− cosh
(
7
2
t
)

+ 13
7

sinh
(
7
2
t
)) .

Solution (b). The characteristic polynomial of A =

(
1 1
−4 1

)
is given by

p(z) = z2 − tr(A)z + det(A) = z2 − 2z + 5 = (z − 1)2 + 4 .
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The eigenvalues of A are the roots of this polynomial, which are 1± i2. Hence,

etA = et
[

cos(2t)I +
sin(2t)

2
(A− I)

]
= et

[
cos(2t)

(
1 0
0 1

)
+

sin(2t)

2

(
0 1
−4 0

)]
= et

(
cos(2t) 1

2
sin(2t)

−2 sin(2t) cos(2t)

)
.

Therefore the solution of the initial-value problem is(
x(t)
y(t)

)
= etA

(
x(0)
y(0)

)
= etA

(
1
1

)
= et

(
cos(2t) 1

2
sin(2t)

−2 sin(2t) cos(2t)

)(
1
1

)
= et

(
cos(2t) + 1

2
sin(2t)

−2 sin(2t) + cos(2t)

)
.

Remark. We could have used other methods to compute etA in each part of the
above problem. Alternatively, we could have constructed a fundamental matrix Ψ(t)
and then determined c so that Ψ(t)c satisfies the initial conditions.

(14) Find a general solution for each of the following systems.

(a)
d

dt

(
x
y

)
=

(
3 −4
1 −1

)(
x
y

)

(b)
d

dt

(
x
y

)
=

(
2 −5
4 −2

)(
x
y

)

(c)
d

dt

(
x
y

)
=

(
5 4
−5 1

)(
x
y

)

Solution (a). The characteristic polynomial of A =

(
3 −4
1 −1

)
is given by

p(z) = z2 − tr(A)z + det(A) = z2 − 2z + 1 = (z − 1)2 .

The eigenvalues of A are the roots of this polynomial, which is 1, a double root.
Hence,

etA = et
[
I + t (A− I)

]
= et

[(
1 0
0 1

)
+ t

(
2 −4
1 −2

)]
= et

(
1 + 2t −4t
t 1− 2t

)
.

Therefore a general solution is(
x(t)
y(t)

)
= etA

(
c1
c2

)
= et

(
1 + 2t −4t
t 1− 2t

)(
c1
c2

)
= c1e

t

(
1 + 2t
t

)
+ c2e

t

(
−4t

1− 2t

)
.
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Solution (b). The characteristic polynomial of A =

(
2 −5
4 −2

)
is given by

p(z) = z2 − tr(A)z + det(A) = z2 + 16 .

The eigenvalues of A are the roots of this polynomial, which are ±i4. Hence,

etA =

[
cos(4t)I +

sin(4t)

4
A

]
=

[
cos(4t)

(
1 0
0 1

)
+

sin(4t)

4

(
2 −5
4 −2

)]
=

(
cos(4t) + 1

2
sin(4t) −5

4
sin(4t)

sin(4t) cos(4t)− 1
2

sin(4t)

)
.

Therefore a general solution is(
x(t)
y(t)

)
= etA

(
c1
c2

)
=

(
cos(4t) + 1

2
sin(4t) −5

4
sin(4t)

sin(4t) cos(4t)− 1
2

sin(4t)

)(
c1
c2

)
= c1

(
cos(4t) + 1

2
sin(4t)

sin(4t)

)
+ c2

(
−5

4
sin(4t)

cos(4t)− 1
2

sin(4t)

)
.

Eigen Method Solution (b). The characteristic polynomial of A =

(
2 −5
4 −2

)
is

p(z) = z2 − tr(A)z + det(A) = z2 + 16 .

The eigenvalues of A are the roots of this polynomial, which are ±i4. Because

A− i4I =

(
2− i4 −5

4 −2− i4

)
, A + i4I =

(
2 + i4 −5

4 −2 + i4

)
,

we can read off that A has the eigenpairs(
i4 ,

(
1 + i2

2

))
,

(
−i4 ,

(
1− i2

2

))
.

Therefore the system has the complex-valued solution

ei4t
(

1 + i2
2

)
=
(

cos(4t) + i sin(4t)
)(1 + i2

2

)
=

(
cos(4t)− 2 sin(4t) + i2 cos(4t) + i sin(4t)

2 cos(4t) + i2 sin(4t)

)
.

By taking real and imaginary parts, we obtain the two real solutions

x1(t) = Re

(
ei4t
(

1 + i2
2

))
=

(
cos(4t)− 2 sin(4t)

2 cos(4t)

)
,

x2(t) = Im

(
ei4t
(

1 + i2
2

))
=

(
2 cos(4t) + sin(4t)

2 sin(4t)

)
.

Therefore a general solution is(
x(t)
y(t)

)
= c1

(
cos(4t)− 2 sin(4t)

2 cos(4t)

)
+ c2

(
2 cos(4t) + sin(4t)

2 sin(4t)

)
.
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Solution (c). The characteristic polynomial of A =

(
5 4
−5 1

)
is given by

p(z) = z2 − tr(A)z + det(A) = z2 − 6z + 25 = (z − 3)2 + 16 .

The eigenvalues of A are the roots of this polynomial, which are 3± i4. Hence,

etA = e3t
[

cos(4t)I +
sin(4t)

4
(A− 3I)

]
= e3t

[
cos(4t)

(
1 0
0 1

)
+

sin(4t)

4

(
2 4
−5 −2

)]
= e3t

(
cos(4t) + 1

2
sin(4t) sin(4t)

−5
4

sin(4t) cos(4t)− 1
2

sin(4t)

)
.

Therefore a general solution is(
x(t)
y(t)

)
= etA

(
c1
c2

)
= e3t

(
cos(4t) + 1

2
sin(4t) sin(4t)

−5
4

sin(4t) cos(4t)− 1
2

sin(4t)

)(
c1
c2

)
= c1e

3t

(
cos(4t) + 1

2
sin(4t)

−5
4

sin(4t)

)
+ c2e

3t

(
sin(4t)

cos(4t)− 1
2

sin(4t)

)
.

Eigen Method Solution (c). The characteristic polynomial of A =

(
5 4
−5 1

)
is

p(z) = z2 − tr(A)z + det(A) = z2 − 6z + 25 = (z − 3)2 + 16 .

The eigenvalues of A are the roots of this polynomial, which are 3± i4. Because

A− (3 + i4)I =

(
2− i4 4
−5 −2− i4

)
, A− (3− i4)I =

(
2 + i4 4
−5 −2 + i4

)
,

we can read off that A has the eigenpairs(
3 + i4 ,

(
−2

1− i2

))
,

(
3− i4 ,

(
−2

1 + i2

))
.

Therefore the system has the complex-valued solution

e(3+i4)t
(
−2

1− i2

)
= e3t

(
cos(4t) + i sin(4t)

)( −2
1− i2

)
= e3t

(
−2 cos(4t)− i2 sin(4t)

cos(4t) + 2 sin(4t) + i sin(4t)− i2 cos(4t)

)
.

By taking real and imaginary parts, we obtain the two real solutions

x1(t) = Re

(
e(3+i4)t

(
−2

1− i2

))
= e3t

(
−2 cos(4t)

cos(4t) + 2 sin(4t)

)
,

x2(t) = Im

(
e(3+i4)t

(
−2

1 + i2

))
= e3t

(
−2 sin(4t)

sin(4t)− 2 cos(4t)

)
.

Therefore a general solution is(
x(t)
y(t)

)
= c1e

3t

(
−2 cos(4t)

cos(4t) + 2 sin(4t)

)
+ c2e

3t

(
−2 sin(4t)

sin(4t)− 2 cos(4t)

)
.
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A Short Table of Laplace Transforms

L[tneat](s) =
n!

(s− a)n+1
for s > a .

L[eat cos(bt)](s) =
s− a

(s− a)2 + b2
for s > a .

L[eat sin(bt)](s) =
b

(s− a)2 + b2
for s > a .

L[tnj(t)](s) = (−1)nJ (n)(s) where J(s) = L[j(t)](s) .

L[eatj(t)](s) = J(s− a) where J(s) = L[j(t)](s) .

L[u(t− c)j(t− c)](s) = e−csJ(s) where J(s) = L[j(t)](s)

and u is the unit step function .


