Quiz 1 Solutions, Math 246, Professor David Levermore Thursday, 2 February 2017

- (1) [4] For each of the following ordinary differential equations, determine its order and whether it is linear or nonlinear. If it is nonlinear, circle a term that makes it so.
 - (a) $w''' + e^w w'' = 3w' + \sin(t)$

Solution. third order, nonlinear, $e^w w''$.

(b) $h^{(4)} + \cos(x)h'' = 3h + \cos(h)$

Solution. fourth order, nonlinear, $\cos(h)$.

(2) [4] Solve the initial-value problem

$$x\frac{\mathrm{d}v}{\mathrm{d}x} + 3v = 15x^2$$
, $v(-1) = 4$.

Solution. This equation is linear. Its normal form is

$$\frac{\mathrm{d}v}{\mathrm{d}x} + \frac{3}{x}v = 15x.$$

An integrating factor is $e^{A(x)}$ where A'(x) = 3/x. Setting $A(x) = 3\log(x)$, we find that $e^{A(x)} = e^{3\log(x)} = x^3$. Hence, the problem has the integrating factor form

$$\frac{\mathrm{d}}{\mathrm{d}x}(x^3v) = x^3 \cdot (15x) = 15x^4.$$

Integrating both sides yields

$$x^3v = 3x^5 + c.$$

Imposing the initial condition gives

$$(-1)^3 \cdot 4 = 3 \cdot (-1)^5 + c$$

whereby c = -1. Therefore the solution is

$$v = \frac{3x^5 - 1}{x^3} \,.$$

Remark. The interval of definition for this solution is $(-\infty, 0)$. Can you see why?

(3) [2] What is the interval of definition for the solution of the initial-value problem

$$\frac{\mathrm{d}u}{\mathrm{d}t} + \frac{\cos(t)}{t^2 - 16} u = \frac{\sin(t)}{t^2 - 4}, \qquad u(-3) = 2.$$

(You do not have to solve this equation to answer this question!)

Solution. This equation is linear and is already in normal form. The coefficient $\cos(t)/(t^2-16)$ is continuous everywhere except at $t=\pm 4$, where it is undefined. The forcing $\sin(t)/(t^2-4)$ is continuous everywhere except at $t=\pm 2$, where it is undefined. The initial time is t=-3. Therefore we can read off that the interval of definition for the solution is (-4,-2) because:

- the initial time t = -3 is in (-4, -2),
- the coefficient and forcing are both continuous over (-4, -2),
- the coefficient is not defined at t = -4,
- the forcing is not defined at t = -2.