Quiz 6 Solutions, Math 246, Professor David Levermore Thursday, 16 March 2017

(1) [5] Find a particular solution of $v'' - v = 4e^t$.

Solution. This is a second-order, nonhomogeneous, linear equation with constant coefficients. Its characteristic polynomial is $p(z) = z^2 - 1$, which has roots ± 1 . Its forcing has characteristic form with degree d = 0, characteristic $\mu + i\nu = 1$, and multiplicity m = 1. Let $L = D^2 - 1$.

Zero Degree Formula. Because $d=0, \mu+i\nu=1$, and m=1, we may use the zero degree formula with m=1. Because p'(z)=2z, this formula is

$$L\left(\frac{t e^t}{p'(1)}\right) = L\left(\frac{t e^t}{2}\right) = e^t.$$

Therefore a particular solution of $L(v) = 4e^t$ is $v_P(t) = 2t e^t$.

Remark. Had you forgotten the zero degree formula then you could have derived it by Key Identity Evaluations as in the following solution.

Key Identity Evaluations. Because d=0, $\mu+i\nu=1$, and m=1, we need to evaluate the first derivative of the Key Identity at z=1. Because $p(z)=z^2+1$, the Key Identity and its first derivative with respect to z are

$$L(e^{zt}) = p(z)e^{zt} = (z^2 - 1)e^{zt},$$

$$L(t e^{zt}) = p(z)t e^{zt} + p'(z)e^{zt} = (z^2 - 1)t e^{zt} + 2ze^{zt}.$$

By evaluating the first derivative of the Key Identity at z=1 we obtain

$$L(t e^t) = (1^2 - 1)t e^t + 2 \cdot 1e^t = 2e^t.$$

Therefore a particular solution of $L(v) = 4e^t$ is $v_P(t) = 2t e^t$.

Undetermined Coefficients. Because d = 0, $\mu + i\nu = 1$ and m = 1, there is a particular solution of $L(v) = 4e^t$ in the form

$$v_P(t) = At e^t.$$

Because

$$v'_P(t) = At e^t + Ae^t, \qquad v''_P(t) = At e^t + 2Ae^t,$$

we find that

$$v_P''(t) - v_P(t) = (At e^t + 2Ae^t) - At e^t = 2Ae^t.$$

By setting $2Ae^t = 4e^t$ we see that 2A = 4, whereby A = 2. Therefore a particular solution of $L(v) = 4e^t$ is $v_P(t) = 2t e^t$.

(2) [5] Find a particular solution of $w'' + w = 6\cos(2t)$.

Solution. This is a second-order, nonhomogeneous, linear equation with constant coefficients. Its characteristic polynomial is $p(z) = z^2 + 1$, which has roots $\pm i$. Its forcing has characteristic form with degree d = 0, characteristic $\mu + i\nu = i2$, and multiplicity m = 0. Let $L = D^2 + 1$.

Zero Degree Formula. Because $d=0, \mu+i\nu=i2$, and m=0, we may use the zero degree formula with m=0. Because $p(z)=z^2+1$, this formula is

$$L\left(\frac{e^{i2t}}{p(i2)}\right) = L\left(\frac{e^{i2t}}{-2^2+1}\right) = L\left(-\frac{1}{3}e^{i2t}\right) = e^{i2t}.$$

Because $6\cos(2t) = 6\operatorname{Re}(e^{i2t})$, we see that a particular solution of $L(w) = 6\cos(2t)$ is

$$w_P(t) = 6 \operatorname{Re}\left(-\frac{1}{3}e^{i2t}\right) = -2 \operatorname{Re}\left(e^{i2t}\right) = -2 \cos(2t).$$

Remark. Had you forgotten the zero degree formula then you could have derived it by Key Identity Evaluations as in the following solution.

Key Identity Evaluations. Because d = 0, $\mu + i\nu = i2$, and m = 0, we just need to evaluate the Key Identity at z = i2. Because $p(z) = z^2 + 1$, this identity is

$$L(e^{zt}) = p(z)e^{zt} = (z^2 + 1)e^{zt}$$
.

By evaluating this at z = i2 we obtain

$$L(e^{i2t}) = (-2^2 + 1)e^t = -3e^{i2t}.$$

Because $6\cos(2t) = 6\operatorname{Re}(e^{i2t})$, we see that a particular solution of $L(w) = 6\cos(2t)$ is

$$w_P(t) = -2 \operatorname{Re}(e^{i2t}) = -2 \cos(2t)$$
.

Undetermined Coefficients. Because $d=0, \mu+i\nu=i2$ and m=0, there is a particular solution of $L(w)=6\cos(2t)$ in the form

$$w_P(t) = A\cos(2t) + B\sin(2t).$$

Because

$$w'_P(t) = -2A\sin(2t) + 2B\cos(2t), \qquad w''_P(t) = -4A\cos(2t) - 4B\sin(2t),$$

we find that

$$w_P''(t) + w_P(t) = (-4A\cos(2t) - 4B\sin(2t)) + (A\cos(2t) + B\sin(2t))$$

= -3A\cos(2t) - 3B\sin(2t).

By setting $-3A\cos(2t) - 3B\sin(2t) = 6\cos(2t)$, we see that -3A = 6 and -3B = 0, whereby A = -2 and B = 0. Therefore a particular solution of $L(w) = 6\cos(2t)$ is $w_P(t) = -2\cos(2t)$.

Remark. Neither of these problems had a forcing with positive degree or composite characteristic form. Be prepared for either of these cases on the exam. They are included among the sample problems.