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a b s t r a c t

Carlton Caves, Fuchs, and Schack (2002) have recently appealed to an argument of mine (Stairs, 1983)
to address a problem for their subjective Bayesian account of quantum probability. The difficulty is that
on the face of it, quantum mechanical probabilities of one appear to be objective, but in that case, the
Born Rule would yield a continuum of probabilities between zero and one. If so, we end up with
objective probabilities strictly between zero and one. The authors claim that objective probabilities of
one leads to a dilemma: give up locality or fall into contradiction. I argue that this conclusion depends
on an overly strong interpretation of objectivism about quantum probabilities.
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1. Introduction

Carlton Caves, Christopher Fuchs and Rüdiger Schack (hence-
forth CFS) have long defended a subjective Bayesian account of
quantum mechanical probability. This may seem implausible for
probabilities of one, but that case is important for their view.
Assigning probability one to a quantum proposition typically
generates a continuum of probabilities between zero and one
via the Born rule. If probability one is objective, it would
presumably follow that these other probabilities are as well.
Consequently the viability of CFS’s program requires them to
deny that quantum probability is objective even for probability
one. They write:

The statement that the measurement outcome is 1 with
certainty isy not a proposition that is true or false of the
system, but an agent’s belief – and another agent might make
a different prediction. (Caves et al., 2002, p. 267)

In order to make their case, CFS appeal to a paper of mine from
some years ago (Stairs, 1983). Though I am flattered by the
attention to my work, I do not think their argument goes through.
The appearance that it does rests on an overly strong reading of
what objectivism calls for.

What follows is not intended as a full defense of objectivism
about quantum probability (henceforth we will just say ‘‘objecti-
vism.’’) CFS try to show that if probability one is objective, we face
a dilemma: embrace non-locality or fall into contradiction. The
main goal of this paper is to show that there is no such dilemma.
As for quantum probabilities strictly between 0 and 1, the
argument would not be that they must be treated objectively,
but rather that nothing CFS say rules this out. I will sketch what
I take to be a promising strategy for objectivism about quantum
probabilities, but working out that strategy – or any other – goes
beyond this paper.

CFS’s case breaks into three parts: general arguments on behalf
of subjective Bayesianism, a brief against an objective view of
state preparation, and an argument that if we treat quantum
certainty as objective but accept locality, we wind up in contra-
diction. I will urge that the general considerations are not
compelling, that the case against the objective view of state
preparation does not succeed, and that the argument about
quantum certainty can be turned aside by some careful reflection
on the connection between probabilities, properties and
counterfactuals.

2. General considerations

According to CFS, propositions and probabilities lie on oppo-
site sides of a category divide. Probability has an objective
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component: events or facts, which agents can settle unambigu-
ously, and the rules of probability, including the Born rule.
However, probabilities themselves are degrees of belief, and are
neither true nor false. Probabilities do not follow from facts, and
unlike physical parameters, they cannot be determined
unambiguously—not even approximately. And though David
Lewis’s Principal Principle (Lewis, 1986a, 1986b) attempts to
bridge the gap between degrees of belief and objective chances,
the Principle is off the mark at least in the case of supposedly
deterministic examples such as coin tosses. Or so we are told.

We will not spend much time on the category issue. It would
be pointless to try to get by without subjective probability, and
we can agree that degrees of belief are not facts. Nonetheless, CFS
do not show that there could not be objective probabilities, nor
that ‘‘objective probability’’ amounts to a category mistake. They
are right that probability claims – subjective or objective – do not
follow from non-probabilistic facts. However, this does not tell us
anything about the objectivity of probabilities. The fact that the
stuff in the shaker is mostly sodium chloride does not follow from
the fact that it is table salt, even though table salt is, mostly,
sodium chloride; the fact that Mary is thinking of Vienna does not
follow from any non-psychological description of her, but this
does not threaten physicalism about the mind. Moral claims do
not follow from non-moral claims, but moral facts could still
supervene on non-moral facts. For all CFS have said, objective
probabilities might supervene on physical symmetries, for exam-
ple, even though the symmetry claims do not entail the prob-
ability statements.

2.1. The Principal Principle and Humean chance

Accounts of what objective probability might be are not hard
to find. Maudlin (2007) provides a lucid discussion of three
possible analyses, and one would be hard-pressed to argue that
one of them must be uniquely right or clearly wrong. CFS devote
some attention to David Lewis’s views, and in particular to the
Principal Principle as a way of making sense of objective chance.
Though they do not say a lot, it will be worth our while to
say more.

Roughly, the Principal Principle (PP) holds that our degree of
belief in a proposition ought to agree with the objective chance, if
there is one and if we know it. More precisely, let A be a
proposition. Let X say that the chance of A is x. And let E be any
other ‘‘admissible’’ proposition, where ‘‘admissible’’ means,
roughly, ‘‘does not provide any credence-relevant information
about A beyond what knowledge of chances provides.’’ Then PP
says that a rational credence function Cr satisfies

CrðA9XEÞ ¼ x

This constraint is silent on the metaphysics of chance. In
particular, it does not require that chances be intrinsic disposi-
tions. On Lewis’s account, however, nothing that violates PP could
reasonably count as chance. Our credences guide our actions, and
’’chances’’ that could not be action-guiding even if we knew them
are not worthy of the name.

So far, all this says is that if anything is worthy of being called
chance, it must satisfy PP. That’s consistent with there being no
such thing. CFS maintain that in at least one case, non-trivial
chances cannot exist: deterministic setups such as we usually
suppose coin-tossing arrangements to be. The problem is that a
fully precise specification of any such chance set-up will fix the
outcome, leaving us with chances of 0 and 1.

The immediate reply is that Lewis would agree. He held that in
a deterministic world, there are no chances (1986b, 117–121.) If
determinism fails, Lewis provides his own account of chance: an
extension of what he says about laws of nature. According to

Lewis, a law of nature is a theorem of the ‘‘best system’’ of
generalizations for describing the totality of events—the so-called
‘‘Humean Mosaic.’’ ‘‘Best’’ includes the dimensions of simplicity,
strength and fit. On Lewis’s view, whether something is a law of
nature is a fact about the world itself—about the arrangement of
the mosaic. The idea can be extended to chance. We can broaden
the range of law-like generalizations to include ones that describe
statistical patterns. A candidate probabilistic law will earn its
keep in the same way that strict laws do: by being part of the Best
System. Such laws would be objective; they would reflect features
of the world itself.

Lewis rejects the idea that there can be chances in a determi-
nistic world, but not everyone agrees. Roman Frigg and Carl
Hoefer (Frigg and Hoefer, 2010; Hoefer, 2007) argue that objective
chances are real even if fundamental laws are deterministic. Our
interest is not in the question of whether there can be objective
probabilities in a deterministic world, but in the general character
of Frigg and Hoefer’s scheme, which is closely related to Lewis’s.

The phrase ‘‘objective chance’’ suggests a dispositional or
propensity account, but Frigg and Hoefer are no friends of hidden
propensities. Their point is that when we describe things at the
level of lotteries, coin tosses and so on, the world exhibits stable
statistical patterns. Chance as described by Frigg and Hoefer is
called ‘‘Humean Objective Chance’’ or HOC, and they use the
metaphor of ‘‘Lewis’s Demon’’ to convey the idea. We imagine a
being who knows all the details of the Humean Mosaic of events
(HM):

The demon now formulates all possible systems of probability
rules concerning events in HMy The rules in these systems
assign numbers to events. These numbers have to satisfy the
axioms of probabilityy but nothing over and above this is
required at this stage. Then the demon is asked to choose the
best among these systems, where the best system is the one
that strikes the best balance between simplicity, strength and
fit. The probability rules of the system that comes out of this
competition as the best system then, by definition, become
‘chance rules’y [T]he chances for certain types of events to
occury simply are what probabilistic laws of the best system
say they are. (Frigg and Hoefer, 2010)

These chances are not epistemic. If we knew the mosaic whole
and could juggle the details with godlike ease, we would have no
use for probability—objective or subjective. But the patterns, if
they exist, are part of the world. One way to see the point is to
pretend for a moment that frequency is all that matters: to say
that among situations fitting a certain macroscopic description,
30% exhibit feature F is to say something about events in the
world itself and not our knowledge of it.

Of course, frequency is not all there is to the story, though
Frigg and Hoefer describe their view as ‘‘a (major) sophistication
of finite frequentism.’’ We can get a sense of what the view means
for quantum probability by extending Frigg and Hoefer’s meta-
phor. Suppose the demon discovers that the pattern in the mosaic
provides not just excellent confirmation for quantum theory, but
better than for any rival theory. For this to be true, the actual
frequencies could not depart wildly and systematically from the
ones we expect based on quantum mechanics. If they did,
quantum theory would fall down badly on the dimension of fit.
If quantum mechanics is the best fit for the pattern in the mosaic,
then quantum probabilities correspond straightforwardly to
objective chances: to HOCs.

This is not the only way one could reasonably think about
objective probability in quantum mechanics, but it is worthy of
being taken seriously not least because of its minimalism;
objectivism need not carry large metaphysical commitments.
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That said, Fuchs might object to the idea of the Humean mosaic. It
would amount to a Block Universe, and Fuchs is profoundly
skeptical of that notion.1 One might try to make do with truth-
values of proposition about the future rather than with the
concrete events that are supposed to make up the mosaic, though
Fuchs might reasonably deny that propositions about the inde-
terminate future have truth-values. Fortunately, we need not
enter this debate. Whether or not the idea of the Humean Mosaic
is to one’s taste, a view broadly in the spirit of Frigg, Hoefer and
Lewis provides an apparently coherent account of objective
probability. (The term ‘‘probability’’ carries less baggage than
‘‘chance’’ and is the one we’ll use henceforth.) Thus, it undercuts
the ‘‘category mistake’’ charge. Further, the story appears to hold
up when we extend it to cover quantum mechanics. In any case,
CFS’s central argument is about zero-one probabilities. That
means we can get by with a weaker claim. All we need are some
plausible, non-tautological truths about the future, gappy though
the set of such truths may be. We can get by with truths
associated with exceptionless lawful regularities—laws, if all such
regularities deserve that term. We will return to this point later.

3. Objective preparations

On the face of it, arguing that quantum probability one cannot
be objective seems like a hard row to hoe. After all, we seem to be
able to prepare states; indeed, we seem to do it all the time. And
many of the states we prepare seem to provide us with unit
probabilities. Just think of preparing a beam of photons all
polarized in some particular direction. CFS dub the view that this
can be done the ‘‘objective preparations’’ view. If it is correct, we
can give objective and, indeed, classical instructions for preparing
quantum states. CFS argue that this cannot be so and that
subjective probabilities are deeply implicated in state
preparation.

Consider a deterministic state-preparation device designed to
prepare horizontally polarized photons. Informally, think of it as
measuring the polarization of an incoming photon, leaving the
state alone if it is horizontally polarized, and flipping it otherwise.
CFS borrow a circuit diagram from David Mermin (2006) that
schematizes a device of this sort (Fig. 1).

We apply a controlled-NOT gate to an incoming photon and an
apparatus qubit, producing the entangled state a9004 +b9114 . If
a measurement finds the photon in the horizontal path (if a¼0), it
is left alone, producing an outgoing state 904 . If the photon
shows up in the vertical path (if a¼1), an X-gate rotates the
polarization from vertical to horizontal, changing the outgoing
state from 914 to 904 . Thus, the outgoing state is 904regardless
of the incoming state.

CFS claim that quantum states are subjective probability
distributions, and that two agents can assign different states
without either being wrong. However, the device just described
produces the same output no matter what the input. Why is not it
just a fact that it prepares a particular state? The reason,
according to CFS, is that even if there is no need for a judgment
about the state of the incoming system, the state of the device
matters. ‘‘Any attempt to give a complete specification of the
preparation device in terms of classical facts (i.e., observations or
measurements of the device and its method of operating) and
thus to derive the quantum operation from the classical facts
alone comes up against the device’s quantum mechanical nature’’

(p. 264). To see how, consider an alternative circuit diagram
(Fig. 2).

The procedure is the same: entangle the incoming photon with
the apparatus by a CNOT gate, measure the whereabouts of the
photon, and use the same instructions as above to determine
whether to rotate the polarization. Because the apparatus state is
914 instead of 904 , we get a different entangled state after the
first CNOT operation, and hence a different state at the end of the
preparation procedure.2 The judgment about which state we
prepared apparently calls for a prior judgment about the quantum
state of the apparatus. CFS take this to show that in spite of
the earlier informal description, we cannot make do with the
‘‘factual’’ classical description.

This argument overreaches. It is true: when we say that an
apparatus prepares a specific quantum state, giving a quantum
mechanical version of the story calls for assigning a state to the
apparatus. We can also agree: non-quantum descriptions of the
apparatus do not entail conclusions about the quantum state;
literally deriving the quantum description of the apparatus from
the classical facts alone is impossible for the banal reason that the
non-quantum description does not include the relevant vocabu-
lary. But the fact that we cannot give a quantum description of the
apparatus without specifying a quantum state does not show that
there is no fact about the polarization of the exiting photons.
Indeed, CFS’s example is a bit puzzling. We have known how to
make polarized light for a long time,3 and we have understood a
good deal about its properties at least since 1807. Of course there
was well over a century between Malus’s discovery of the laws of
polarization and the creation of individual photons with specified
polarization. However, what modern quantum optics does could
not be done without what people knew how to do a century or
more before quantum theory was invented. It’s simply not
plausible that there is no objective preparation procedure for
polarization. But what about CFS’s analysis?

Go back to Fig.1 and ask what it is doing. It is not providing a
conjectural account of some phenomenon where the apparatus
state is part of what is at issue. It is a quantum mechanical model
of one way to make horizontally polarized light. We can tell
technicians who do not know quantum mechanics how to set up
devices to do this. Of course any experimenter or lab technician
will need to make various judgments, whether quantum claims
are at issue or not. But the fact that we make judgments has
nothing to do with whether what’s judged is a matter of fact.

Fig. 1. Preparation device 1.

Fig. 2. Preparation device 2.

1 Fuch’s collection of correspondence between 2001 and 2007 is somewhat
fancifully titled My Struggles With the Block Universe. www.perimeterinstitute.ca/
personal/cfuchs/nSamizdat-2.pdf.

2 As CFS point out, if we follow the first CNOT operation with a second one,
letting the apparatus qubit be the control bit for the second CNOT, we do not even
need a measurement.

3 It has been speculated that the Vikings used a ‘‘sunstone’’—a polarizing
calcite crystal—as a navigational aid. See Hegedüs, Åkesson, & Wehner (2007).
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We can construct a quantum mechanical model of what the
device described above does. The model uses notions such as
‘‘quantum state’’ that the technician may not know. The theore-
tical description of the device goes beyond the laboratory-level
description, but this is hardly unique to quantum theory. We
‘‘come up against the device’s quantum mechanical nature’’
simply because we need to use the language of quantum theory
if we want to tell a quantum mechanical story. Given the work-
ings of that language, this means inserting an apparatus state
vector into the description. But we do not start with a subjective
quantum probability distribution. Rather, we judge that we have
set up a suitable apparatus for preparing horizontally polarized
light. We base this judgment on what we know about the
behavior of the things we have used to set up the apparatus.
That constrains the sorts of quantum mechanical models we can
use to describe the preparation procedure. When we assign the
(highly schematic) state vector 904 to the apparatus, we encode
what we believe on independent grounds: the apparatus prepares
horizontally rather that vertically polarized light. Once again, this
calls for judgments and judgments can be wrong. But they can
also be right, and the fact that we are fallible does not rule out the
possibility of objective preparations.

Once the quantum mechanical enterprise is underway, we can
bootstrap ourselves into preparation procedures far from 19th-
century scientific common sense. But we do not enter the
quantum conceptual world by teleportation or barrier penetra-
tion. Unless we could make sound judgments that do not
presuppose quantum theory, we would have no idea how to do
laboratory quantum mechanics.

So far, CFS have not shown any incoherence in the objective
preparations view, but they have an ace up their sleeves. Their
main argument is that treating quantum probability one as
objective leads to a choice between contradiction and non-
locality. Showing that might well tip the balance in favor of
subjective Bayesianism. But does their argument work?

4. Probability one and correlations

At this point, CFS appeal to my 1983 paper. I argued there that
if we combine Kochen and Specker’s well-known result (1967)
with appropriate correlations and a locality requirement, we can
show that locally well-defined classical values are impossible. CFS
streamline the argument and take it in a different direction; we’ll
streamline what they say in turn.

4.1. The argument

Kochen and Specker’s original proof was based on a 117-vector
construction. Peres (1993) came up with a version based on 33
vectors, which generate 40 orthogonal triples for a total of 57
vectors. For concreteness, think of each vector as corresponding to
spin-zero in a particular direction for a spin-one particle. Suppose
we are given such a set of triples; call it a Peres set and denote
it by

f9akm4g ð1Þ

Here k picks out the triple; 1rkr40. The index m picks out
elements of a triple; 1rmr3. Since triples overlap, there will be
cases where 9akm4¼9ajn4 even though the indices differ. The
set {9akm4} has a well-known combinatoric property: there is no
way to select exactly one vector from each triple. It is, as we say,
uncolorable; we cannot assign a spin value of 0 to exactly one out
of every triple of orthogonal directions represented in the Peres
set. Thus, value assignments are possible only if they are
contextual—only if assigning spin-0 in a given direction does

not depend on which other two orthogonal directions we
consider at the same time.

Now consider a pair of spin-one systems in the state

C¼ ð1=O3Þð9004þ9114þ9224 Þ ð2Þ

where {904 ,914 ,924} is an orthonormal basis. This sets up a
one-one correspondence between vectors in the two Hilbert
spaces. Formally, if

9a4 ¼ c1904þc2914þc3924 ð3Þ

is a member of the Hilbert space of the left-hand particle, then
9a4 is paired with

9b4 ¼ c%1904þc%2914þc%324 ð4Þ

In our notation, a triple {9ak14 ,9ak24 ,9ak34} – corresponding
to a measurement Ak – will be paired with {9bk14 ,9bk24 ,9bk34},
corresponding to a measurement Bk where the a’s are elements of
Alice’s Hilbert space and the b’s are elements of Bob’s. Call
systems with these correlations Peres pairs. Suppose we believe
that measurement reveals pre-existing values, and that these
values respect the conditional certainties of C. In particular, if an
Alice-Bob outcome pair has probability 0 in C, then it does not
occur. The pre-existing values assumption together with the
structure of the Peres set now leads to a contradiction. If 9bk24
is the same vector as 9bj34 , for example, the inner product of C
with 9ak14&9bj34 is 0 just as surely as the inner product of C
with 9ak14&9bk24 is. Assigning akm to Alice’s system requires
assigning bjn to Bob’s system whenever 9bjn4¼9bkm4 . This rules
out consistent local value assignments for Bob’s qutrit. By
symmetry, the same holds for Alice’s system. Whatever is going
on in the experiments, it is not a matter of measurement turning
up pre-existing, locally well-defined values.

CFS believe this rules out objective probabilities and objective
state preparations. They write:

Let 9c4 be a state prepared by a preparation device, and
consider the observable O¼9c4oc9, which has eigenvalues
0 and 1. If the state is 9c4 , a measurement of O will give the
outcome 1 with certainty. In the objective preparations view,
this certainty is implied by the facts about the experimental
set-up, independently of any observer’s information or
beliefsy Whatever it is that guarantees the outcome is
effectively an objective property (Caves et al., 2002, p. 267)

Now apply this to a Peres pair. Suppose Alice and Bob are space-
like separated. Alice makes a measurement of Ak and gets the
result akm. Adapting CFS’s notation to ours, they write

The resulting state of the particle at B is 9bkm4 . It follows that
a measurement of the observable

Bkm ¼ 9bkm4obkm9 ð5Þ

on the particle at B gives the outcome 1 with certainty and that a
measurement of

Bkn ¼ 9bkn4obkn9 for nam ð6Þ

gives the outcome 0 with certainty. (ibid p. 269)
However, CFS assume a locality condition:

ya system property at point x in space–time cannot depend
on events outside the light cone centered at x. (ibid p. 268)

And so, it seems, treating probability one as objective calls for
attributing an objective property to a distant system—a property
that was not brought into being by the local measurement. Since
the same story holds for any of the Peres triples, the consequence
seems to be that we have a painful choice: agree that what we do
‘‘here’’ affects the spacelike elsewhere, or fall into inconsistency.
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5. Off to see the wizard

Let us slow down. In fact, let us leave quantum theory aside for
the time being. Here is a tale that does not happen to be true, but
is a perfectly good story in spite of that. The example at its core is
based on (and isomorphic to) one developed by Liang, Spekkens,
and Wiseman (in preparation), who in turn were inspired by a
paper by Ernst Specker (1960).

A certain wizard makes wondrous pairs of boxes. Each box has
three drawers in a row, labeled 1–3. If you open a drawer, a
brilliant light shines from deep inside—either red or green.
However, once a drawer is opened, the other two lock shut.
Further experimentation turns up something else. Whenever
same-numbered drawers are opened on a pair of boxes, the light
is the same color: both red or both green. But when different
drawers are opened, the light differs too: one drawer red, the
other green, though in no predictable pattern. Yet more experi-
mentation reveals that this correlation does not depend on
distance, is not disrupted by any sort of barrier, involves no
detectable matter/energy transmission and works at space-like
separation. Attempts to use the boxes to send messages fail,
however. Outcomes are uncontrollable, and what color one
observer sees bears no discernible relationship to which drawer
the other observer decides to open.

Suppose the wizard teaches us to make the boxes ourselves.
The method does not call for hidden wires or signaling devices,
but it does require special materials, handled in special ways.
Why it works is obscure, but that it works is clear. We experiment
in countless circumstances, and the boxes perform flawlessly. We
conclude that the regularities are lawful and support counter-
factuals: given any such pair of boxes, if the same drawer is/were
opened on each, the color of the light is/would be the same, and if
different drawers are/were opened, the color of the light is/would
be different.

So far we have not mentioned probability because there is a prior
point: the story is coherent. Correlations like these could be matters
of fact and could be as lawful as any law of nature. But now suppose
that Alice and Bob share a pair of such boxes. Alice opens drawer #1
and a glorious green light shines forth. Bob is far away; Alice knows
nothing of what he has done. What can she say?

On the one hand, she can make three obvious inferences. She
can say that if Bob actually did open drawer #1, the light from the
drawer was green. If he actually opened drawer #2 the light was
red, and likewise for drawer #3. However, these conditional
statements are not counterfactuals, and as will become clear,
the difference is important. What she cannot do is infer what
would have happened if Bob had opened any particular drawer.
She cannot say ‘‘Were he to have opened drawer #1, he would
have seen green light, but were he to have opened either of the
other drawers, the light would have been red.’’ Put in the terms
that CFS favor, she cannot infer the existence of pre-existing
‘‘instruction sets’’, localized in each box and dictating what color
the light will be when a drawer is opened. For suppose the
instruction sets exist. The instructions for Alice’s drawer #1
guarantee that it will produce green light. If the correlations hold
and are explained by local instruction sets, this means that the
instructions for Bob’s box must be Green for Drawer #1 and Red
for the other two drawers. But now we get a contradiction. If
Bob’s drawer #2 is set to produce Red light, then the correlations
demand that the instructions for Alice’s Drawer #2 must also be
for Red. However, if Bob’s Drawer #3 is set to produce Red light,
then the correlations require that Alice’s Drawer #2 must be set
to produce Green (Fig. 3).

Obviously we would have gotten a similar contradiction no
matter which drawer we began with and no matter whether we
assumed that its instructions were for Green or for Red.

The fact that the correlations cannot be produced by local
instruction sets does not show that the modest inferences that
Alice can make are incoherent. Alice does not infer that if Bob
were to open Drawer #2, he would find Red light. What she infers
is the weaker indicative conditional: if Bob actually did open
Drawer #2, then the light from the drawer was red. What she can
infer amounts, in effect, to this: either Bob did not open drawer
#2 (in which case Alice can say no more), or else he did and found
red light. The argument shows that if we try to factor the
correlations, treating them as nothing more than disjunctions of
conjunctions of local instructions, we get a contradiction. But
nothing says that correlations have to factor. Moreover, the fact
that the correlations do not factor does not show that they rest on
spooky causal connections.

Many readers will notice that we have described a species of
what are sometimes called ‘‘nonlocal boxes.’’4 The term is
potentially misleading; while it’s true that the behavior of the
boxes cannot be the result of local instruction sets, it does not
follow that what happens to one box influences the other. Since
our story is made up, there is nothing to stop us from saying that
the correlations just are. Claims of causal connection do not
follow from correlations—even correlations as unusual as these.
To give the matter a Humean turn, there’s nothing inconsistent in
assuming that the correlations are just basic patterns in the
mosaic, supervening on nothing more than themselves. The point
is not to insist on Humeanism; rather it is that the Humean
picture serves as a consistency check. It represents one way of
describing a world where the correlations hold but what’s done to
one box does not bring about what happens to the other.5 And so
we will simply stipulate: in the world of our story, events at one
box do not help bring about events at the other. Things are local in
the sense of ‘‘local’’ that CFS want to preserve: causally local.

The idea that we could look at correlations this way is not new.
Arthur Fine, for instance, makes the case in several papers, not
least ‘‘Correlations and Physical Locality,’’ in which he introduced
the idea of random devices in harmony. Here’s Fine’s description:

The suggestion of random devices in harmony amounts to
suggesting that there is a conservation law, established when
the systems are together at the source, and which maintains
some constant functional relation between the outcomes,
regardless of the particular outcomes. It is, to be sure, an
indeterministic conservation law. Nevertheless, it is like other
conservation laws, in that it functions over large distances and
without requiring the exchange of any causal signals. (Fine,
1980, p. 547)

Fig. 3. Box contradiction.

4 Recent interest in nonlocal boxes stems from Sandu Popescu and Daniel
Rohrlich (Popescu and Rohrlich, 1994). The term ‘‘nonlocal box’’ appears to have
been first introduced in Barrett, Linden, Massar, Pironio, & Popescu (2005).

5 The point is also not that there is no room for a concept of causation in a
Humean scheme. But not every correlation counts as cause and effect in a Humean
world. Bear in mind, for example, that the correlations are time-independent –
unlike paradigm causal connections – and since they do not allow signaling, they
cannot be exploited to send information. They also do not care about contiguity.

A. Stairs / Studies in History and Philosophy of Modern Physics ] (]]]]) ]]]–]]] 5

Please cite this article as: Stairs, A. A loose and separate certainty: Caves, Fuchs and Schack on quantum probability one. Studies in
History and Philosophy of Modern Physics (2011), doi:10.1016/j.shpsb.2011.02.001

dx.doi.org/10.1016/j.shpsb.2011.02.001


The picture is of correlations that simply are—that are irreducible
features of the way events proceed. In the case at hand, this gives
us conditional certainties, but of a loose and separate sort.

5.1. Probability

What can we say about probability? Since unit probabilities
are the ones that matter most for our purposes, begin with those.
In the world of the story, whenever the same drawer is opened on
each member of a pair of boxes, the color of the light from the
drawers is the same: either both green or both red. This supports
counterfactuals: if Alice were to open drawer #2 on her box and
Bob were to open drawer #2 on his, then either both would find
green light or both would find red. I suggest that these lawful
regularities play the same role that objective probability does in
the Principal Principle: a rational person who knew them would
set her credences accordingly: she would accept (upper-case for
results, lower-case for choice of drawer)

Crð½AGBG or ARBR(9aibiÞ ¼ 1 ð7Þ

It is difficult to see why we should resist also claiming

pð½AGBG or ARBR(9aibiÞ ¼ 1 ð8Þ

where this probability is the objective correlate of the credence.
We can simply say that this probability supervenes on the lawful
fact that same drawer goes with same-colored light.6

Of course, the full correlational story has another piece: it is
not just that same drawer yields same colored light; it is also
that different drawer yields different colored light. However
these two lawful regularities can happily coexist. Similarly the
credences and probabilities noted above can happily coexist with

Crð½AGBR or ARBG(9aibjÞ ¼ 1ðia jÞ ð9Þ

pð½AGBR or ARBG(9aibjÞ ¼ 1ðia jÞ ð10Þ

The difference in what is conditioned on ensures consistency.
What would CFS say? The only salient differences between our

imaginary case and their paired qutrit case are that (a) the
combinatorics are simpler in the imaginary case, and (b) the
correlations are superquantum. As Liang, Spekkens and Wiseman
point out, quantum systems can approximate our wizard’s boxes
more closely than classical systems with shared randomness can,
but the quantum approximation will still fall short of what the
boxes can manage. If CFS’s argument works for the qutrit case, it
should certainly work here. If it does, the reasoning would need to
go something like this. Suppose Alice opens Drawer #1 and finds
green light. Mirroring CFS’s language, we would say

It follows that opening drawer #1 on Bob’s box has the
outcome GREEN with certainty, and opening drawer #2 or
drawer #3 has the outcome RED with certainty.

Now we add the locality condition:

A system property of a box in space–time region x cannot
depend on events outside the light cone centered at x.

The phrase ‘‘system property’’ might better be replaced with
‘‘intrinsic property.’’ In any case, CFS would say that if certainty
is objective probability one, then the certainty about Bob’s box
amounts to Bob’s box possessing an intrinsic property– one that
guarantees what would happen if Bob were to open the relevant

drawer. But if that’s so, we end up with instruction sets and the
contradiction we described above.

The problem with this argument should be clear by now. It’s
consistent to say that the correlations are objective, and that they
ground objective unit conditional probabilities. But when Alice
opens drawer #1 and sees the green light, she does not infer that
drawer #1 on Bob’s box has some property that guarantees green
light. She infers something much weaker: if Bob really did open
drawer #1, he found green light. This is what she can say ‘‘with
certainty.’’ If he did not open drawer #1, she makes no inference
about what would have happened if he had, let alone to some
intrinsic property. Indeed, Alice will allow that had Bob opened
drawer #1, both he and she might have found red light. Repeat
that: Alice makes no counterfactual claims about her own result
in this non-actual case—let alone about Bob’s.

The objective probability that goes with Alice’s credence is

pðBG9a1b1AGÞ ¼ 1 ð11Þ

Alice’s credence seems to be of this form

CrðBG9b1Þ ð12Þ

This is harmless if properly understood. It is not a commitment
to a counterfactual, nor to an instruction set. It is better thought of
as the abbreviated version of

Cra1AGðBG9b1Þ ¼ 1 ð13Þ

where the measure ‘‘Cra1AG’’ represents conditionalizing on a1 and
AG.

5.2. Certainty and the world

There is no contradiction in sight. But if there were, subjective
probability would not help. Subjective certainty about something
that would be contradictory if it were just plain true is still
incoherent. Put another way: ask the subjectivist what she is
subjectively certain of. If the answer does not produce incoher-
ence, then the objectivist will be free to say: ‘‘That is what I claim
has an objective probability of one.’’

There is a related point that bears on a remark CFS make
toward the end of the paper. We imagine a scientist who makes
repeated z-spin measurements on a qubit. Theory plus consider-
able experience convince him that he will always find spin up. CFS
consider two hypothetical questions: should the scientist be
surprised? And must there be something in nature, independent
of his belief that accounts for the repeated outcome?

We can agree with CFS that the first question should be
answered ‘‘No.’’ If all of the scientist’s prior experience leads
him to be certain about these outcomes, it would be surprising if
he were surprised. But what CFS say about the second question is
curious. Since the scientist has thoroughly consulted experience,
prior beliefs, theory, previous outcomesy in coming to his
certainty, CFS ask:

Why would he want any further explanation? What could be
added to his belief of certainty? He has consulted the world in
every way he can to reach this belief; the world offers no
further stamp of approval for his belief beyond all the factors
that he has already considered. (p. 270)

The reply seems to blur two issues. The scientist is certainly
reasonable in his belief, and for just the reason CFS give: he has
consulted the world in every way he could. But there is something
obvious that the world can add by way of a stamp of approval:
what he believes can be true. Indeed, that is normally the point of
beliefs: to get things right about the world. If I am certain of
something, then what I’m certain of is that the world is a certain
way; the direction of fit is from belief to world. What the scientist

6 There is a general principle here which, as a first approximation, we can
state this way: if 8x(Fx-Gx) is a lawful, counterfactual-supporting relation among
events, then in any particular case c, p(Gc9Fc)¼1. Offhand it is not clear what any
exceptions would be like.
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is certain of is that in cases like this, the world behaves in a
certain lawful way.

CFS are right, of course, when they insist that there need not be
some feature of the world that mirrors degree of a belief. My
subjective probability that Marcus is in the next room may be
90%. Depending on the evidence and my prior beliefs, that degree
of confidence may be reasonable or it may not, but there need be
no larger pattern at issue. In cases like this, there is no need to
invoke objective probability.

In other cases, however, talk of objective probabilities is
entirely natural. That does not undermine the point of subjective
probabilities, but it gives them a particular way of getting their
grip. The Principal Principle does not say that all sensible
subjective probabilities must mirror objective probabilities; the
claim is much more modest. It is that when there are objective
probabilities, those who know them and are rational will set their
degrees of belief accordingly. For coins made in a certain way and
tossed in a certain way, a rational person’s credence will give
equal weight to heads and tails. That credence, the objectivist will
say, mirrors something about the world.

Mirrors what? There’s more than one possible answer, but we
can illustrate a minimalist one by reverting to the quantum case.
Suppose we accept quantum theory. Then we believe that if we
could see the events of the world in detail, they would confirm
quantum theory. This does not mean that every experiment
would confirm quantum theory, nor that our expectations would
never be disappointed. But it does mean that overall, the way
events proceed would be an excellent fit for the theory. We do not
need to claim that this is all quantum theory says. However, for
an objectivism broadly in the mold of Lewis-style accounts, all we
need to claim is that it says at least this much. That is still a claim
about the world.

6. Quantum states

Our imaginary case was theory-free. It assumed that there is
no special set of terms or concepts required to tell someone how
to make the boxes, and so we have the analog of objective state
preparation. The total ‘‘theory’’ of the boxes consists of three
claims: that the strict correlations are as we have described them,
that the correlations are non-signaling, and that the boxes are
causally local. For all this says, there could be a more detailed
theory, and the boxes could be a special case of something more
general. The point will remain the same: the correlations do not
force the objectivist into a choice between consistency and
locality. The objectivist can say that what happens locally is
undetermined, that outcomes are correlated as described, and
that the correlations provide for objective probabilities. When we
add the probabilistic version of the no-signaling stipulation, all
the probabilities are determined, with marginals of 1/2 for the
results of opening the various drawers.

How might quantum theory be different? One obvious differ-
ence is that talk of quantum states is inseparable from quantum
mechanics. The story of the boxes is entirely innocent of such
notions as ‘‘wizard-box states.’’ But while this is true, the only
way it could create problems for the objectivist is if objectivism
about quantum probability requires some particular problematic
view of quantum states. In fact, it does not. It does not even
require that all states assignments be understood in the
same way.

It is certainly true that well-behaved sets of quantum prob-
abilities go with quantum states in at least this sense: we can find
at least one density operator that yields the probabilities via the
Born rule. Depending on the set of probabilities, it may be that the
density operator that captures them is uniquely determined. But

even in this case, objectivists do not have to agree that there is a
uniquely correct state assignment. Not all state assignments serve
the same purpose.

To see this, consider the singlet state. Alice and Bob share a
singlet pair. Alice measures z-spin at x and finds +1. She is
interested in what Bob may or may not have been up to at n,
outside her light cone: (Fig. 4).

What should Alice say if she accepts indeterminism, causal
locality and objectivism?

By now it should be clear what she would not say. She would
not say that if Bob were to measure z-spin, he would find –1.
Instead, she will say that if Bob did measure z-spin, he did find –1.
But if he did not, she will say nothing about what he would have
found if he had.

Alice will also accept a unit conditional probability: the
probability that Bob finds –1, conditional on his measuring
z-spin, is one. She can represent the information that this
probability carries with it by assigning the state 9z–4 to Bob’s
qubit. But that does not call for saying that 9z–4 is the only state
assignment anyone could appropriately make. In fact, suppose
that Bob did not measure z-spin at all, but measured spin in
direction d, skew to z, and got the result –1. Bob will assign the
state 9d–4 . Do he and Alice disagree?

Not at all. They are making use of different information. By
assigning the state 9z–4 , Alice is not attributing an intrinsic
property to Bob’s qubit. The assignment serves a bookkeeping
function. She uses 9z–4 to locate this case in the proper set: cases
where if Bob actually did measure z-spin, the result was -1. This
state assignment is not associated with a particular point on the
trajectory of Bob’s qubit. The correlations are indifferent to
whether Bob’s measurement is at p, at n or at f. Alice’s state
assignment does, of course, go with a subjective probability—a
willingness to bet conditionally, if you like. Should she find out
that Bob actually measured z-spin, she will be certain that the
result was -1. But Alice, objectivist that she is, will add that this
credence reflects something about the world: the objective

Fig. 4. Space–time diagram.
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probability that Bob found result )1, conditional on Alice and
Bob both measuring z-spin and Alice getting result +1, is one. This
objective probability, in turn, is a reflection of a lawful, counter-
factual-supporting generalization.

Of course, nothing in this state assignment requires that Bob
actually did measure z-spin. If he measured spin in some other
direction d, Alice will agree that the appropriate state for Bob to
assign is 9d+4 or 9d–4 , depending on the result. In fact, she will
agree that if she only knew what Bob knows, she would use his
state assignment; he’s the one who actually interacted with his
qubit. And though probabilities other than zero and one are not
our main focus, we can easily extrapolate to what Alice would
say. Given the result of her z-spin measurement, the probability
that Bob got the result +1, conditional on his having measured
d-spin, is sin2(yzd), where yzd is half of the angle between z and d.
For )1, of course, it is cos2(yzd).

Alice does, indeed, have degrees of belief. As an objectivist, she
picks them because she believes that if quantum theory is correct,
the pattern of events in the world has a certain character. Her
credences reflect her view of what she takes the objective
probabilities to be, and she and Bob can both be right about all
this. Indeed, if quantum theory is correct, they both are.

6.1. States and counterfactuals

Is this all there is to state assignments? The objectivist does
not have to say yes. Some state assignments support counter-
factuals, and some do not. An obvious example of one that does is
preparing a qubit with spin +1 in the z direction. (Here we
assume, pace CFS, that objective state preparations are possible.)
In light of our earlier discussion, we will assume that we really
can prepare states such as 9z+4 . But when we do, we can make
counterfactual claims: were this qubit measured again for spin in
direction z, the result would be +1.

We routinely make such counterfactual assumptions about
quantum processes. We assume that certain micro-switches would
behave in certain ways if we used them appropriately; we assume
that a medical laser produces light that will reliably behave as
needed, and that were we to use the device, it would do what we
intend it to do. Readers can no doubt provide their own examples.
Cases of this sort do not have to do with tendentious assumptions
about systems outside our lightcones; they are quotidian beliefs
about gadgetry that we have come to take for granted. Of course,
when the computer user or the laser surgeon makes such counter-
factual assumptions, she probably would not couch them in the
language of quantum states, but this goes with the points made
earlier. We know how to do certain things. Some of them we knew
how to do before quantum theory were invented, and we re-
described them in quantum terms. Others we might well never
have learned but for quantum theory. But the counterfactuals and
empirical generalizations are more resilient than the theory we use
to describe them. If quantum theory is correct, we know how to
describe the technology in its terms. The quantum descriptions
generate appropriate probabilities—including unit probabilities. If
quantum theory is in some way flawed, capturing the probabilities
for these now-mundane cases will be a constraint on the accept-
ability of potential successor theories.

As for interpreting quantum theory itself, spelling out exactly
what counts as a state preparation and what does not – and when
counterfactuals can be asserted and when they cannot – is
beyond the scope of a reply to CFS. It seems plausible that
whether we attribute counterfactuals has to do with what we
actually interact with, but that vague remark is hardly an account.
For now, we can simply say: not all state assignments go with
counterfactuals, but some do. When they do, however, it seems

likely that the counterfactual comes first and the state assignment
reflects it. Whatever the details, the tendency to think that all
state assignments serve the same purpose gets in the way of clear
thinking about quantum states.

7. Concluding remarks

Here is the main point in brief: supposing quantum theory is
correct, there are counterfactual-supporting lawful generaliza-
tions such as if a pair of qubits prepared in the singlet state are
both subjected to spin measurements in direction d, then the
results will sum to zero. Generalizations like this ground condi-
tional probabilities of one. But they can hold without instruction
sets that fix individual outcomes, and without causal signals
passing amidst the pair. This means that when Alice makes her
probability-one claim about Bob’s qubit, she does not need to
infer pre-existing properties nor attribute counterfactuals. On the
contrary, if she wants to square her objectivism with causal
locality, those are exactly the things she should not do. Being an
objectivist calls for less than CFS assume.

That said, I would not suggest for a moment that their argument
was simply foolish. On the contrary: the temptation to think that
EPR-type cases sanction counterfactual inferences is remarkably
hard to resist. My own thinking about exactly these sorts of cases
was turned around by having to reflect on CFS’s argument. And
even though we still do not agree about quantum probability, I
believe that the kind of view gestured at here should be less
uncongenial to them than the one they oppose in their paper.

There is one issue as yet unspoken: the varieties of objectivism
assumed here takes for granted something notoriously proble-
matic: there are such things as measurements, and they have
definite results. More generally, there are things that happen in
the quantum world, in spite of the fact that the standard
dynamics makes this seem mysterious. I’m happy to agree with
Fuchs that the quantum world:

..is sensitive to our touch. It has a kind of ‘‘Zing!’’ that makes it
fly off in ways that were not imaginable classically.’’ (Fuchs,
2002, pp. 8–9)

How that works is not something I can say. But if there are
patterns in the events that betoken the ‘‘Zing!’’ then the objecti-
vist may not need much more.
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