
From Blocks to Text and Back: Programming Patterns in a
Dual-modality Environment

David Weintrop
University of Chicago

UChicago STEM Education
Chicago, IL, USA 60637

dweintrop@uchicago.edu

Nathan Holbert
Teacher’s College, Columbia University

Department of Mathematics, Science, and Technology
New York City, NY, USA 10027
holbert@tc.columbia.edu

ABSTRACT
Blocks-based, graphical programming environments are
increasingly becoming the way that novices are being introduced
to the practice of programming and the field of computer science
more broadly. An open question surrounding the use of such tools
is how well they prepare learners for using more conventional
text-based programming languages. In an effort to address this
transition, new programming environments are providing support
for both blocks-based and text-based programming. In this paper,
we present findings from a study investigating how learners use a
dual-modality environment where they can choose to work in
either a blocks-based or text-based interface, moving between
them as they choose. Our analysis investigates what modality
learners choose to work in, and if and why they move from one
representation to the other within a single project. We conclude
with a discussion of design implications and future directions for
this work. This work contributes to our understanding of the
affordances of blocks-based programming environments and
advances our knowledge on how best to utilize them.

CCS Concepts
Human-centered computing➝Visualization • Social and
professional topics➝Computer science education

General Terms
Design, Human Factors, Languages

Keywords
Computer Science Education; Blocks-based Programming

1. INTRODUCTION
The ability to program is becoming an increasingly valuable skill
in our highly technological world. In response to the growing
interest in learning to program, many introductory programming
tools are being designed to be ‘low-threshold’—meaning they are
intuitive, welcoming, and appeal to diverse audiences. One such
approach that has become widely adopted in the design of
introductory tools is blocks-based programming (Figure 1), which

provides syntactic information through the visual shape of
commands and allows users to author programs by dragging-and-
dropping block-shaped commands together. As more, and
younger, learners are introduced to programming, the blocks-
based approach is becoming the de facto standard for introductory
programming environments and for early exposure to computer
science (CS) more broadly.

Despite widespread use, open questions remain about the blocks-
based modality and its fit in conventional CS education. More
specifically, it is unclear how well such tools prepare students for
future CS learning opportunities or how best to transition learners
from blocks-based introductory tools to more conventional text-
based languages [19]. One proposed solution involves the creation
of dual-modality interfaces that allow learners to seamlessly shift
back-and-forth between blocks-based and textual representations
[3, 7, 12, 16]. In addition to allowing the user to decide what
modality to work in, such tools also provide an opportunity for
learners to see each representation of code “side-by-side,” which
can highlight structural similarities as well as syntactic differences
[22]. While recent work has offered insight into perceived
supports offered by blocks-based environments, and in the ways
learners transition from blocks to text, less is known about the
particular conceptual resources mobilized by each representation.
In other words, when novices have a choice between blocks and
text, which modality do they choose? Why? And how does this
process change as experience grows?

In this paper, we use Pencil Code [3], a programming
environment that allows learners to switch between blocks-based
and text-based representations of code, to investigate these
questions. The paper begins with a review of blocks-based
programming and its rise in formal educational contexts. We then
present data on the pattern of modality choice in two distinct
populations of novice programmers and provide an analysis
exploring why and when learners move from one modality to the
other. We conclude with a discussion of the implications of these
findings with respect to the use of currently available blocks-
based programming environments as well as the next generation
of “low-threshold” tools. This paper contributes to our knowledge
of how novices make use of blocks-based programming tools and
advances our knowledge of the affordances of the modality.

LogoBlocks Scratch Alice

Figure 1. Three examples of blocks-based programming tools.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.
SIGCSE '17, March 8–11, 2017, Seattle, WA, USA.
Copyright is held by the author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4698-6/17/03…$15.00.
DOI: http://dx.doi.org/10.1145/3017680.3017707

633

2. PRIOR WORK
Blocks-based programming environments are designed to ensure
novice programmers have early successes. These environments
use a programming-command-as-puzzle-piece metaphor,
providing visual cues as to how and where commands can be
used. To author programs in these environments the user drags-
and-drops prefabricated commands onto a canvas, where they
snap together if placed in a valid sequence. Lead by the popularity
of tools like Scratch [21], Alice [6], and Blockly [10], blocks-
based tools are becoming the standard approach for the design of
programming tools for younger learners. Early blocks-based
programming environments were inspired by the Logo language
[18], and sought to provide an accessible way to allow learners to
control the Lego/Logo programmable brick, a pre-cursor to the
Lego Mindstorms kits [4]. Over time, a growing number of
environments and libraries have been developed that incorporate
visual, blocks-based programming techniques. A recent review of
coding environments for children included 19 drag-and-drop tools
among the 24 environments discussed for learners under the age
of eight, and 28 drag-and-drop environments out of the 47 total
reviewed environments [9].
The popularity of blocks-based programming tools has led to their
incorporation into formal CS educational settings. Large scale
curricular efforts, such as Exploring Computer Science [11] and
all five courses currently listed on the AP CS Principles course’s
website [2] are using blocks-based programming environments as
the primary mode of programming instruction. The use of blocks-
based programming tools in formal educational context has seen
mixed results, with some studies reporting successes [1, 7], while
others questioning the suitability of such environments in
preparing learners for future CS learning opportunities [17, 19].
Further, studies exploring learning in each modality suggest
differences with respect to programming comprehension [14, 24],
program generation [20] as well as with perceptions of the power
and authenticity of each modality [23]. Understanding the
affordances of blocks-based versus text-based environments
remains an active area of research, with consensus on how best to
utilize blocks-based tools in formal educational contexts yet to
emerge.
One way forward in the blocks versus text debate is to create
programming environments that support both modalities. For
example, Pencil Code [3], allows learners to choose which
modality they would like to use, including a button learners can
click to convert their textual program to a blocks-based form or
vice-versa (Figure 2). In this way, the choice of which modality to
use is up to the learner. Matsuzawa et al. [16] created a tool that
allowed learners to move between blocks-based and text-based
versions of Java programs and proceeded to teach a semester long
introductory programming course at the university level, tracking
which modality students chose to use. They found that over the
duration of the course, students were more likely to use blocks-
based tools earlier in the year, and saw a steady shift of learners
moving from the graphical, blocks-based interface to the text-
based form of Java. In the work we present below, we replicate
and expand on this work in two directions. First, our study
includes two distinct populations, giving us insight into the
universality of this trend. Second, we investigate novice
programming patterns, specifically focusing on when and why
learners shift modalities to better understand the supports
provided by the different modalities. This second question can
provide insights into the thought process associated with moving
between modalities, further illuminating the affordances of each.

Figure 2. The two interfaces of Pencil Code, the text interface
(top) and the blocks interface (bottom).

3. METHODS
In this paper, we explore when and why learners of varying
experience switch between blocks-based and text-based
modalities in a programming environment that supports both.
Participants were drawn from two populations. One population,
consisting of 13 girls, was recruited as part of a high school class
designed to introduce students to computational thinking [5]. The
girls spent three 100-minute classes working through a series of
Pencil Code activities designed to introduce them to the basics of
computer programming (including concepts like loops and
variables). This condition, which we will refer to as the high
school condition (HSC), consisted of eight high school freshmen,
two 8th grade students, two sophomores, and a single junior. The
school population is 72% African American, 25% Hispanic, and
less that 2% each white and Asian, a distribution that is reflected
in the class. Sixty-seven percent of students in the school are from
low-income families. The three lessons culminated in students
creating an interactive website to promote the class they were
taking. As part of the assignment students authored programs to
draw images on the screen, respond to user inputs, and
programmatically incorporate images from the Internet.

The second population that participated in this study includes four
girls and six boys enrolled in a graduate level course on the design
of educational learning environments (mean age of 29) taught by
one of the authors. Participants in the graduate condition (GC)
completed a brief survey reporting prior programming experience
as well as the Computer Attitude Survey [8] during the first
session of the course. Students in the GC used Pencil Code as part
of a “create a quilt” assignment. In this activity, students broke up
into groups of four with each group member being assigned to
create a program to visually represent themselves in a “patch” or
section of the program’s output area. To design his or her own
patch, learners use programming commands to direct a “turtle” to
move, draw, and color on a white screen. For example, to draw a
blue square, learners might provide the commands:

pen blue, 10
for [1..4]
 fd 100
 rt 90

Individual programs from each group member were then
“stitched” together to form a larger “quilt.” Students in the GC
began the assignment on the second session of class. Students
completed the entire assignment outside of class sessions over one
week

634

In both the HSC and GC conditions, all learners used the Pencil
Code programming environment to complete the programming
assignments, meaning programs could be constructed completely
by dragging and snapping together blocks with a mouse, by typing
text commands, or a mixture of both. To answer our research
questions about why and when students choose to use a given
modality or switch between modalities, all actions performed in
the Pencil Code environment were logged. These logs provide a
unique identifier for the user, a timestamp, the interface mode
(blocks vs. text), the action performed, and the complete program.
Using these logs, we can reconstruct the process of program
construction, as well as identify when and where the user
switched modalities during the course of this construction.

4. RESULTS
We begin our results section by looking at trends in student
modality preference. We then correlate these trends with self-
reported experience and confidences levels, before looking more
closely at the log data to understand why students use one
modality over the other, and what causes them to switch between
modalities.

4.1 Student Modality Choice
Documenting what modality students choose to work in is the first
step towards understanding the roles that the interface plays in
novices learning to program. During the course of the studies,
students overwhelming used the blocks-based modality for the
programming assignments. Participants in the HSC used the block
modality 92% of the time, while the GC participants used the
block modality 91% of the time. This suggests, at least at a high
level, that the blocks-based modality is not more developmentally
appropriate for one age over the other. However, the distribution
of time spent in the two modalities was not uniform across the
student population. Instead, some students worked almost
exclusively in blocks, while other preferred text, and a third group
moved between the two. In other word, the choice of modality is
not driven by age, but instead, by some other factor.

In looking at student modality choice over time, Matsuzawa et al.
[16] designed a dual-modality Java programming environment
and found that university CS students in an introductory

programming class shifted modality preference over the course of
the semester; starting with the blocks-based interface, and moving
to text-based over time. They also found the students’ choice of
modality, and the amount of time spent using the blocks-based
interface correlated with their self-reported confidence in
programming. In an effort to explore the generalizability of this
finding, we applied Matsuzawa et al.’s Block Editing Rate metric
(Rb), which is the proportion of time spent in the blocks-based
interface compared to total time spent on task, to actions logged
by learners in the HSC and GC. Figure 3 shows student modality
choice over time, with each row representing a single student. To
calculate Rb, we used our log data, looking specifically at
captured Run events. A Run event is logged every time a student
runs their program, which is akin to complication in other
languages. For each student, we took their full set of Run events,
sorted them by time, then broke them down into 20 segments
(corresponding to the 20 columns in Figure 3). For each segment,
we then calculated the student Rb by counting the number of Run
events called from the blocks-based mode and dividing it by the
total number of runs in the segment. After calculating Rb for
every segment and every student, we compiled them into a grid
representation and used color intensity to represent time spent in
each modality—the darker the square, the more time spent in the
text interface. We then sorted the student rows by overall
preference, with the students who spent the most time in blocks at
the top, and student who preferred the text interface as the bottom.

A few things stand out about Figure 3. First, for both the HSC and
the GC, there is an increasing trend toward text over time
observable by the increased color intensity for both conditions as
you move from the top left of the grid representation to the bottom
right. At the outset of working in Pencil Code, students rarely
used the text mode (as can be seen by the very light shading of the
left-most column), whereas by the end of the observed activity,
we see greater frequency of darker segments indicating heavy
text-modality use. A second thing to note is the lack of a
continuous transition for many students, this is especially
pronounced in the HSC where the darkest patches came three-
quarters of the way through the curriculum. This suggests that the
transition from blocks-to-text is not a one directional shift, but
instead students move back and forth between blocks and text

Figure 3. Student modality choice over time – the darker the square, the more time spent in the text interface.

635

over time. Finally, this representation highlights Pencil Code’s
ability to support students who want to only work in the blocks
mode (as can be seen in the top three rows of the GC) as well as
students who were either not interested in the blocks interface or
felt they did not need the additional supports that blocks might
provide (as can be seen in the bottom row of the GC condition).
Together these findings show that Pencil Code, and the dual-
modality design approach more generally, can meet the “low-
threshold, high-ceiling” design goal desired in introductory
programming learning environments.

To examine the likelihood of a correlation between self-reported
confidence and interface choice, as reported by Matsuzawa et al.
[16], students in the GC condition were asked to complete both an
experience survey and the Computer Attitude Survey (CAS) [8].
On a scale of 1-5, students in the GC reported a mean experience
of 3.5, meaning they had some level of computing experience, but
do not self-identify as experts. On the CAS, a survey that
measures the level to which survey takers have the same attitudes
towards technology and programming as professional computer
scientists, GC students had a mean score of 61%. CAS scores
were highly correlated with self-reported experience (Spearman’s
coefficient 0.711, p < 0.001). Though on average, students of all
levels of programming experience agreed with experts on the need
for a flexible mindset towards programming (0.70) and on the real
world value of programming (0.93), but scored low on the ability
to see connections between various problem solving solutions
(0.25).

Figure 4. Percentage of programming events in the blocks or
text modalities organized by self-reported programming
experience.

Comparing students’ self-reported experience with the log data on
modality reveals a weak correlation between the two overall
(Spearman coefficient 0.223 p < 0.001). Looking at students that
reported the highest experience, we do find a greater propensity
for the text modality (Figure 4). These two analyses replicate
Matsuzawa’s [16] previously reported findings on both student
modality choice over time and the correlation between modality
and confidence. Our work extends these previous findings by
looking at university students outside of programming courses and
younger, high school aged learners. We now turn to our second
our research question, trying to understand when and why
students shift between modalities.

4.2 Motivations for Shifting Modality
One finding from the literature on blocks-based programming is
that students perceive blocks-based programming to be easier than
writing programs in more conventional text-based languages [23].
Given our interest in learning and the design of new tools,
understanding the reasons for this perception and if and how it
bears out in practice are of particular importance. Dual-modality
environments provide an opportunity to investigate and
understand these aspects of blocks-based interfaces by looking at
when shifts between modalities occur and what happens
immediately after the shift, we can gain insight into the learner’s
motivation for switching modality. In other words, by
investigating likely intentions when students who have become
comfortable with the text modality move to blocks, we deepen our
understanding of how the blocks-based modality supports novices.

To more easily determine what the learner is trying to accomplish
when switching modalities, we focused on log events that were
captured when students toggle the interface from text to blocks.
For this analysis, the two student populations are grouped together
in an attempt to understand the full breadth of motivations for
moving between modalities, independent of assignment or
experience. The logs contained 217 instances of this transition,
each containing a snapshot of the program when the user was in
the text modality. We then looked to the next log event in the
system to see what the learner did after transitioning into the
blocks modality, which also contains a program snapshot. By
comparing the two program snapshots, we are able to determine
the specific programmatic changes made after switching into the
blocks modality. We then coded the specific changes using a
coding scheme that identified whether the change was adding,
moving, or removing code, and, in the case where code was
added, which block type (based on the block “bins” predefined by
Pencil Code, like Motion and Control) was selected.

After transitioning from text-to-blocks, there are a number of next
steps learners could take, including adding a new command,
deleting some portion of the program, moving blocks within the
program, or simply returning to the text modality. While learners
shifted to the block representation for a variety of reasons, our
analysis indicates that 65.4% of these events were to add
commands to their program. Two-thirds (67.1%) of these code
block additions involved adding a block-type that had not been
previously used in that program. The high frequency of the
addition of previously unused block after a text-to-blocks
transition indicates the block representation supported learners in
adding new, never-before-used commands to their programs. On
the one hand, this suggest learners may be using the “drawer”
present in the blocks-based modality to browse the available set of
commands. Alternatively, users may be relying on the block
representation to avoid accidental syntax errors [15]. Finally, it is
possible that some students may simply prefer dragging-and-
dropping commands into their programs over the act of typing,
which suggests that ease-of-composition motivated the transition.

Given that students frequently transition from text to blocks in
order to add a new type of block to their program, we can gain
insight into what commands are challenging or have difficult
syntax by analyzing the types of new blocks that were added.
Looking at the block type added after a text-to-blocks transition,
the most frequently added blocks were from the movement
(30.5%), art (21.6%), and control (18.0%) categories. As the
assignments asked students to write code to move a turtle to create
visually interesting patterns, it’s perhaps not surprising that these
blocks were frequently used. This is even after the user had begun

636

working in the text modality. When the addition of these blocks is
analyzed for frequency of use, we found that 86.7% of the time a
control block was added; it was added for the first time. First-add
move blocks and art blocks were 62.8% and 63.9% respectively.
The reliance on the block representation to add control blocks,
which include commands like repeat, if/else, and while,
further indicates the value of blocks in overcoming syntax
challenges. However, as these commands also involve complex
non-linear processes, the block representation may also be
providing a conceptual support as learners attempt to incorporate
these complex ideas into their programs.

Along with adding new blocks, other actions students took after
toggling include deleting existing blocks (15.6% of the time),
moving existing blocks to new locations in the program (13.3% of
the time), or other events like toggling back to text or temporarily
removing commands from the program (a combined 5.7% of post-
toggle actions). While these actions were less frequent, and
potentially less revealing than the patterns we found for adding
new blocks, patterns within these actions do point to further
affordances of the block representation. For example, when
students transitioned from text-to-blocks and then proceeded to
move code in their program, 60.7% of the time the move included
shifting the scope of the moved code. In the blocks interface,
shifting scope means moving the block into, or out of a block that
has a nesting shape, such as a conditional or iterative block. Here
the visual depiction of scope afforded by the blocks may provide a
conceptual resource for learners as they attempt to leverage the
non-linearity of code. A second interpretation could be that
mechanics of moving blocks between different scopes is more
easily accomplished in the blocks-based modality compared to
copy-and-pasting or manually adding and removing whitespace to
change scope. Both explanations point towards affordances of the
blocks-based representation in helping novice programmers
navigate issues of scope.

5. DISCUSSION
Our analysis of student use of the Pencil Code environment,
which allows users to seamlessly switch between text and block
representations of code, indicates blocks serve both an
introductory role in a new programming environment as well as a
conceptual support for those that have become accustomed to the
tool. In this section, we review the central findings from our data
and discuss potential implications of these findings.

Two different groups of programmers were evaluated using the
Pencil Code environment to complete an open-ended drawing
assignment. Despite one group being composed of high school
students and the other graduate students, both groups
overwhelmingly used the block representation when coding. As
Figure 3 indicates, while blocks were used throughout the
assignment, there was a gradual shift towards the text modality as
the assignment progressed. As the environment (Pencil Code) and
language (CoffeeScript) were new for all students regardless of
condition, it is not surprising that they might use the blocks-based
modality in the early stages of the assignment. These findings
replicate those reported by Matsuzawa et al. [16] that found when
students work in dual-modality programming environments, the
frequency of using the text-based modality grows in parallel with
experience in the environment. This paper extends these prior
findings by broadening the population of learners this trend holds
for to include non-CS majors as well as high school aged learners.
However, it is interesting that there was not a quicker or larger
shift towards text-based coding for students in the GC condition
that reported higher levels of programming experience. This may

suggest that students’ self-reported experiences were not accurate,
that the language experience these students had did not support
them in using the text-based language in Pencil Code, or that the
blocks representation was robust enough (and the environment
user-friendly enough) that these experienced users never felt the
need to code exclusively in text.

To understand how the blocks-based modality supported novice
programmers as they authored their programs, we analyzed the
contents and changes of program snapshots that occurred when
users shifted from the text modality to blocks. This analysis
revealed that when students that coded in the text modality
returned to the block representation, they did so mostly to add
new code. When student made this move, they were usually
adding commands that they had not yet used in their program. The
fact that 65.4% of the blocks added were being added for the first
time suggests that the block modality supported users in finding
new commands for use in their program. Furthermore, of the
command types added, complex control blocks (such as for loops
and if statements) were often added (86.7%) for the first time
during this text-to-blocks shift. This reliance upon the blocks-
based modality may indicate that users were either unable or
hesitant to add commands that may introduce syntax errors into
their programs, which can be particularly tricky for control
commands. An alternative explanation is that the blocks-based
modality may serve a conceptual function as learners attempt to
incorporate non-linear commands into their programs.
While it is often claimed that blocks-based programming
environments offer the advantage of reducing syntax errors [4,
15], our findings suggest that blocks also offer information about
what is possible in the space and provide a low-stakes means of
exploring unfamiliar code [23]. By organizing and displaying
possible programming commands alongside the programs being
authored, the user is exposed to possibilities they may not have
known were available throughout their design process. This
matches findings in human-computer interaction on the ease of
recognition over recall. Because blocks allow these previously
unknown commands to be easily added in the middle of an in-
development program without fear of syntax errors or structural
issues (and easily moved and/or removed thereafter), users may be
more likely to experiment with these unfamiliar commands in
their code. This particular affordance of the block representation
suggests that even text-only environments might benefit from the
presence of a “drawer” of possible/useful code that can easily be
added to in-process programs.

Along with illuminating patterns in how novices learn to program
in dual-modality programming environments, this work also has
potential design implications for the creation of low-
threshold/high-ceiling programming environments. On the low-
threshold end of the spectrum, the finding that students often
transition to the blocks-based modality to add a new command or
to change the scope for existing commands, suggests that
including similar features into text-environments could be useful
for novices just becoming comfortable with text-based
programming. One implementation of this can be seen in
Greenfoot’s “frame-based” editing approach to text environments
[13]. As for ensuring a high-threshold for more advanced
programmers, our findings suggest a dual-modality design means
at the least, blocks don’t restrict the text-based programmer, and
at the best, blocks provide new opportunities for exploration and
experimentation to enhance or extend text-based programs. By
allowing learners to choose which modality they want to work in,
novices who need additional support can leverage the various

637

scaffolds designed into blocks-based tools, while students with
more experience or who are particularly eager to learn text-based
coding can do so. Further, the dual modality approach gives
learners control of their own learning experience, deciding for
themselves about what scaffolds they want or when they might
need more support.

6. CONCLUSION
As interest in learning to program continues to grow, new
interfaces and programming languages are being designed to
make the practice engaging and accessible. In this paper, we
explore how novice programmers use Pencil Code, a tool that
provides text and blocks-based representations of code, to
understand how access to both modalities impacts programming
practices. By studying how and when student move back and forth
between blocks-based and text-based interfaces, we advance our
understanding of the affordances of the tools for helping
beginning programmers as they are starting out. Our findings
indicate both high school and university-aged novice
programmers productively used the dual-modality feature of
Pencil Code throughout their programming experience. All
students started their time with Pencil Code in the blocks-based
modality, with some students quickly moving to text while other
staying in the graphical interface. Regardless of the modality
chosen, all students were able to fully participate in the course and
complete the programming activities, showing the effectiveness of
the dual modality approach for welcoming and supporting
novices, while also keeping more experienced programmers
engaged. While much of the discussion around the design of
introductory programming has been focused on debating which is
better for learners – blocks or text, this paper shows the answer
may be: why not both?

7. REFERENCES
[1] Armoni, M. et al. 2015. From Scratch to “Real”

Programming. ACM Transactions on Computing
Education (TOCE). 14, 4, 25:1-15.

[2] Astrachan, O. and Briggs, A. 2012. The CS principles
project. ACM Inroads. 3, 2, 38–42.

[3] Bau, D. et al. 2015. Pencil Code: Block Code for a Text
World. Proceedings of the 14th International Conference
on Interaction Design and Children (New York, NY, US),
445–448.

[4] Begel, A. 1996. LogoBlocks: A graphical programming
language for interacting with the world. Electrical
Engineering and Computer Science Department. MIT.

[5] Brady, C. et al. 2017. All Roads Lead to Computing:
Making, Participatory Simulations, and Social Computing
as pathways to Computer Science. IEEE Transaction on
Education. IEEE Transactions on Education. 60, 1, 1–8.

[6] Cooper, S. et al. 2000. Alice: a 3-D tool for introductory
programming concepts. Journal of Computing Sciences in
Colleges. 15, 5, 107–116.

[7] Dann, W. et al. 2012. Mediated transfer: Alice 3 to Java.
Proceedings of the 43rd ACM technical symposium on
Computer Science Education, 141–146.

[8] Dorn, B. and Elliott Tew, A. 2015. Empirical validation
and application of the computing attitudes survey.
Computer Science Education. 25, 1, 1–36.

[9] Duncan, C. et al. 2014. Should Your 8-year-old Learn
Coding? Proceedings of the 9th Workshop in Primary and
Secondary Computing Education (New York, NY, USA),
60–69.

[10] Fraser, N. 2013. Blockly. Google.
[11] Goode, J. et al. 2012. Beyond curriculum: the exploring

computer science program. ACM Inroads. 3, 2, 47–53.
[12] Homer, M. and Noble, J. 2014. Combining Tiled and

Textual Views of Code. IEEE Working Conference on
Software Visualisation (VISSOFT) (Victoria, BC), 1–10.

[13] Kölling, M. et al. 2015. Frame-Based Editing: Easing the
Transition from Blocks to Text-Based Programming.
Proceedings of the Workshop in Primary and Secondary
Computing Education (New York, NY, USA), 29–38.

[14] Lewis, C.M. 2010. How programming environment shapes
perception, learning and goals: Logo vs. Scratch.
Proceedings of the 41st ACM Technical Symposium on
Computer Science Education (New York, NY), 346–350.

[15] Maloney, J.H. et al. 2010. The scratch programming
language and environment. ACM Transactions on
Computing Education (TOCE). 10, 4, 16.

[16] Matsuzawa, Y. et al. 2015. Language Migration in non-CS
Introductory Programming through Mutual Language
Translation Environment. Proceedings of the 46th ACM
Technical Symposium on Computer Science Education,
185–190.

[17] Meerbaum-Salant, O. et al. 2011. Habits of programming
in Scratch. Proceedings of the 16th Annual Joint
Conference on Innovation and Technology in Computer
Science Education (Darmstadt, Germany), 168–172.

[18] Papert, S. 1980. Mindstorms: Children, computers, and
powerful ideas. Basic books.

[19] Powers, K. et al. 2007. Through the looking glass: teaching
CS0 with Alice. ACM SIGCSE Bulletin. 39, 1, 213–217.

[20] Price, T.W. and Barnes, T. 2015. Comparing Textual and
Block Interfaces in a Novice Programming Environment.,
91–99.

[21] Resnick, M. et al. 2009. Scratch: Programming for all.
Communications of the ACM. 52, 11, 60.

[22] Weintrop, D. et al. 2015. Teaching Text-based
Programming in a Blocks-based World. Proceedings of the
46th ACM Technical Symposium on Computer Science
Education (New York, NY, USA), 678–678.

[23] Weintrop, D. and Wilensky, U. 2015. To Block or Not to
Block, That is the Question: Students’ Perceptions of
Blocks-based Programming. Proceedings of the 14th
International Conference on Interaction Design and
Children (New York, NY, USA), 199–208.

[24] Weintrop, D. and Wilensky, U. 2015. Using Commutative
Assessments to Compare Conceptual Understanding in
Blocks-based and Text-based Programs. Proceedings of the
Eleventh Annual International Conference on International
Computing Education Research (New York, NY, USA),
101–110.

638

