
Using Commutative Assessments to Compare Conceptual
Understanding in Blocks-based and Text-based Programs

David Weintrop
Northwestern University

2120 Campus Drive, Suite 332
Evanston, Illinois 60628

dweintrop@u.northwestern.edu

Uri Wilensky
Northwestern University

2120 Campus Drive, Suite 337
Evanston, Illinois 60628

uri@northwestern.edu

ABSTRACT
Blocks-based programming environments are becoming
increasingly common in introductory programming courses, but to
date, little comparative work has been done to understand if and
how this approach affects students’ emerging understanding of
fundamental programming concepts. In an effort to understand
how tools like Scratch and Blockly differ from more conventional
text-based introductory programming languages with respect to
conceptual understanding, we developed a set of “commutative”
assessments. Each multiple-choice question on the assessment
includes a short program that can be displayed in either a blocks-
based or text-based form. The set of potential answers for each
question includes the correct answer along with choices informed
by prior research on novice programming misconceptions. In this
paper we introduce the Commutative Assessment, discuss the
theoretical and practical motivations for the assessment, and
present findings from a study that used the assessment. The study
had 90 high school students take the assessment at three points
over the course of the first ten weeks of an introduction to
programming course, alternating the modality (blocks vs. text) for
each question over the course of the three administrations of the
assessment. Our analysis reveals differences on performance
between blocks-based and text-based questions as well as
differences in the frequency of misconceptions based on the
modality. Future work, potential implications, and limitations of
these findings are also discussed.

Categories and Subject Descriptors
D.1.7 [Visual Programming]. K.3.2 [Computer and Information
Science Education]:Computer science education.
General Terms
Measurement, Design, Human Factors, Languages
Keywords
Introductory Programming Environments; High School Computer
Science Education; Blocks-based Programming; Assessment

1. INTRODUCTION
A long-standing question faced by computer science educators is
what language to use to introduce learners to programming. Ask
this question to a room of ten teachers and you are likely to hear
more than ten languages mentioned, many of which will carry

qualifiers describing under what conditions a given language is
the best choice. These so called ‘language wars’ have been raging
for as long as computer science has been taught, with little in the
way of consensus emerging and with potentially detrimental
effects [58]. Much work has been done attempting to empirically
answer the question of which text-based language is best for
novices, or at least identify features that make a language more or
less accessible to beginners. While there is much to show for this
effort, an alternative to conventional text-based languages is
emerging in novice programming classrooms that brings a new
dimension to introductory tools. Graphical blocks-based
programming tools like Scratch [49], Blockly [23], and Alice [13]
are becoming commonplace in introductory programming
contexts, with a growing number of new curricula utilizing
blocks-based programming tools in their materials, including the
CS Principles project, the Exploring Computer Science program,
and the materials being developed by code.org. The introduction
of blocks-based programming environments changes the
landscape of introductory tools, replacing questions of syntactic
features of textual languages with the larger question of if text-
based programming altogether is the best way to introduce
novices to programming. Despite the increasing use of blocks-
based tools in formal computer science learning contexts,
relatively little work has investigated the cognitive affordances
and drawbacks to the use of the graphical, blocks-based modality
in classrooms. Similarly, few side-by-side studies have compared
blocks-based and text-based tools directly (a notable exception
being [32]). In their review of assessments of introductory
programming, Gross and Powers [26] found that “one of the least
studied questions are those that focus on how the environments
impact a student’s learning process and understanding from a
formative perspective.” In this paper, we set out to begin the
process of filling in these gaps in the literature, specifically, we
seek to answer the following two research questions:

1. How can we comparatively assess student understanding in
blocks-based and text-based programming environments?

2. Does modality (blocks-based versus text-based) affect novice
programmers’ understanding of basic programming
concepts? And if so, how does it differ by concept?

To answer to the first question, we created the Commutative
Assessment, a novel programming assessment designed to
measure students’ understanding of programming concepts in
both blocks-based and text-based modalities. Each question on the
assessment requires the learner to read a short program (usually 4
or 5 lines) then answer a question about the outcome of the script.
The key feature of the assessment is that every question can be
asked with either a blocks-based or text-based program. In pursuit
of our second question, the assessments were given three times
over the course of a ten-week study in three introductory high

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by
others than the author(s) must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
ICER '15, August 9-13, 2015, Omaha, NE, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3630-7/15/08…$15.00.
DOI: http://dx.doi.org/10.1145/2787622.2787721

101

school programming courses. By administering the assessment at
three points, students answered each question in both modalities.
In this paper, we present the Commutative Assessment and share
findings from its use as part of a larger study on the relationship
between modality and student understanding.

2. Previous Research
2.1 Representations and Learning
“The tools we use have a profound (and devious!) influence on our
thinking habits, and, therefore, on our thinking abilities.” [16]

As stated by the Turing Award winning computer scientist Edsger
Dijkstra in the quote above, the tools we use, in this case the
programming languages and development environments, have a
profound, and often unforeseen, impact on how and what we
think. diSessa [17] calls this material intelligence, arguing for
close ties between the internal cognitive process and the external
representations that support them: “we don’t always have ideas
and then express them in the medium. We have ideas with the
medium” [17 emphasis in the original]. He continues: “thinking in
the presence of a medium that is manipulated to support your
thought is simply different from unsupported thinking” [17]. The
recognition that mental activity is mediated by tools and signs is
one of the major contributions of the work of Vygotsky [65, 66]
who argued that it is the external world that shapes internal
cognitive functioning [72]. This perspective, coupled with
Piaget’s constructivist learning theory, which contributes an
interactionist perspective to learning that foregrounds the mutual
dynamic of tools and thought [46], informs why it is so crucial to
understand the relationship between the growing family of
graphical programming representations and the understandings
and practices they promote.

The role of representations in cognition has been studied across a
variety of representational systems and their influence on various
cognitive tasks. One large body of work that has emerged from
studying this question is identifying the relationship between
language, literacy and thought [33, 41, 66, 73], but as we are
primarily concerned with the use of symbolic formalisms, we
focus our review on scholarship looking at the role of arithmetic
representation in supporting thought. The recognition that a
learner’s own knowledge and experience influences the
representations used and how it is understood and evaluated has
been a recurring idea within the Learning Sciences [18, 31, 39,
52, 69]. For example, focusing on concepts from physics and
investigating the use of conventional algebraic notation as
compared to programmatic representations, Sherin [51] found that
differing representational forms had different affordances with
respect to students learning physics concepts and, as result,
affected their conceptualization of the concepts learned. “Algebra
physics trains students to seek out equilibria in the world.
Programming encourages students to look for time-varying
phenomena, and supports certain types of causal explanations, as
well as the segmenting of the world into processes” [51]. Similar
investigations have been done between programming languages.
For example, Gilmore and Green [25] compared declarative and
procedural notations and found that each notation afforded
different types of reasoning. The procedural notation was superior
for answering sequential questions while the declarative notation
was better for answering circumstantial questions. This lead them
to conclude that “the structure of a notation affects the ease with
which information can be extracted both from the printed page
and from recall” [25].

Wilensky and Papert [74] use the term structuration to describe
this relationship between the representational infrastructure used
within a knowledge domain and the knowledge and understanding
that the infrastructure enables and promotes. While often thought
of as static, the structurations that underpin a discipline can
change as new technologies and ideas emerge. Wilensky and
Papert document a number of restructurations - shifts in
representational infrastructure - including the move from Roman
numerals to Hindu-Arabic numerals [61], the use of the Logo
programming language to serve as a representational system to
explore geometry [1], and the use of agent-based modeling to
representation various biological, physical, and social systems [8,
50, 67, 75]. These shifts, and the new possibilities they enable,
highlight the importance of studying representational systems, as
restructurations can profoundly change the expressiveness,
learnability, and communicability of ideas within a domain.
While we are not claiming that the introduction of blocks-based
tools constitutes a restructuration of programming knowledge, the
recognition of the influence of representational infrastructure
motivates this work and frames our larger program of research.

2.2 Programming Languages for Learners
Early on it was recognized that the design of a programming
language itself can support or hinder students in their quest to
master programming, which resulted in early efforts to develop
more accessible programming languages [36]. Lead by Logo [22],
which was explicitly designed with mathematics learning in mind,
a number of languages emerged with the goal of serving as an
introduction to the field of computer science. An early, influential
language designed for novices was BASIC, whose acronym
stands for Beginner's All-purpose Symbolic Instruction Code.
BASIC included a relatively small instruction set, removed all
unnecessary syntax, and was designed to support short turn
around times between composition and execution of programs,
which collectively made it more accessible to novices.

As the field of computer science education matured, new
languages and strategies emerged that were designed to serve as
introductory tools and prepare learners for more powerful, fully
featured languages. Languages such as Blue [30] and JJ [37]
simplified syntax and provided tools to allow learners to focus on
programming fundamentals before progressing to professional
languages. Mini-languages, which are small languages designed
to support the first steps in learning to program, are another
approach for introductory languages [11]. These languages often
center around specific activities and provided only the commands
necessary to accomplish the immediate task, such as Karel the
Robot, which has learners write short programs to control an on-
screen robot [44]. Mini-languages are not intended for general
purpose programming, they instead tailor the language around
specific tasks, narrowing the gap between the objective and the
representations in which intentions are encoded [15].

A final strategy that speaks directly to the work we are pursing
here is the creation of languages that try and address the
documented issues that novices have with the syntax of
programming languages. Research has found language syntax, the
seemingly esoteric punctuation and formatting rules that must be
followed when composing programs, can a serious barrier for
novice programmers [14, 59]. Through a serious of controlled
experiments that had novices use one of a variety of languages
that demonstrated various syntactic features, Stefik and Siebert
[59] found that characteristics of syntax directly influence a
language’s learnability. One solution to the problem of syntax is

102

the creation of visual programming tools that visually represent
syntactic information of commands, making it easier to compose
programs without encountering syntax errors.

2.3 Blocks-based Programming

LogoBlocks Scratch Alice

Figure 1. Three examples of blocks-based programming tools.

The blocks-based approach of visual programming (Figure 1),
while not a recent innovation, has become widespread in recent
years with the emergence of a new generation of tools, lead by the
popularity of Scratch [49], Alice [13]Snap! [28], and Blockly
[23]. These programming tools are a subset of the larger group of
editors called structured editors [19] that make the atomic unit of
composition a node in the abstract syntax tree (AST) of the
program, as opposed to a smaller element (i.e. a character) or a
larger element (like a fully formed functional unit). In making
these AST elements the building blocks, then providing
constraints to ensure nodes can only be added to the program’s
AST in valid ways, the environment can prevent syntax errors.
Blocks-based programming environments leverage a
programming-primitive-as-puzzle-piece metaphor that provides
visual cues to the user about how and where commands can be
used as their means of constraining program composition.
Programming in these environments takes the form of dragging
blocks into a composition area and snapping them together to
form scripts. If two blocks cannot be joined to form a valid
syntactic statement, the environment prevents them from snapping
together, thus helping to alleviate difficulties with syntax while
retaining the practice of assembling programs instruction-by-
instruction. This feature is especially relevant to the proposed
study, as graphical programming proponents argue that visual
depiction of syntax information is a key feature that contributes to
its appropriateness for novice programmers [49]. However, other
researchers are finding this approach does not solve the syntax
problem, but merely delays it [43, 48]. Along with using block
shape to denote usage, there are other visual cues to help novices,
including color coding blocks by conceptual use, and nesting
blocks to denote scope. Blocks-based programming has been
found to be perceived as easier by learners, with a number of
these visual features cited for its relative ease-of-use [70].

Early version of this interlocking approach include LogoBlocks
[6] and BridgeTalk [9], which helped formulate the programming
approach which has since grown to be used in dozens of
applications. Alice [13], an influential and widely used
environment in introductory programming classes, uses a very
similar interface and has been the focus of much scholarship
evaluating the merits of the approach at the undergraduate level.
In addition to being used in more conventional computer science
contexts, a growing number of environments have adopted the
blocks-based programming approach to lower the barrier to
programing across a variety of domains including mobile app
development with MIT App Inventor and Pocket Code [53],
modeling and simulation tools like StarLogo TNG [7], DeltaTick
[76], NetTango [40] and EvoBuild [67], creative and artistic tools
like Turtle Art and PicoBlocks, commercial educational tools like

Tynker and Hopscotch, game-based learning environments like
RoboBuilder [68] and CodeSpells [21], and the activities included
in Code.org’s Hour of Code, and Google’s Made with Code.

2.4 Programming assessments
Across educational research broadly there is a recognized need for
high quality and validated assessments, a position echoed in
computer science education circles [62]. Towards this end, a
number of assessments have been developed and validated with
the goal of improving our ability to evaluate and measure student
learning across a variety of languages, environments, and contexts
[27]. Related work has sought to define the process one follows to
develop quality computer science assessments, beginning with
identifying the goals of the assessment and the material to cover,
through validating, piloting, and refining the instrument [12].
Additionally, new techniques are being developed and applied to
programming assessments to improve accuracy and build
confidence in new assessments [60]. One notable example of a
rigorous, validated assessment is the Foundational CS1
assessment (FCS1) [64], which is a language independent
instrument designed to decouple concepts from the language used
to represent them. This makes it possible to be used with learners
regardless of the language used during instruction. This is in
contrast to most validated programming assessments developed
by testing boards, like the Advanced Placement (AP) CS exam
and the A-level General Certificate of Education in Computing,
both of which are currently designed for the Java language.
There are a growing number of projects working towards
developing assessments for the blocks-based approach to
programming that we are investigating herein. Much of this work
looks to assess not programming specifically, but computational
thinking more broadly [27]. For example, the Fairy assessment
[71], designed for middle school aged learners, uses Alice and
presents learners with partially completed, or buggy, programs
that need to be fixed in order for in-world characters to
accomplish a specific task. In taking this approach, the Fairy
assessment evaluates both comprehension (learners understanding
of what a written program does) as well as gives learners a chance
to problem solve, design and implement algorithmic solutions to
assessment tasks. This design addresses the critique that process is
often lost in conventional assessments of programming
knowledge [47]. Another innovative assessment approach to
computational thinking comes out of the Scalable Game Design
group that developed an automated way to measure the frequency
of computational thinking patterns in student-authored programs
as a way to assess learning [29].

2.5 Evaluating Blocks-based Programming
A small, but growing body of literature is investigating the
learning that happens with blocks-based programming tools. To
date, most of this work has focused on Scratch and Alice, as these
two environments have the widest use in contemporary computer
science education. While both Alice and Scratch have been used
in formal education environments, it is important to keep in mind
that the two projects initially had different goals and targeted
different age groups. Scratch from its inception, was focused on
younger learners and informal settings [49], while Alice was
targeted at more conventional computer science learning contexts
and, as such, has a been the focus of more initiatives to evaluate
student learning of programming concepts [13].

Ben-Ari and colleagues have conducted a number of studies on
the use of Scratch for teaching computer science in formal

103

contexts [3, 4, 34, 35]. Meerbaum-Salant et al. [35] found that
Scratch could successfully be used to introduce learners to central
computer science concepts including variables, conditional and
iterative logic, and concurrency. While students did perform well
on the post-test evaluation in this project, a closer look at the
programming practices learners developed while working in
Scratch gave pause to the excitement around the results. The
researchers found that students developed some undesirable
programming habits, including a totally bottom-up programming
approach, a tendency towards extremely fine-grained
programming, and often unconventional, non-optimal usages of
programming structures [34]. In a continuation of this study, the
researchers concluded that students who learned Scratch in middle
school more quickly grasped concepts in text-based languages
when they reached high school (although they did not perform
better on content assessments) [4]. Other work looking at
comparing blocks-based to text-based programming using Scratch
found that Scratch can be an effective way to introduce learners to
programming concepts, although it is not universally more
effective than comparable text languages [32]. There is also a
growing body of work suggesting that the transition from blocks-
based to text-based programming contexts is not as smooth as had
once been assumed [24, 43, 48]. This suggests there are cognitive
differences between these two programming modalities and is at
the heart of the questions we pursuing here.

3. The Commutative Assessment
In pursuit of our first research question, we developed the
Commutative Assessment as a way to evaluate if and how
programming modality affects learnability. Each question on the
assessment includes a short program for the student to read that
can be expressed either in a blocks-based or text-based form. This
means that no question relies on a construct unique to either
modality, so for example, there are no questions that use blocks
related to motion that students familiar with Scratch would
recognize, as these instructions are not native to JavaScript. For
each administration of the assessment, half of the questions are
presented with blocks-based code and the other half use the text-
based modality. The design of the Commutative Assessment
makes it possible to group the responses along a number of
dimensions that collectively yield insight into the relationship
between modality and emerging understanding and provides data
to support or refute claims about whether one modality is easier to
interpret than another with respect to the various concepts.

To decide what concepts to include in our assessment, we
primarily drew on two resources: the recently released 2013 CS
Curriculum [2] and the work of Tew and Guzdial [63, 64]. In
making the FCS1 assessment, Tew and Guzdial reviewed the
contents of 12 introductory computer science textbooks along
with other published curricula to establish a list of ten core CS1
concepts. Of this list, we chose to include five concepts in our
assessment: fundamentals (variables, assignment, etc.), selection
statements (conditional logic), definite loops (for loops),
indefinite loops (while loops), and function/method parameters.
Based on our review of the CS2013 Curriculum and what it
emphasizes for introductory courses, we decided to add two
additional content categories: program comprehension and
algorithms (natural language descriptions of steps to be followed
to solve a problem). As the algorithm questions do not include
blocks-based or text-based programs, they are not discussed here.

The Commutative Assessment includes 28 questions, five each
for conditional logic, loops, functions, and algorithms, and four

from the categories of variables and comprehension. While we
would have liked to include a larger number of questions, we
were constrained by the length of class and an awareness of
testing fatigue effects from long assessments. All of the questions
are multiple choice or true/false and, with the exception of the
algorithm questions, take the form of a short piece of code that
students are asked to interpret. The multiple choice answers were
informed by misconceptions that have been identified in the
literature (see appendix A of [56] for a summary of
misconceptions). Figure 2 shows a sample variable question from
the assessment. When taking the assessment, students see either
the text version or the blocks version of the program.

What will be the value of x and y after this script is run?

vs.

A) x is equal to 15 and y is equal to 15
B) x is equal to 5 and y is equal to 10
C) x is equal to 15 and y is equal to 10
D) x is equal to “x + 5” and y is equal to “x”
E) x is equal to 10, 15 and y is equal to 10

Figure 2. A question from the Commutative Assessment.

The set of available choices includes the correct answer as well as
responses drawn from the literature on misconceptions around
variable assignment. Option A would be chosen by a student that
holds the misconception that when one variable is assigned to
another, the two values are linked and that whatever happens to
one, happens to the other [10]. If a student incorrectly thinks that
a value gets passed from one variable to another (i.e. the variable
does not retain its value if another variable is set to it), then the
student would choose option B. Option D would be chosen by a
student who thinks expressions do not get evaluated during
assignment [5, 55]. Finally, option E would be chosen by students
who think that variables “remember” prior values [10, 20]. We
also choose to write out “is equal to” instead of using an equals
sign to be explicit about the meaning of the choices. Throughout
the assessment we tried to follow this approach as much as
possible to shed light on potential misconceptions conveyed or
supported by the different modalities.

It is important to note that while the goal of this assessment is to
understand the effect of programming modality on learning, there
are other factors complicating the issue, most notably, differences
in the language itself. For example, in Figure 2, the syntax and
keywords used in variable declaration and assignment are
different between the two modalities, making the difference
between the two forms of the question more than just a shift in
modality. This is a constant challenge with this work as a feature
of the blocks-based modality is the ability to support more
conversational and readable commands [70]. We will return to
this challenge through the paper.

4. Methods and Participants
The data presented in this paper are part of a larger study
comparing blocks-based, text-based, and hybrid blocks/text
programming environments at a selective enrollment public high
school in a Midwestern city. We followed students in three
sections of an elective introductory programming course for the
first 10 weeks of the school year. Each class spent the first five
weeks of the course working in a blocks-based programming

104

environment. The students then transition to Java for the next five
weeks of the study and then continued with Java for the remainder
of the year. Two teachers participated in this study (one teacher
taught two of the classes), both of whom had over five years of
computer science teaching experience at the high school level.

The Commutative Assessment was administered online during
class time at three points over the course of the 10-week study: at
the outset, at the midpoint (end of week 5), and the conclusion of
the study (end of week 10). Each time students took the
assessment, they were asked the same set of 28 questions but the
order and the modality (blocks vs. text) changed between
administrations. The questions on the second content assessment
used the opposite modality from the first assessment, so after
taking the content assessment twice, all students had seen every
question in both modalities. For the third assessment, two version
of the assessment were created that asked question in the same
order, but varied modality. Students were then randomly given
one of the two versions of the third assessment.

For the first five weeks of the course, each class used a slightly
different programming environment based on Snap! [15]. Snap! is
a blocks-based programming tool that is very similar to Scratch,
but adds a few features (notably Snap! has first-class functions),
and is implemented in JavaScript. The first class used a version of
Snap! that gave students the ability to right-click on any block or
script to see a JavaScript implementation of the program (Figure
3). In this tool, students were able to read, but not edit or write,
text-based versions of the programs they constructed with the
blocks. The second class used a version of Snap! that allowed
students to read their programs in text and added the ability to
define the behavior of new custom blocks in JavaScript. This
served as a hybrid blocks/text read/write environment, as students
could both read a text-based version of their own blocks, as well
as write the behaviors of new blocks in JavaScript. The final class
served as a control and used an unmodified version of Snap! All
three classes followed the same curriculum based on UC
Berkeley’s Beauty and Joy of Computing course, which covers all
concepts included in the Commutative Assessment.

Figure 3. Side-by-side blocks and text in our version of Snap!

At the conclusion of the 5-week blocks-based introduction, the
students transitioned to Java, following an objects-first
curriculum. During the Java portion of the study, the topics
covered in class included how to compile and run Java programs,
simple data input and output, and the basics of defining and
calling functions. While Java and JavaScript have syntactic
differences, few of these differences were encountered by
students during the five weeks of Java, the notable exception
being the existence of variable types in Java as opposed to
JavaScript’s weak typing. This difference was discussed by the
teachers and was not identified as problematic by students during
the study.

The school we worked with was chosen as it has a large computer
science department, offering three sections of their Programming
I course. A total of 90 students across three sections of the course
participated in the study, which included 67 male students and 23
female students. The students participating in the study were 43%
Hispanic, 29% White, 10% Asian, 6% African American, and
10% Multi-racial - a breakdown comparable to the larger student
body. The classes included one student in eighth grade, three high
school freshman, 43 sophomores, 18 juniors, and 25 high school
seniors. Two-thirds of the students in the study speak a language
other than English in their homes.

5. Results
As our research questions focus on the relationship between
modality and concept, the first step of our analysis was to come
up with a score for each concept/modality pair for every
participant in the study. This means for each student we had 10
unique scores, one for each concept/modality tuple (variable/text;
variables/blocks; loops/text, loops/blocks, etc.), resulting in 180
data points for each concept (90 students * 2 modalities). These
scores were calculated by averaging together the student’s score
for every question that fell into the tuple. Grouping this way helps
us control for features of specific questions, and gives us a more
accurate within-participant score for conceptual understanding by
modality. These scores were then aggregated across the full set of
participants to determine the relationship between concept and
modality. We do not present a breakdown of responses by
condition or time period. As this is our first analysis of data from
the Commutative Assessment, we chose to focus on general
outcomes, specifically looking for patterns and differences in
student responses by concept/modality. Figure 4 shows the
difference found for each concept.

Figure 4. Student performance on the Commutative

Assessment grouped by modality and concept.

Looking across the five conceptual categories covered in the
Commutative Assessment using paired-samples t-tests shows that
students in the graphical condition perform significantly better
with the blocks-based modality on questions related to iterative
logic t(178) = 10.40, p < .001, d = 1.57, conditional logic t(178) =
2.82, p < .01, d = .41 and functions t(178) = 2.89, p < .01, d = .41.
Students also performed better in the graphical condition on
variable questions, but not significantly so, t(178) = 1.66, p = .10,
d = .25. Interestingly, there was almost no difference in how
students performed on the comprehension questions between the
two modalities t(178) = .094, p = .92, d = .01. These data suggest
that the answer to the first part of our second research question is
yes, modality does affect novice programmers’ understanding of
basic programming concepts. Further, these data show that the
effect is not uniform across concepts and does not seem to

105

influence comprehension of programs in the same way it effects
basic understanding of what a construct does within a program.
Seeing that a difference does exist, we now further investigate
each category to answer the second part of our second research
question, looking at how specific concepts are differentially
influenced by modality and if they can be explained by
misconceptions from the literature.

5.1 Iterative Logic Questions
While iterative logic showed the largest difference in scores
between blocks-based and text-based questions, a closer analysis
of the questions shows that a majority of this difference can be
attributed to the difficulty students have with the structure of for
loops [10]. Two of our five iterative logic questions compared a
graphical repeat block to a text-based for loop (Figure 5).

Figure 5. A sample iterative logic question.

On these two questions, students performed significantly better in
the graphical condition (83% correct) versus the text-based for
loop version of the question (16.1% correct). This provides
compelling evidence for the finding that students find the repeat
command common to blocks-based languages easier to
understand than text-based for loops, a finding already
documented in the literature [57, 59]. By examining the incorrect
responses given by students, we can glean additional information
about how students understand the concepts with respect to the
way they are presented. For example, on the text-based for loop
questions, almost half of the students (49.3%) chose an answer
that had each command inside the for loop run once and only
once – suggesting it was not clear that any looping was going to
occur. When answering the same questions with the graphical
repeat blocks, only 1.5% of students chose those options.
Second, in the text-based conditions, 20.7% of students chose the
answer that suggested the number of times a given for loop would
run was variable, and would be different each time it was
executed. In the graphical repeat versions of the questions, only
one student chose this option. The Commutative Assessment
includes one looping question that compared a blocks-based
version of a for loop to a text-based version (Figure 6).

Figure 6. Comparing blocks-based and text-based for loops.

On this question, students performed comparably, answering the
question correctly 19.6% percent of the time in the graphical
condition and 18.0% of the time in the text-based condition. One
possible explanation for the lack of difference on this question
compared to what we saw on the two questions that use repeat is
the confusion around the use of the term “for” to capture the
concept of looping and the lack of transparency in how for loops
behave based on this conventional representation [10, 57]. This
outcome, along with the other for loop questions adds to the

evidence that students find the word “for” unintuitive, and that
“repeat” better describes the looping behavior. As there are
languages that utilize the keyword “repeat” (Logo in particular
comes to mind), this finding speaks more to language design than
features of the modality.

The two indefinite loop questions use the while construct. There
was little difference in performance between the blocks-based and
text-based versions of these questions. For both questions,
students’ performance was very similar (a difference of .6% and
2.3% for the two questions). A closer investigation of the answers
given (include incorrect answers) does not show a systematic
difference between the types of representations used. This
suggests that on indefinite loops, the blocks-based representation
does not seem to provide any distinct advantage over a
comparable text-based implementation. The lack of a difference
between the two modalities when using comparable
syntax/keywords, both with while loops and for loops, matches
the finding from Lewis [32], who found no significant difference
in accuracy between questions asked using the repeat block in
Scratch and the repeat command in Logo. This suggests that for
iterative logic, the blocks-based representation does not provide
additional conceptual support; meaning the nested scoping and
visual syntactic information did not better support student
comprehension. A closer analysis of the five iterative logic
questions only reinforces what we already know about the
difficulty learners have with for loop syntax.

5.2 Conditional Logic questions
Students performed significantly better in the blocks-based
modality on three of the five conditional logic questions. On one
question the students performed comparably (.34% better on the
blocks-based form), and on the last question students performed
slightly better on text, scoring only 2.72% higher. On this final
question, students were asked about the overall behavior of the
script, as opposed to just the output, making it closer to our
comprehension questions than the others, which may in part
explain the better performance for the text-based representation -
we will return to this issue later in the paper. On the three
questions where students performed better in the graphical
condition, two patterns emerged in analyzing the incorrect
responses, revealing a slight systematic bias. First, on the two
questions where the test of an if/else statement evaluated to
true, students in the text condition were more likely to think both
the if and the else branches would execute (11.5% for text
versus 7.1% in the graphical case). This misconception has been
identified in the literature [54] and is part of the work showing the
if/else construct to be challenging for learners. In the current
version of the Commutative Assessment only one of our five
questions exposes this misconception, so we cannot make a strong
claim about this error being alleviated by the blocks-based
representation, but we plan on addressing this shortcoming in the
next iteration of the assessment. Second, we found that students in
the text condition were more likely to think the last statement is
the one that is evaluated regardless of the outcome of the
conditional logic surrounding it. On all three questions where this
was a possible incorrect answer, students were more likely to
choose it in the text-based condition (10.7% for text, versus 3.5%
in blocks). This could be explained a number of ways, including
students thinking that the body of a conditional statement gets
executed regardless of the outcome of the conditional test,
thinking the else outcome is always evaluated (which matches
the first misconception identified and could explain two of the

106

three questions we saw this error in), or not know how or when
conditions evaluate to true so defaulting to falling through to the
last statement. Overall, the finding that students performed better
on blocks-based conditional logic questions matches Lewis’
pervious work [32].

5.3 Variables Questions
Like with the two previous conceptual categories, students
performed better (although not at a statistically significant level)
on the variable questions when they were presented in the blocks-
based form. A more detailed look reveals that students only
performed better on the graphical case on three of the four
questions in this category. On the one question that students
performed better in the textual modality (Figure 7), one difference
stands out from the others: variables are set then used, but never
re-assigned, making it the simplest of the four questions.

Figure 7. The variable question that students performed

better in the text condition than the blocks-based condition.

This suggests that the text-based representation is comparable to
the blocks-based version for simple variable assignment and
usage, but that as statements and programs get more sophisticated
(i.e. variables are assigned to other variables or variable values
are set then reset), that the blocks-based modality is more intuitive
for learners. As this is only a single question, we only mention is
as a potential finding and plan to further investigate this in the
future.

Looking at the incorrect responses given by students across the
four variable questions reveals three findings that link modality to
the existing misconceptions literature on variables. First, all four
questions included an option that would be chosen by students
who mistakenly thought expressions do not get evaluated as part
of assignment (option D in Figure 2) and for all four questions,
this incorrect option was chosen slightly more often in text form
(7.3% of text responses, 5.3% of graphical). This could
potentially be explained by the text form not providing visual
hints about how to parse the statement. Second, we found that on
text-based questions, students were more likely to incorrectly
choose the answer that would result if variables held their initial
values, meaning the values do not get overwritten (30.6% in text,
14.5% in graphical). We have not previously encountered this
misconception in the literature. Our hypothesis is that in the case
where students do not know what is supposed to happen when a
variable that already contains a value has a new value set to it, the
assumed behavior is for nothing to happen, i.e. the new value is
ignored and the original value retained. Finally, students were
also slightly more likely to choose answers that fit with the linked
variables misconception (option A in figure 2) in the text
questions (23.4% of text responses, 17.4% of graphical).

5.4 Function Questions
The fourth category of questions asked students about the
outcome of running programs that contained function calls
(Figure 8). On these questions, students performed better on the
blocks-based version on four of the five questions we asked.
Looking at the errors students made, we see a few cases where

students show signs of displaying documented misconceptions
and other patterns that seem systematic, but are new to this work
and can, at least partially, be explained by features of the
modality. First, in one of our questions, we intentionally wrote a
program that would output

(a) (b)
Figure 8. Two sample function questions.

the same word twice in a row, meaning the correct answer
included the duplicated word while other choices included what
students might assume was intended. Over half of the students
(57%) in the text version of the question incorrectly chose the
non-duplicated responses, compared to 38.6% of responses in the
blocks-based version of the question. This suggests students
found it easier to trace the flow in the blocks-based modality and
were less likely to fall victim to what Pea [45] calls an
“intentionality bug”, where the learner assumes the computer
knows the programmer’s intention. A second systematic finding
from analyzing these questions reinforces a trend observed in the
variables questions, that students answering text-based questions
were more likely to think that expressions do not get evaluated,
but instead retain the expanded form (44% for text versus 31% of
graphical responses). A third trend we found is that students were
twice as likely (50% compared to 22%) to think that an
unbounded recursive function stopped after a fixed number of
calls in the text-based form than the blocks-based modality.
Finally, two of our questions included functions that return values
(report is the keyword used in the graphical form). Figure 8b
provides an example of this type of question. Across these two
questions, students were almost twice as likely to think the
return command would cause an error in the text-based form
(24.5% of responses) than the blocks-based alternative (13.2% of
responses). In this case, we can point to a feature of the blocks-
based modality that can account for this difference. In the blocks-
based language, functions that return values are depicted as ovals
or hexagons that need to be nested inside another block (like op2
in Figure 8b), whereas functions that do not have return
statements take the shape of the interlocking blocks (like the
func1 block in figure 8a). This visual difference at the place
where the function is being invoked, and the ability for the
blocks-based representation to enforce syntactic validity, provide
a pair of scaffolds for the learner that potentially explains this
difference in student responses in the two modalities.

5.5 Comprehension Questions
The final type of question on the assessment is program
comprehension. These questions, unlike the others, focus more on
what the purpose of a script is, as opposed to specific outcomes.
In each case, the question students must answer is: what does the
following script do? These questions require students to mentally
run the program, often for different sets of potential inputs, and
then interpret that behavior into a natural language description of

107

the behavior. Figure 9 shows two examples of these questions,
with the correct answer being that the program swaps two values
(left) and returns the largest of the three numbers (right).
Across the full set of questions, students performed comparably
on the comprehension questions by modality (a difference of less
then 1%). Looking at the questions individually, we see outcomes

a, b and tmp are
variables. What
does this script do?

vs.

The function op4 takes in 3 numbers. What
does op4 function do?

 vs.
(a) (b)

Figure 9. Two comprehension questions
that correlate with the trends of how students did on questions
from the conceptual category of the constructs used in the
question. So, for example, question b in Figure 9, involves
conditional logic and we found students performed better on the
graphical versions of the question. Conversely, on a
comprehension question that included a while loop, students
performed better in the text condition. Because these questions
involve the additional step of interpreting the behavior of scripts
and the intention of the author, it becomes more difficult to map
incorrect responses to specific misconceptions from the literature.
Additionally, the small difference in performance between
blocks-based and text-based questions is also interesting as it is
the only category for which this is true, which leads to some
potentially interesting conclusions. Notably, this suggests that
while the graphical representation supports students in
understanding what a construct does (i.e. what the output from
using it is), that support does not better facilitate learners in
understanding how to use that construct.

6. Discussion
The first research question we posed was how to comparatively
assess understandings in two different modalities as part of the
larger goal of studying the relationship between programming
modality and understandings. The Commutative Assessment is
our answer to that question. This assessment gives us the ability
to directly compare responses to questions based on modality and
concept and by giving the assessment at multiple time points, we
are able to do both within and across student analyses of
responses. Additionally, by providing responses based on
misconceptions in the literature, we can link representational
features of modalities with understandings that novices hold.
On three of our four conceptual categories we found significant
differences in performance between modality, with the fourth
category showing a similar, though less pronounced, trend. Three
features of the blocks-based modality in particular stand out as
possible explanations for this result. First, the graphical nesting of
the blocks to denote scope appears to be an effective way to
depict this concept, as we saw fewer errors made on blocks-based
versions of questions where such misconceptions might be found.
For example, students incorrectly thinking both branches of an
if/else statement will be run was more prevalent in the text-
based condition. The difference between {}s and visually nested
commands provides one plausible explanation for this. Second,

the fact that the blocks-based modality allows for statements that
can be closer to natural language can, in part, explain some of the
differences we found. Notably, the command to assign values to
variables takes the form of set __ to __, which is a closer
description to what the command does than the comparable text-
based language command of var __ = __. This difference is not a
feature of the blocks-based modality, but instead an example of
the language designer taking advantage of the more
conversational format that the block-based modality enables. This
difference can explain at least part of the differences we saw in
the variable questions. Finally, the different shape of commands
that return values from those that carry out actions in the blocks-
based modality provides a compelling explanation for some of the
differences we found in the function questions.
One of the more interesting outcomes from this work is the lack
of difference between student performance on the comprehension
questions. There are a few possible ways to explain this. One
explanation is that the gains learners get from the graphical
affordances of the blocks-based modality that support conceptual
understanding of specific constructs does not carry over to
slightly more challenging comprehension tasks. A second possible
explanation is that it takes longer than the time allotted in the
study for the gains from the graphical layout to apply to these
types of questions. If this were the case, we would expect that if
given more time, we would see similar gaps in performance
emerge. A third possible explanation is that the modality has little
effect on student comprehension. Although prior research would
suggest otherwise, we continue to test this possibility. Teasing out
which of these explanations is most accurate, or developing a
potentially new explanation for this outcome is one direction this
work is heading.
While we think the Commutative Assessment is a productive
approach and can shed some light on the stated research
questions, it is important to note what is not assessed by this work
– the composition of programs. As such, the work we presented
above only begins to answer our second research question on the
relationship between modality and understanding. To more fully
understand the relationship, additional data and complementary
methods need to be applied. As part of this study we also
conducted semi-structured clinical interviews with student and
gathered log data of student programs. Our next step for this
project is to use those data to triangulate patterns and
relationships between the modalities and their cognitive
affordances that we identified here. Additionally, the analyses
presented herein did not account for time period or by Snap!
condition. These are two dimensions we will pursue in future
work. Finally, as previously mentioned, on some questions in the
current form of the Commutative Assessment there is a conflation
of modality and language features. While it is difficult to
completely disentangle these characteristics of a programming
language, in our next iteration of this study, we intend on using an
environment where the language used in the blocks-based and
text-based interfaces is syntactically more similar and uses a
shared set of keywords and update the assessment with images
from the new environment.

7. Conclusion
With the increasing presence of blocks-based programming in
both formal and informal educational computing contexts, it is
becoming increasingly important for us as educators and
designers to more fully understand the effects of this modality on
learners’ conceptual understanding. The Commutative

108

Assessment allows us to systematically compare student
understanding of fundamental concepts in blocks-based and text-
based modalities, which in turn can give us insight into how
learners are making sense of concepts using different
representational tools. Through analyzing student responses, both
correct and incorrect, we are starting to learn how blocks-based
languages influence learners’ emerging understandings and
identify how modality can elicit or suppress misconceptions. The
next step is to apply these findings to design new environments
that will prepare the next generation of learners for the
computational futures that await them.

8. References
[1] Abelson, H. and DiSessa, A.A. 1986. Turtle geometry: The

computer as a medium for exploring mathematics. MIT Press.
[2] ACM/IEEE-CS Joint Task Force on Computing Curricula 2013.

Computer Science Curricula 2013. ACM Press and IEEE
Computer Society Press.

[3] Armoni, M. and Ben-Ari, M. 2010. Computer Science Concepts
in Scratch.

[4] Armoni, M., Meerbaum-Salant, O. and Ben-Ari, M. 2015. From
Scratch to “Real” Programming. ACM Transactions on
Computing Education. 14, 4 (2015), 25.

[5] Bayman, P. and Mayer, R.E. 1983. A diagnosis of beginning
programmers’ misconceptions of BASIC programming
statements. Comm. of the ACM. 26, 9 (1983), 677–679.

[6] Begel, A. 1996. LogoBlocks: A graphical programming
language for interacting with the world. Electrical Engineering
and Computer Science Department. MIT.

[7] Begel, A. and Klopfer, E. 2007. Starlogo TNG: An introduction
to game development. Journal of E-Learning. (2007).

[8] Blikstein, P. and Wilensky, U. 2009. An Atom is Known by the
Company it Keeps: A Constructionist Learning Environment for
Materials Science Using Agent-Based Modeling. Int. Journal of
Computers for Mathematical Learning. 14, 2 (2009), 81–119.

[9] Bonar, J. and Liffick, B.W. 1987. A visual programming
language for novices. Principles of Visual Programming
Systems. S.K. Chang, ed. Prentice-Hall, Inc.

[10] Du Boulay, B. 1986. Some difficulties of learning to program.
Journal of Educational Computing Research. 2, 1 (1986), 57–
73.

[11] Brusilovsky, P., Calabrese, E., Hvorecky, J., Kouchnirenko, A.
and Miller, P. 1997. Mini-languages: a way to learn
programming principles. Education and Information
Technologies. 2, 1 (1997), 65–83.

[12] Buffum, P.S., Lobene, E.V., Frankosky, M.H., Boyer, K.E.,
Wiebe, E.N. and Lester, J.C. 2015. A Practical Guide to
Developing and Validating Computer Science Knowledge
Assessments with Application to Middle School. (2015).

[13] Cooper, S., Dann, W. and Pausch, R. 2000. Alice: a 3-D tool for
introductory programming concepts. Journal of Computing
Sciences in Colleges. 15, 5 (2000), 107–116.

[14] Denny, P., Luxton-Reilly, A., Tempero, E. and Hendrickx, J.
2011. Understanding the syntax barrier for novices. Proc. of the
16th Annual ITiCSE (2011), 208–212.

[15] Van Deursen, A., Klint, P. and Visser, J. 2000. Domain-specific
languages: An annotated bibliography. ACM Sigplan Notices.
35, 6 (2000), 26–36.

[16] Dijkstra, E.W. 1982. How do we tell truths that might hurt?
Selected Writings on Computing: A Personal Perspective.
Springer. 129–131.

[17] diSessa, A.A. 2000. Changing minds: Computers, learning, and
literacy. MIT Press.

[18] diSessa, A.A., Hammer, D., Sherin, B.L. and Kolpakowski, T.
1991. Inventing graphing: Meta-representational expertise.
Journal of Mathematical Behavior. 10, (1991), 117–160.

[19] Donzeau-Gouge, V., Huet, G., Lang, B. and Kahn, G. 1984.
Programming environments based on structured editors: The
MENTOR experience. Interactive Programming Environments.
McGraw Hill.

[20] Doukakis, D., Grigoriadou, M. and Tsaganou, G. 2007.
Understanding the programming variable concept with animated
interactive analogies. Proc. of the 8th HERCMA Conference
(2007).

[21] Esper, S., Foster, S.R. and Griswold, W.G. 2013. CodeSpells:
embodying the metaphor of wizardry for programming. Proc. of
the 18th annual ITiCSE conference (2013), 249–254.

[22] Feurzeig, W., Papert, S., Bloom, M., Grant, R. and Solomon, C.
1970. Programming-languages as a conceptual framework for
teaching mathematics. SIGCUE Outlook. 4(1970), 13–17.

[23] Fraser, N. 2013. Blockly. Google.
[24] Garlick, R. and Cankaya, E.C. 2010. Using Alice in CS1: A

quantitative experiment. Proc. of the 15th Annual ITiCSE
Conference (2010), 165–168.

[25] Gilmore, D.J. and Green, T.R.G. 1984. Comprehension and
recall of miniature programs. Int. Journal of Man-Machine
Studies. 21, 1 (1984), 31–48.

[26] Gross, P. and Powers, K. 2005. Evaluating Assessments of
Novice Programming Environments. Proc. of the 1st Annual
ICER Conference (NY, USA, 2005), 99–110.

[27] Grover, S., Cooper, S. and Pea, R. 2014. Assessing
computational learning in K-12. (2014), 57–62.

[28] Harvey, B. and Mönig, J. 2010. Bringing “no ceiling” to
Scratch: Can one language serve kids and computer scientists?
Proc. of Constructionism 2010 (Paris, Fr.), 1–10.

[29] Koh, K.H., Basawapatna, A., Nickerson, H. and Repenning, A.
2014. Real Time Assessment of Computational Thinking. Visual
Languages and Human-Centric Computing, 49–52.

[30] Kölling, M. and Rosenberg, J. 1996. Blue—a language for
teaching object-oriented programming. ACM SIGCSE Bulletin
(1996), 190–194.

[31] Lave, J. 1988. Cognition in practice: Mind, mathematics, and
culture in everyday life. Cambridge Univ Press.

[32] Lewis, C.M. 2010. How programming environment shapes
perception, learning and goals: Logo vs. Scratch. Proc. of the
41st Annual ACM SIGCSE Conference (NY, 2010), 346–350.

[33] Luria, A.R. 1982. Language and cognition. Winston ; Wiley,
Washington, D.C. : New York ; Chichester :

[34] Meerbaum-Salant, O., Armoni, M. and Ben-Ari, M. 2011.
Habits of programming in Scratch. Proc. of the 16th Annual
ITiCSE Conference (Darmstadt, Germany, 2011), 168–172.

[35] Meerbaum-Salant, O., Armoni, M. and Ben-Ari, M.M. 2010.
Learning computer science concepts with scratch. Proc. of the
6th Annual ICER Conference (2010), 69–76.

[36] Mendelsohn, P., Green, T.R.G. and Brna, P. 1990. Programming
languages in education: The search for an easy start. Academic
Press London.

[37] Motil, J. and Epstein, D. 1998. JJ: a Language Designed for
Beginners.

109

[38] Nemirovsky, R. 1994. On ways of symbolizing: The case of
Laura and the velocity sign. The Journal of Mathematical
Behavior. 13, 4 (1994), 389–422.

[39] Noss, R. and Hoyles, C. 1996. Windows on mathematical
meanings: Learning cultures and computers. Kluwer.

[40] Olson, I.C. and Horn, M.S. 2011. Modeling on the table: agent-
based modeling in elementary school with NetTango. Proc. of
the 10th Annual IDC Conference. (2011), 189–192.

[41] Ong, W. 1982. Orality and Literacy: The technologizing of the
world. Routledge.

[42] Palmer, S.E. 1978. Fundamental aspects of cognitive
representation. Cognition and categorization. E. Rosch and B.B.
Lloyd, eds. Lawrence Erlbaum Associates. 259–303.

[43] Parsons, D. and Haden, P. 2007. Programming osmosis:
Knowledge transfer from imperative to visual programming
environments. Proc.of The 12th Annual NACCQ Conference
(Hamilton, New Zealand, 2007), 209–215.

[44] Pattis, R.E. 1981. Karel the robot: a gentle introduction to the
art of programming. John Wiley & Sons, Inc.

[45] Pea, R.D. 1986. Language-independent conceptual“ bugs” in
novice programming. Journal of Educational Computing
Research. 2, 1 (1986), 25–36.

[46] Piaget, J. 1952. The origins of intelligence in children.
International Universities Press, Inc.

[47] Piech, C., Sahami, M., Koller, D., Cooper, S. and Blikstein, P.
2012. Modeling how students learn to program. Proc.of the 43rd
ACM SIGCSE Conference (2012), 153–160.

[48] Powers, K., Ecott, S. and Hirshfield, L.M. 2007. Through the
looking glass: teaching CS0 with Alice. ACM SIGCSE Bulletin.
39, 1 (2007), 213–217.

[49] Resnick, M. et al. 2009. Scratch: Programming for all. Comm. of
the ACM. 52, 11 (2009), 60.

[50] Sengupta, P. and Wilensky, U. 2009. Learning Electricity with
NIELS: Thinking with Electrons and Thinking in Levels. Int.
Journal of Computers for Mathematical Learning. 14, 1 (2009),
21–50.

[51] Sherin, B.L. 2001. A comparison of programming languages and
algebraic notation as expressive languages for physics. Int.
Journal of Computers for Mathematical Learning. 6, 1 (2001),
1–61.

[52] Sherin, B.L. 2000. How students invent representations of
motion: A genetic account. The Journal of Mathematical
Behavior. 19, 4 (2000), 399–441.

[53] Slany, W. 2014. Tinkering with Pocket Code, a Scratch-like
programming app for your smartphone. Proc. of
Constructionism 2014 (Vienna, Austria, 2014).

[54] Sleeman, D., Putnam, R.T., Baxter, J. and Kuspa, L. 1986.
Pascal and high school students: A study of errors. Journal of
Educational Computing Research. 2, 1 (1986), 5–23.

[55] Sorva, J. 2008. The same but different students’ understandings
of primitive and object variables. Proc. of the 8th Annual ICER
Conference (2008), 5–15.

[56] Sorva, J. 2012. Visual Program Simulation in Introductory
Programming Education. Aalto University.

[57] Stefik, A. and Gellenbeck, E. 2011. Empirical studies on
programming language stimuli. Software Quality Journal. 19, 1
(2011), 65–99.

[58] Stefik, A. and Hanenberg, S. 2014. The Programming Language
Wars: Questions and Responsibilities for the Programming
Language Community. Proc. of the 2014 Int. Symposium on

New Ideas, New Paradigms, and Reflections on Programming
(NY, USA, 2014), 283–299.

[59] Stefik, A. and Siebert, S. 2013. An Empirical Investigation into
Programming Language Syntax. ACM Transactions on
Computing Education. 13, 4 (2013), 1–40.

[60] Sudol, L.A. and Studer, C. 2010. Analyzing Test Items: Using
Item Response Theory to Validate Assessments. Proc. of the 41st
ACM SIGCSE Conference (NY, 2010), 436–440.

[61] Swetz, F. 1989. Capitalism and arithmetic: The new math of the
15th century. Open Court.

[62] Tew, A.E. and Dorn, B. 2013. The Case for Validated Tools in
Computer Science Education Research. Computer. 46, 9 (2013),
60–66.

[63] Tew, A.E. and Guzdial, M. 2010. Developing a validated
assessment of fundamental CS1 concepts. Proc. of the 41st
Annual ACM SIGCSE Conference (2010), 97–101.

[64] Tew, A.E. and Guzdial, M. 2011. The FCS1: a language
independent assessment of CS1 knowledge. Proc. of the 42nd
Annual ACM SIGCSE Conference (2011), 111–116.

[65] Vygotsky, L. 1978. Mind in society: The development of higher
psychological processes. Harvard University Press.

[66] Vygotsky, L. 1986. Thought and language. MIT Press.
[67] Wagh, A. and Wilensky, U. 2012. Evolution in blocks: Building

models of evolution using blocks. Proc. of Constructionism
2012 (Athens, Gr, 2012).

[68] Weintrop, D. and Wilensky, U. 2012. RoboBuilder: A program-
to-play constructionist video game. Proc. of Constructionism
2012 (Athens, Gr, 2012).

[69] Weintrop, D. and Wilensky, U. 2014. Situating programming
abstractions in a constructionist video game. Proc. of
Constructionism 2014 (Vienna, Au, 2014).

[70] Weintrop, D. and Wilensky, U. 2015. To Block or not to Block,
That is the Question: Students’ Perceptions of Blocks-based
Programming. Proc. of the 14th Annual IDC Conference
(Boston, MA, 2015).

[71] Werner, L., Denner, J., Campe, S. and Kawamoto, D.C. 2012.
The fairy performance assessment: measuring computational
thinking in middle school. Proc. of the 43rd Annual ACM SIGC
Conference (2012), 215–220.

[72] Wertsch, J.V. 1991. Voices of the mind: A sociocultural
approach to mediated action. Harvard University Press.

[73] Whorf, B.L., Carroll, J.B. and Chase, S. 1956. Language,
thought, and reality: Selected writings of Benjamin Lee Whorf.
MIT press Cambridge, MA.

[74] Wilensky, U. and Papert, S. 2010. Restructurations:
Reformulating knowledge disciplines through new
representational forms. Proc. of Constructionism 2010 (Paris,
Fr., 2010).

[75] Wilensky, U. and Reisman, K. 2006. Thinking like a wolf, a
sheep, or a firefly: Learning biology through constructing and
testing computational theories— an embodied modeling
approach. Cognition and Instruction. 24, 2 (2006), 171–209.

[76] Wilkerson-Jerde, M.H. and Wilensky, U. 2010. Restructuring
Change, Interpreting Changes: The DeltaTick Modeling and
Analysis Toolkit. Proc. of Constructionism 2010 (Paris, Fr,
2010).

110

