Bootstrap-Calibrated Interval Estimates for Scale Scores in Item Response Theory

Yang Liu1 \quad Ji Seung Yang2

1University of California, Merced
2University of Maryland, College Park

July 15, 2016

IMPS 2016, Asheville, NC
IRT scoring in two stages

1. Calibration: Parameters of the scoring model are estimated from a calibration sample*
 - Maximum likelihood (ML) estimation

2. Scoring: Point and interval estimates of scores are calculated from the estimated posterior of the latent trait given the response pattern to be scored**
 - Point estimates: Expected/maximum a posteriori (EAP/MAP) scores
 - Interval estimates: Wald-type or quantile-based intervals

* Other limited- and full-information estimation methods are not considered here.
** Other scoring methods, such as ML, are not considered here. Our discussions can be extended to posterior-based scoring based on summed-scores.
Two sources of error in IRT scores

1 Measurement error
 - Test items are imperfect indicators of the latent variable
 - Even when the true model parameters are used, the variability of the posterior of the latent trait is still non-zero
 - Test length ↑, measurement error ↓

2 Sampling/calibration error
 - Estimated model parameters ≠ true parameters
 - Calibration sample size ↑, sampling error ↓
In practice...

- We often resort to the two-stage plug-in method
 1. Estimate IRT model parameters via ML
 2. Evaluate the posterior at the estimated model parameters
- The plug-in method ignores the sampling error (Cheng & Yuan, 2010; Yang, Hansen, & Cai, 2012), which is problematic when
 - The calibration sample size is small
 - The scoring model is complex
 - The true item parameters are extreme

Objectives

1. Obtain a better estimate of the true posterior using bootstrap calibration (BC)
2. Compare BC and plug-in interval estimates via Monte Carlo simulations
3. Propose a BC-based method that properly characterizes both sampling and measurement error
True and estimated posteriors

- Compare cumulative distribution functions (cdfs)

True posterior

Area = ?

Estimated posterior

Area = α

αth quantile
An alternative interpretation

- Predict plausible values generated from the true posterior

True posterior

Estimated posterior

Proportion of plausible values covered by the interval

Area = α

100α% one-sided interval estimate
One-sided plug-in prediction intervals (PIs)

- \(H_\xi(\theta|y^*) \): The posterior cdf
 - \(\xi \): Model parameters
 - \(\xi_0 \): True values
 - \(\hat{\xi} \): ML estimates
 - \(\theta \): The latent variable*
 - \(y^* \): The response pattern to be scored

- 100\(\alpha \)% one-sided plug-in PI: \(\left[-\infty, H_{\hat{\xi}}^{-1}(\alpha|y^*) \right] \)
 - \(H_{\hat{\xi}}^{-1}(\alpha|y^*) \): The \(\alpha \)th quantile of the plug-in posterior cdf

*Only unidimensional IRT models are considered here for notational simplicity.
One-sided plug-in PIs

- Using our notation

True posterior

Plug-in posterior

\[H_{\xi_0}(H_{\xi}^{-1}(\alpha|y^*)) \]

Area = \(\alpha \)

\([-\infty, H_{\xi}^{-1}(\alpha|y^*)]\)

\[H_{\xi}^{-1}(\alpha|y^*) \]

IRT score interval

Bootstrap calibration
Predictive coverage

- Define the *coverage probability of plausible values* for one-sided plug-in PIs at nominal level α

\[C_{\xi_0}(\alpha) = E_{\xi_0}^Y \left[H_{\xi_0} \left(H^{-1}_{\hat{\xi}}(\alpha|y^*) \big| y^* \right) \right] \]

- $E_{\xi_0}^Y$: Expectation over repeated sampling of the calibration data Y

- $C_{\xi_0}(\alpha)$ can be estimated by Monte Carlo simulations

- Since $\hat{\xi}$ is consistent for ξ_0, $C_{\xi_0}(\alpha) \rightarrow \alpha$ as the sample size $n \rightarrow \infty$
Calibrating the plug-in PI

- Under mild regularity conditions (Beran, 1990),

\[C_{\xi_0}(\alpha) = \alpha + O\left(\frac{1}{n}\right) \]

- The order of the bias term can be improved via calibration

- At nominal level \(C_{\xi_0}^{-1}(\alpha) \), the one-sided plug-in PI has coverage \(\alpha \), because \(C_{\xi_0} \left(C_{\xi_0}^{-1}(\alpha) \right) = \alpha \)
 - But \(\xi_0 \) is unknown in practice

- Calibration: Use nominal level \(C_{\hat{\xi}}^{-1}(\alpha) \)
 - The bias term is \(o(1/n) \)

Calibration via parametric bootstrap

- Monte Carlo approximations of $C_{\hat{\xi}}(\alpha)$ and $C_{\hat{\xi}}^{-1}(\alpha)$ can be obtained in a fashion similar to the approximation of $C_{\xi_0}(\alpha)$
- The only exception is that the calibration data should be generated using estimated parameters $\hat{\xi}$, i.e., parametric bootstrap
- We use 500 bootstrap samples in our simulations*

*The ML estimation of model parameters may fail to converge in some bootstrap samples; those occasions were simply excluded from the calculation.
3PL model, constant guessing, \(n = 500 \)

- Compare Plug-in and BC one-sided PIs
- Nominal level \(\alpha = 0.025, 0.05, \ldots, 0.975 \)
- True item parameters: 36 binary items

<table>
<thead>
<tr>
<th></th>
<th>Intercept</th>
<th>1.8</th>
<th>0.9</th>
<th>−2.0</th>
<th>−1.1</th>
<th>2.4</th>
<th>1.4</th>
<th>(\cdots)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Slope</td>
<td>0.5</td>
<td>0.7</td>
<td>1.0</td>
<td>1.3</td>
<td>1.7</td>
<td>2.3</td>
<td>(\cdots)</td>
</tr>
<tr>
<td></td>
<td>Guessing</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>(\cdots)</td>
</tr>
</tbody>
</table>

- Response patterns were generated at \(\theta_0 = -2, -1.5, \ldots, 2 \)
- 500 replications

- R package \texttt{mirt} (Chalmers, 2012) was used for estimation

3PL model, constant guessing, $n = 500$

Graph Description:
- The graph plots the coverage of plausible values against the nominal level α for different values of θ_0 ranging from -2 to 2.
- Two lines are shown: one for BC (normal) and one for Plug-in (normal).
- The coverage values are indicated on the y-axis, ranging from -0.03 to 0.03.
- The x-axis represents the nominal level α, with values ranging from 0.1 to 0.9.

Key Observations:
- As θ_0 increases from -2 to 2, the coverage remains relatively stable.
- The BC (normal) line generally shows a slight increase in coverage compared to the Plug-in (normal) line.

Conclusion:
The graph illustrates the effectiveness of using a constant guessing model in the 3PL framework, showing stable coverage across different θ_0 values and nominal levels α.
Choice of latent variable density (prior)

- So far, $\mathcal{N}(0,1)$ has been used as the prior in the posterior calculation, which is often done in practice.
- Since $\mathcal{N}(0,1)$ shrinks the posterior towards 0, the corresponding PIs often do not account for measurement error properly when the test is short.
- The coverage of the true latent variable score θ_0 can be very different from the nominal level.
3PL model, constant guessing, \(n = 500 \)

Coverage of \(\theta_0 - \alpha \)

\(\theta_0 = -2 \) \quad \theta_0 = -1.5 \quad \theta_0 = -1 \quad \theta_0 = -0.5 \quad \theta_0 = 0 \quad \theta_0 = 0.5 \quad \theta_0 = 1 \quad \theta_0 = 1.5 \quad \theta_0 = 2 \)

Nominal level \(\alpha \)

IRT score interval	Coverage of true scale scores
0.1 0.5 0.9 | 0.1 0.5 0.9
0.1 0.5 0.9 | 0.1 0.5 0.9
0.1 0.5 0.9 | 0.1 0.5 0.9
0.1 0.5 0.9 | 0.1 0.5 0.9
0.1 0.5 0.9 | 0.1 0.5 0.9
0.1 0.5 0.9 | 0.1 0.5 0.9
0.1 0.5 0.9 | 0.1 0.5 0.9
0.1 0.5 0.9 | 0.1 0.5 0.9

BC (normal) | Plug-in (normal)
Jeffreys’ prior

- Jeffreys’ prior $\pi_{\xi_0}(\theta) \propto \sqrt{i_{\xi_0}(\theta)}$
 - $i_{\xi_0}(\theta)$: Test information function evaluated at ξ_0

- For continuous data and in the absence of nuisance parameters, Jeffreys’ prior is **first-order probability matching**, i.e., the discrepancy between posterior and coverage probabilities is of order $1/n$ (Welch & Peers, 1963)

- Although Jeffreys’ prior is not exactly first-order matching for discrete data, we conjecture that it can improve the coverage of θ_0

3PL model, constant guessing, \(n = 500 \)

- Jeffreys’ prior was used instead of \(\mathcal{N}(0, 1) \)
- Nominal level \(\alpha = 0.025, 0.05, \ldots, 0.975 \)
- True item parameters: 36 binary items

<table>
<thead>
<tr>
<th></th>
<th>Intercept</th>
<th>1.8</th>
<th>0.9</th>
<th>-2.0</th>
<th>-1.1</th>
<th>2.4</th>
<th>1.4</th>
<th>(\cdots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope</td>
<td>0.5</td>
<td>0.7</td>
<td>1.0</td>
<td>1.3</td>
<td>1.7</td>
<td>2.3</td>
<td>(\cdots)</td>
<td></td>
</tr>
<tr>
<td>Guessing</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>(\cdots)</td>
<td></td>
</tr>
</tbody>
</table>

- Response patterns were generated at \(\theta_0 = -2, -1.5, \ldots, 2 \)
- 500 replications
3PL model, constant guessing, \(n = 500 \)

Coverage of \(\theta_0 - \alpha \)

\(\theta_0 = -2 \) \(\theta_0 = -1.5 \) \(\theta_0 = -1 \) \(\theta_0 = -0.5 \) \(\theta_0 = 0 \) \(\theta_0 = 0.5 \) \(\theta_0 = 1 \) \(\theta_0 = 1.5 \) \(\theta_0 = 2 \)

BC (Jeffreys) Plug-in (Jeffreys) Plug-in (normal)

IRT score interval Simulation: Part 2
3PL model, constant guessing, \(n = 500 \)

Coverage of \(\theta_0 - \alpha \)

- \(\theta_0 = -2 \)
- \(\theta_0 = -1.5 \)
- \(\theta_0 = -1 \)
- \(\theta_0 = -0.5 \)
- \(\theta_0 = 0 \)
- \(\theta_0 = 0.5 \)
- \(\theta_0 = 1 \)
- \(\theta_0 = 1.5 \)
- \(\theta_0 = 2 \)

Nominal level \(\alpha \)

IRT score interval

Simulation: Part 2
3PL model, constant guessing, \(n = 500 \)

![Graph showing coverage of plausible values for different \(\theta_0 \) values.](image)

- BC (Jeffreys)
- Plug–in (Jeffreys)

IRT score interval

Simulation: Part 2
Summary and future directions

- Summary of findings
 - Bootstrap calibration yields a better estimate of the true posterior
 - Using Jeffreys’ prior leads to better coverage of the true scale score

- Future directions
 - Extensions to multidimensional IRT models
 - Using bootstrap calibration for other inferential purposes
Thanks!