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Abstract

Stokes parameters form a Minkowskian four-vector under various opti-
cal transformations. As a consequence, the resulting two-by-two den-
sity matrix constitutes a representation of the Lorentz group. The as-
sociated Poincaré sphere is a geometric representation of the Lorentz
group. Since the Lorentz group preserves the determinant of the den-
sity matrix, it cannot accommodate the decoherence process through
the decaying off-diagonal elements of the density matrix, which yields
to an increase in the value of the determinant. It is noted that the
O(3, 2) de Sitter group contains two Lorentz subgroups. The change
in the determinant in one Lorentz group can be compensated by the
other. It is thus possible to describe the decoherence process as a
symmetry transformation in the O(3, 2) space. It is shown also that
these two coupled Lorentz groups can serve as a concrete example of
Feynman’s rest of the universe.
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1 Introduction

Traditionally the Poincaré sphere plays a central role in polarization op-
tics [1]. It is also found to be useful to elucidate the properties of ge-
ometric phases [2], two-beam systems with partially coherent phase rela-
tions [3], symmetric scattering [4] and the decoherence in multiple scatter-
ing of light [5] as well as the decoherence in Bose Einstein condensates [6].
Apart from those, Thomas rotations are investigated in connection with the
Bloch ball which is regarded as the Poincaré sphere model of the hyperbolic
geometry [7].

Since the sphere is applicable to diverse branches of physics, and since its
geometry is so appealing, the symmetry of the Poincaré sphere is a subject
by its own right. It has three-dimensional rotational symmetries which are
well known. What other symmetries does this sphere possesses? This is one
of the questions we would like to address in this paper.

Polarization optics can be formulated in terms of the two-by-two and
four-by-four representations of the six-parameter Lorentz group. It was
noted that the two-component Jones vector and the four-component Stokes
parameters are like the relativistic spinors and the Minkowskian four-vectors,
respectively [8, 9]. It is possible to identify the attenuator, rotator, and phase
shifter with appropriate transformation matrices of the Lorentz group. This
formulation is not restricted to polarization optics. It can be applied to all
two-beam systems with coherent or partially coherent phases.

If we use (t, z, x, y) as the Minkowskian four-vector to which four-by-four
Lorentz-transformation matrices are applicable, it is possible to write

X =

(
t+ z x− iy
x+ iy t− z

)
, (1)

with appropriate two-by-two transformation matrices applicable to both
sides of this two-by-two representation of the four-vector. These Lorentz
transformations are unimodular transformations, keeping the determinant
t2 − z2 − x2 − y2 of the above matrix invariant.

If we write the Stokes parameters in this two-by-two form, the matrix
becomes the density matrix. This density matrix can also be geometrically
represented by the Poincaré sphere. Therefore, the symmetry of the Poincaré
sphere is necessarily that of the Lorentz group [10]. In this Lorentzian
regime, the determinant of the density matrix is an invariant quantity.

Unlike the Jones vectors, the Stokes parameters, the density matrix,
and the Poincaré sphere can deal with the lack of coherence between the
two beams. The determinant of the density matrix vanishes when the two
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beams are completely coherent, and it increases as the beams lose coherence.
The Lorentzian symmetry of the Poincaré sphere can describe the symmetry
with a fixed value of the determinant, but it cannot describe the process in
which the determinant changes its value. In other words, we cannot discuss
the decoherence process within the framework of the Lorentz group [10].

Although there are other types of decoherences such as decoherence due
to amplitude damping, in this paper we restrict our study to phase de-
coherence, since we are tempted to associate this damping problem with
dissipation problems in physics [11]. The known mathematical method
closest to group theoretical approaches is to introduce the concept semi-
groups [12]. While semi-groups are quite promising in traditional dissipa-
tion problems, we choose to investigate the decoherence problem with a
mathematical method which is already familiar to us.

Let us start with a pair of complex numbers a and b. From these numbers,
we can construct the density matrix of the form

ρ =

(
aa∗ ab∗e−λt

a∗be−λt bb∗

)
. (2)

Indeed, the decay in the off-diagonal elements of this matrix plays funda-
mental role in decoherence processes [13, 14].

The determinant of this matrix is

aa∗bb∗
(
1− e−2λt

)
. (3)

This density matrix enjoys the symmetry properties like those of the X
matrix given in Eq.(1), since the optical transformations applicable to the
Stokes parameters are like Lorentz transformations. However, these determinant-
preserving transformations cannot change the t variable.

When t = 0, the system is in a pure state, and the determinant is zero.
As t increases, the value of the determinant in Eq.(3) increases from zero to
aa∗bb∗, and consequently the system becomes decoherent.

The question is whether there is a symmetry group which will accom-
modate this transition process. We know the Lorentz group cannot, but
this does not prevent us from looking for a larger symmetry group. The
purpose of the present paper is to show that the de Sitter group O(3, 2)
accommodates this decoherence process.

In Sec. 2, we introduce the O(3,2) de Sitter group and point out that
it can act as two coupled O(3,1) Lorentz groups. In Sec. 3, we review the
symmetries of the Stokes parameters and the density matrix. In Sec. 4, we
study the symmetries of the Poincaré sphere within the Lorentzian frame-
work and discuss in detail what is possible and what is not possible. In
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Sec. 5, it is shown that the O(3, 2) symmetry can provide a framework for
the decoherence process. In Sec 6, we interpret the result of our paper in
terms of Feynman’s rest of the universe.

2 The O(3,2) de Sitter Group as Two Coupled
Lorentz Groups

The de Sitter group is an extension of the Lorentz group applicable to a five-
dimensional space consisting of three space coordinates (x, y, z) and two time
coordinates (t, u). It leaves the quadratic form

t2 + u2 − x2 − y2 − z2 (4)

invariant. This five dimensional space admits three rotations around the
three coordinate axis and for each of the two time coordinates there are two
sets of boost transformations along the three coordinate axis. There is also
one more rotation acting on the two time coordinates, all adding up to ten
transformations. Thus, this ten parameter group is the minimal extension
of the O(3, 1) Lorentz group which is locally isomorphic to Sp(4, R) [15].

Space-time structures with additional space or time variable(s) have been
studied [16, 17], and its representations have been discussed in detail [18].

The generators Mab, with Mab = −M ba satisfy the commutation rela-
tions:

[Mab,M cd] = i(gadM bc − gacM bd + gbcMad − gbdMac), (5)

where gab = diag(−1,−1, 1, 1, 1). From Mab, the rotation generators Ji and
the boost generators Lij can respectively be read as:

Ji =
1

2
ϵijkM

jk, Lij =M i j+2 (6)

where the late indices i, j, ... run from 1 to 3. They satisfy the commutation
relations:

[Ji, Jj ] = iϵijkJk, [Ji, Ljk] = iϵijlLlk [Lij , Lkl] = −iδjlϵikmJm. (7)

Although, this may sound like a mathematical exercise remote from the
physical reality, we would like emphasize that the O(3, 2) de Sitter group
is already a standard theoretical tool in optical sciences, specifically as a
mathematical basis for two-mode squeezed states [19, 20], as well as in the
theory of elementary particles together with the O(4, 1) group. As Paul A.
M. Dirac noted in 1963, the O(3, 2) group is the fundamental symmetry
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group for two coupled harmonic oscillators [15]. This two-oscillator system
often serves as a mathematical basis for soluble models such as the Lie
model in quantum field theory [21] and the Bogoliubov transformations in
superconductivity [22].

However, in this paper, we are interested in the fact that the O(3, 2)
group contains two O(3, 1) Lorentz groups, where the two time variables
are linearly combined through the one parameter rotation group. We will
consider them as two coupled Minkowskian spaces. Let us consider two
Minkowskian four vectors (t, x, y, z) and (u, x, y, z). In the first Minkowksian
space,

(t2 − x2 − y2 − z2) (8)

is invariant under Lorentz transformations while

(u2 − x2 − y2 − z2) (9)

is invariant in the other Minkowskian space.
Let us introduce two notations T and U defined as

T =
√
t2 − x2 − y2 − z2, U =

√
u2 − x2 − y2 − z2. (10)

These two positive quantities are Lorentz-invariants in their respective Minkowskian
spaces. However, they do not have to remain invariant in the five-dimensional
de Sitter space. If we write the five-vector as

(t, x, y, z, u), (11)

it is possible to have a Lorentz frame in which x = y = z = 0. Then the
above five-vector becomes

(T, 0, 0, 0, U). (12)

In this particular frame, the O(3, 2) group contains rotations which will
allow us to write (

T
U

)
=

(
cosχ − sinχ
sinχ cosχ

)(
Z
0

)
, (13)

where
Z2 = T 2 + U2. (14)

The variables T and U are invariant in their respective four-dimensional
Minkowskian space, however the quantity invariant in the de Sitter space is
Z. Indeed, we can say that these two Minkowskian spaces are coupled by
Eq.(13) within the five-dimensional de Sitter space.

5



It has been shown in the literature that the Stokes parameters behave
like Mikowskian four-vectors [10]. Furthermore, they represent the density
matrix for two optical beams. We therefore note that the quantities T and
U correspond to the determinants of those density matrices measuring co-
herence of each system. Therefore, Eq.(14) tells a conservation of coherence
in the total system defined in the de Sitter space.

The loss of coherence in one Lorentzian space will yield to a gain in
the other space. We shall show that our symmetry model will constitute a
concrete example of Feynman’s rest of the universe. The first Lorentzian
space is the world in which we make physical observations, and the second
space belongs to the rest of the universe [23, 24].

It has been a question for many years whether time-irreversible systems
such as dissipative and decoherent systems can be formulated as symmetry
problems by introducing the rest of the universe clearly defined by Feynman.
We shall see in the following sections whether this is possible for two-beam
optical systems.

As for the values of T and U , we assume here that they are positive
and can become as small as we wish, but do not vanish completely. This
is a perfectly valid procedure in dealing with vanishing numbers in physics.
However, there is a big difference in mathematics. It required a procedure
called ”group contractions” [25]. We shall avoid in this section group con-
tractions.

3 Stokes Parameters as Minkowskian Four-vectors

Let us start with a plane wave propagating along the z direction. Then, it
has polarizations along the x and y directions. We can then write the Jones
vector as (

ψ1

ψ2

)
=

(
A exp {i(kz − ωt)}
B exp {i(kz − ωt)}

)
. (15)

Even though the Jones vector was developed originally for polarized light
waves, the formalism can be extended to all two-beam systems such as in-
terferometers [10].

If the two beams are mixed, we use the rotation matrix

R(θ) =

(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
, (16)

applicable to column vector of Eq.(15).
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These two beams can go through two different optical path lengths,
resulting in a phase difference. If the phase difference is ϕ, the phase shift
matrix is

P (ϕ) =

(
e−iϕ/2 0

0 eiϕ/2

)
. (17)

When reflected from mirrors, or while going through beam splitters,
there are intensity losses for both beams. The rate of loss is not the same
for the beams. This results in the attenuation matrix of the form(

e−η1 0
0 e−η2

)
= e−(η1+η2)/2

(
eη/2 0
0 e−η/2

)
(18)

with η = η2 − η1 . This attenuator matrix tells us that the electric fields
are attenuated at two different rates. The exponential factor e−(η1+η2)/2

reduces both components at the same rate and does not affect the degree of
polarization. The effect of polarization is solely determined by the squeeze
matrix

S(η) =

(
eη/2 0
0 e−η/2

)
. (19)

It was shown in Refs. [8, 10, 26] that repeated applications of the rotation
matrices of the form of Eq.(16), shift matrices of the form of Eq.(17) and
squeeze matrices of the form of Eq.(19) lead to a two-by-two representation
of the six-parameter Lorentz group. The transformation matrix in general
takes the form

G =

(
α β
γ δ

)
, (20)

applicable to the column vector of Eq.(15), where all four elements are com-
plex numbers with the condition that the determinant of the matrix be
one. This matrix contains six free parameters. The above G matrix con-
stitutes the two-by-two representation of the six-parameter Lorentz group,
commonly called SL(2, c).

Indeed, the two-component Jones vector provides the representation
space for the two-by-two representation of the Lorentz group. However, the
Jones vectors cannot describe whether the two beams are coherent. This is
the reason why we have to resort to the coherency matrix

C =

(
S11 S12
S21 S22

)
, (21)

with

S11 =< ψ∗
1ψ1 >, S22 =< ψ∗

2ψ2 >,

S12 =< ψ∗
1ψ2 >, S21 =< ψ∗

2ψ1 > . (22)
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This coherency matrix also serves as the density matrix [23].
Under the influence of theG transformation given in Eq.(20), this density

matrix is transformed as

C ′ = GC G† =

(
S′
11 S′

12

S′
21 S′

22

)

=

(
α β
γ δ

)(
S11 S12
S21 S22

)(
α∗ γ∗

β∗ δ∗

)
. (23)

This leads to the four-by-four transformation
S′
11

S′
22

S′
12

S′
21

 =


α∗α γ∗β γ∗α α∗β
β∗γ δ∗δ δ∗γ β∗δ
β∗α δ∗α β∗β δ∗β
α∗γ γ∗γ α∗δ γ∗δ



S11
S22
S12
S21

 . (24)

It is sometimes more convenient to use the following combinations of
parameters.

S0 =
S11 + S22√

2
, S1 =

S11 − S22√
2

,

S2 =
S12 + S21√

2
, S3 =

S12 − S21√
2i

. (25)

These four parameters are called the Stokes parameters in the literature [27],
usually in connection with polarized light waves. However, as was mentioned
before, the Stokes parameters are useful to all two-beam systems. We can
write the above expression as

S0
S1
S2
S3

 =
1√
2


(S11 + S22)
(S11 − S22)
(S12 + S21)
i(S21 − S12)

 . (26)

Then the four-by-four matrix which transforms (S11, S22, S12, S21) to (S0, S1, S2, S3)
is 

S0
S1
S2
S3

 =
1√
2


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 −i i



S11
S22
S12
S21

 . (27)

This matrix enables us to construct the transformation matrix applicable to
the Stokes parameters, widely known as the Mueller matrix. The transfor-
mation matrix applicable to the Stokes parameters of Eq.(25) can be derived
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from Eq.(24), and its form has been discussed in detail in Refs. [10, 8]. The
above Stokes parameters form a Minkowskian four-vector like (t, z, x, y), and
the transformation matrix applicable to the Stokes parameters represents a
Lorentz transformation.

The four-by-four representation is like the Lorentz transformation matrix
applicable to the space-time Minkowskian vector (t, z, x, y) [10]. This allows
us to study space-time symmetries in terms of the Stokes parameters which
are applicable to interferometers. Let us first see how the rotation matrix
of Eq.(16) is translated into the four-by-four formalism. In this case,

α = δ = cos(θ/2), γ = −β = sin(θ/2). (28)

Thus, the corresponding four-by-four matrix takes the form

R(θ) =


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

 . (29)

Let us next see how the phase-shift matrix of Eq.(17) is translated into
this four-dimensional space. For this two-by-two matrix,

α = e−iϕ/2, β = γ = 0, δ = eiϕ/2. (30)

For these values, the four-by-four transformation matrix takes the form

P (ϕ) =


1 0 0 0
0 1 0 0
0 0 cosϕ − sinϕ
0 0 sinϕ cosϕ

 . (31)

For the squeeze matrix of Eq.(19),

α = eη/2, β = γ = 0, δ = e−η/2. (32)

As a consequence, its four-by-four equivalent is

S(η) =


cosh η sinh η 0 0
sinh η cosh η 0 0
0 0 1 0
0 0 0 1

 . (33)

If the above matrices are applied to the four-dimensional Minkowskian space
of (t, z, x, y), the above squeeze matrix will perform a Lorentz boost along the
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z or S1 axis with S0 as the time variable. The rotation matrix of Eq.(29) will
perform a rotation around the y or S3 axis, while the phase shifter of Eq.(31)
performs a rotation around the z or the S1 axis. Matrix multiplications
with R(θ) and P (ϕ) lead to the three-parameter group of rotation matrices
applicable to the three-dimensional space of (S1, S2, S3).

The phase shifter P (ϕ) of Eq.(31) commutes with the squeeze matrix of
Eq.(33), but the rotation matrix R(θ) does not. This aspect of matrix alge-
bra leads to many interesting mathematical identities which can be tested in
laboratories. One of the interesting cases is that we can produce a rotation
by performing three squeezes. This aspect is widely known as the Wigner
rotation as discussed in the literature.

In this paper, we are interested in studying the time-dependent density
matrix of the form

C(t) =

(
S11 S12e

−λt

S21e
−λt S22

)
. (34)

This matrix can be translated into the Minkowskian four-vector
S0
S1

S2e
−λt

S3e
−λt

 . (35)

As t increases, the third and fourth component of this Minkowskian four-
vector becomes smaller.

Lorentz transformations preserve the (length)2 of the four-vector which
in the Minkowskian metric takes the form

S2
0 − S2

1 − (S2
2 + S2

3)e
−2λt. (36)

This is also the determinant of the density matrix D(t). If this quantity
increases as the time t increases, we cannot handle the problem within the
framework of the Lorentz group [10].

One option is to assert that this is not a reversible problem and invent a
mathematical tool other than group theory [12]. Another approach is to look
for a larger group which contains the Lorentz group as a subgroup. This is
precisely what we intend to do in this paper. In Sec. 5, we shall introduce the
O(3, 2) de Sitter group which contains two Lorentz groups. Before getting
into the world of the O(3, 2) symmetry, let us study the geometry of the
Poincaré sphere in the following section.
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4 Lorentz Symmetries of the Poincaré Sphere

The Poincaré sphere has a long history, and its spherical symmetry is well
known [1]. The Lorentz group has the three-dimensional rotation group as its
subgroup. Thus, the Lorentz symmetry of the Poincaré sphere includes the
traditional rotational symmetry. Let us study in this section the symmetries
associated with Lorentz boosts.

If we use the expressions of ψ1 and ψ2 given in Eq.(15), the density
matrix C of Eq.(21) becomes

D(t) =

(
A2 ABe(−λt−iϕ)

ABe(−λt+iϕ) B2

)
. (37)

Here ϕ is the phase difference between ψ∗
1ψ2 and ψ1ψ

∗
2. The λt factor in the

exponent describes the loss of coherence. We assume that the off-diagonal
terms decrease exponentially in the time variable. The determinant of this
density matrix is

(AB)2
(
1− e−2λt

)
. (38)

This determinant is zero when t = 0, but increases to (AB)2 as t becomes
larger.

The corresponding four-vector is

1

2


A2 +B2

A2 −B2

2AB(cosϕ)e−λt

2AB(sinϕ)e−λt

 . (39)

For a fixed value of t, the geometry of the Poincaré sphere is the geometry
defined by the three parameters A,B and ϕ. This sphere consists of two
spheres: One is the outer sphere whose radius is the time-like component of
the above four-vector

s =
(A2 +B2)

2
, (40)

and the other is the inner sphere whose radius is the magnitude of the three-
vector contained in the four-vector of Eq.(39)

r =
1

2

√
(A2 −B2)2 + 4(AB)2e−2λt. (41)

Then the quantity
s2 − r2 (42)
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is Lorentz-invariant, and is equal to the value of the determinant given in
Eq.(38). The inner radius is equal to the outer radius when t = 0, and
becomes

(
A2 −B2

)
/2 as t becomes very large.

We can now introduce a spherical coordinate system with

rz = (A2 −B2)/2 = r(cos θ),

rx = AB(cosϕ)e−λt = r(sin θ) cosϕ,

ry = AB(sinϕ)e−λt = r(sin θ) sinϕ. (43)

Then the Lorentz symmetry allows rotations in this three-dimensional sys-
tem. Now, with the appropriate rotation it is possible to bring four-vector
of Eq.(39) to 

s
r
0
0

 . (44)

The rotations do not change the radii of the outer and inner spheres, and r
and s remain invariant under the rotations.

However, the Lorentz symmetry allows the Lorentz boosts of the four-
vector of Eq.(44) along the −z direction. If we apply the inverse of the boost
matrix of Eq.(33), then the four-vector becomes

s(cosh η)− r(sinh η)
r(cosh η)− s(sinh η)

0
0

 . (45)

This transformation changes the outer and inner radii, but keeps (s2 − r2)
invariant, as we can see from

[s(cosh η)− r(sinh η)]2 − [r(cosh η)− s(sinh η)]2 = s2 − r2. (46)

It is now possible to choose the value of η such that

r(cosh η)− s(sinh η) = 0, (47)

which leads to tanh η = r/s. If this condition is met, then the four-vector
of Eq.(45) becomes

√
s2 − r2

0
0
0

 =


AB

√
1− e−2λt

0
0
0

 . (48)
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Indeed, the Lorentz symmetry allows us to bring the Poincaré sphere to a
one-number system. We are now tempted to change the value of

(
r2 − s2

)
in the above expression by changing the time variable t. This is precisely
what is not allowed within the framework of the Lorentz group. We shall
see whether this can be achieved when symmetry group is enlarged.

5 O(3,2) Symmetry of the Poincaré Sphere

In order to deal with the above problem, we introduce the O(3, 2) de Sitter
space. As we emphasized in Sec. 1, this group has already been exploited in
optical sciences.

Let us consider a five-vector (0, 0, 0, 0,m) in the de Sitter space, and a
five-by-five rotation matrix acting on the two time coordinates

cosχ 0 0 0 sinχ
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

− sinχ 0 0 0 cosχ

 . (49)

This rotation matrix changes the five-vector to

(m (sinχ), 0, 0, 0,m (cosχ)) . (50)

We have noted in Sec. 2 that the de Sitter space contains two Minkowskian
subspaces, with their respective invariants of Eq.(8) and Eq.(9), while the
invariant quantity in this larger space is given in Eq.(4). If z = x =
y = 0, we let this invariant quantity to be (t2 + u2) = m2. Thus, in
the Minkowskian space with the coordinate system (t, z, x, y), the invari-
ant quantity is m2 sin2 χ, while m2 cos2 χ is the invariant quantity in the
Minkowskian space with the coordinate system (u, z, x, y), where now the
four vectors in these spaces are

m (sinχ)
0
0
0

 ,


m (cosχ)

0
0
0

 (51)

respectively.
Let us compare the first four-vector of Eq.(51) with the four-vector of

Eq.(48). If we identify the parameter m(sinχ) in Eq.(51) with
√
s2 − r2 of

Eq.(48), we have
s2 − r2 = m2 sin2 χ. (52)
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This further allows us to identify m as AB in Eq.(48), and

(AB)2(sinχ)2 = (AB)2
(
1− e−2λt

)
, (53)

which leads to
cosχ = e−λt. (54)

We concluded in Sec. 4 that the t parameter cannot be changed in the
Lorentzian regime. However, we have shown that this decoherence parame-
ter can be identified with the angle variable χ in the de Sitter space.

After changing the t variable, we can make inverse transformations to
return to the four-vector of the form given in Eq.(39). Indeed, it is gratifying
to note that we now have the freedom of changing this time variable with
a symmetry operation. In terms of this symmetry parameter, we can write
the density matrix as

ρ(χ) =

(
A2 AB e−iϕ(cosχ)

AB eiϕ(cosχ) B2

)
. (55)

If χ = 0 and t = 0, the system is in a pure state. As t becomes large, the
angle χ approaches 90o. Therefore the de Sitter parameter χ neatly takes
care of the loss of coherence in the two-beam system.

6 Physical Interpretation

In this paper, we introduced two separate Minkowskian spaces by insin-
uating the de Sitter space and consequently we have converted the deco-
herence problem into a symmetry problem. The first Minkowskian space
was defined by the coordinate variables (t, z, x, y), and the second one by
(u, z, x, y). When we discussed the Lorentzian symmetry of the Poincaré
sphere we worked with the first Minkowskian space. Our analysis for the
second Minkowskian space would be exactly the same, except that sinχ is
replaced by cosχ as can be seen from Eq.(49). The density matrix in this
second space can then be written as

σ(χ) =

(
A2 AB e−iϕ(sinχ)

AB eiϕ(sinχ) B2

)
. (56)

This density matrix gains coherence as the density matrix of Eq.(55) loses
coherence. The determinants of these two density matrices are (AB)2 sin2 χ
and (AB)2 cos2 χ respectively. The sum of these two determinants is (AB)2
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and is independent of angle variable χ. Indeed, these two density matrices
or the two Lorentzian subspaces are “coupled” in a Pythagorean manner.

Next, in order to discuss the density matrix, let us go back to Eq.(55)
and write the amplitudes A and B as

A =
√
2r cos(θ/2), B =

√
2r sin(θ/2). (57)

Then the density matrix takes the form

ρ(χ) = 2r

(
cos2(θ/2) [sin(θ/2) cos θ/2)]e−iϕ cosχ

[sin(θ/2) cos θ/2)]e+iϕ cosχ sin2(θ/2)

)
.

(58)
Since the density matrix is invariant within a given Poincaré regime, we can
evaluate the above matrix for a convenient value of θ. So we choose θ = 90o.
If we impose the normalization condition Tr(ρ) = 1, the density matrix ρ(χ)
of Eq.(55) becomes

ρ(χ) =
1

2

(
1 e−iϕ cosχ

eiϕ cosχ 1

)
. (59)

This matrix can be diagonalized into the form

1

2

(
1 + cosχ 0

0 1− cosχ

)
. (60)

Then the entropy can be calculated from the formula

S = −Tr(ρ ln ρ), (61)

and the result is

S = −
(
1− cosχ

2

)
ln

(
1− cosχ

2

)
−

(
1 + cosχ

2

)
ln

(
1 + cosχ

2

)
. (62)

This quantity becomes 0 when χ = 0 (fully coherent) and ln2 when χ = 900

(fully incoherent). This is consistent with the prevailing definition of entropy
for two optical waves.

The entropy for the second space is

S′ = −
(
1− sinχ

2

)
ln

(
1− sinχ

2

)
−

(
1 + sinχ

2

)
ln

(
1 + sinχ

2

)
. (63)

The entropy S of the first space is monotonically increasing function of χ,
while that of the second space S′ is a decreasing function. Thus, an increase
in entropy in the first space leads to a decrease in the second space. Then
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we can ask whether the sum of these two entropies becomes independent of
χ, leading to an entropy conservation of the total system. The answer is
No. However, this does not cause problems for us, because the second space
is not necessarily a physical space. It could be meaningless to use the same
definition of entropy for this space.

Even if we insist that the second space be a physical space space, the
increase of entropy is not a strange concept to us. On the other hand, we
insist on a conservation of some physical quantity, we can use the sum of
the determinants of the density matrices given in Eq.(55) and Eq.(56).

What is the meaning of this second space? In his book on statistical
mechanics [23], Feynman makes the following statement about the density
matrix. When we solve a quantum-mechanical problem, what we really do is
divide the universe into two parts - the system in which we are interested and
the rest of the universe. We then usually act as if the system in which we
are interested comprised the entire universe. To motivate the use of density
matrices, let us see what happens when we include the part of the universe
outside the system.

Feynman did not specify whether the rest of the universe is observable
or not. In either case, it is an interesting exercise to construct a model of
the rest of the universe behaving like a physical world. With this point in
mind, Han et al. studied two coupled harmonic oscillators in which one of
the oscillators correspond to the physical world and the other to the rest of
the universe [24]. In this example, the rest of the universe is the same as
the world in which we do physics. In thermal field theory [28], even though
based on the same mathematics as that of the coupled oscillators, the rest
of the universe is not physically identified, except that it causes thermal
excitations of the oscillators in the physical world.

In the case of decoherence, the concept of thermal bath as the cause of
decoherence was noted by Feynman and Vernon [29]. The decoherence effect
in tunneling processes was studied by Caldeira and Leggett in 1983 [30]. In
their review paper, Leggett et al. discuss two-state systems coupled to a
dissipative system [31]. The two-level decoherence within field theoretic
framework was studied in detail by Anastopoulos and Hu [32]. Recently,
Shiokawa and Hu were able to apply this two-level decoherence to qubit
systems [33].

While the concept of decoherence occupies one of the central places in
the current development of physics, the decoherence effect in two-optical
beams comes from phase-randomizing process discussed by McAlister and
Raymer [34], precisely in the form of the two-by-two matrix discussed in
this paper. As for the decoherence in the rest of the universe introduced
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in this paper, the system becomes more coherent as the time-variable in-
creases. Although this ”recoherence” process was considered by Anglin and
Zurek [35], it is premature to expect a two-state system to gain coherence
in the real world. It is thus very safe to say that the second Minkowskian
space introduced in this paper remains in Feynman’s rest of the universe.

However, this does not prevent us from constructing a physical system
analogous to the decoherent system coupled to a recoherent system. It
was noted by the present authors that para-axial lens systems constitute a
very rich resource of symmetries of the Lorentz group [36]. Thus, it may be
possible to construct a system of lenses which will illustrate the combination
of decoherence and recoherence processes discussed in the present paper.

Concluding Remarks

It has been widely believed that the decoherence problem could not be
treated as a symmetry problem. In this paper, we have presented a different
view, using an extra time-like dimension in the Lorentz group. The de Sitter
group we used has been one of the standard tools in relativistic quantum
mechanics [17] and elementary particle physics including one of the most
recent models in string theory. Also, this group is not new in optical sciences.
In 1963, Paul A. M. Dirac observed that the de Sitter group O(3, 2) serves
as a symmetry group for coupled harmonic oscillators [15]. This group is the
fundamental scientific language for two-mode squeezed states of light [19,
20]. We are thus not carrying the burden of introducing a new mathematical
device in this paper.

As we noted in Sec. 6, the O(3, 2) group can serve as an illustrative
example of Feynman’s rest of the universe [23]. One Lorentz subgroup rep-
resents the system under examination, while the other appears as the rest
of the universe. As Feynman noted, it is more satisfying to understand the
entire system including the rest of the universe.

By mentioning his rest of the universe, Feynman introduced the con-
cept of two entangled worlds. In view of the current trend in physics, it
is worth studying physical examples of Feynman’s rest of the universe in
connection with entangled systems. For instance, the universe consisting of
two coupled oscillators serves an illustrative example [24]. In this context,
we also note that Feshbach and Tikochinsky studied a dissipative oscillator
using two coupled oscillators [37]. It would be interesting to observe further
symmetries associated with dissipative systems.
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