ENEE324, Home assignment 4. Date due October 13, 2025, 11:59pm EDT.

Instructor: Alexander Barg

Please upload your work as a single PDF file to ELMS (under the ”Assignments” tab)

e Submissions on paper or by email will not be accepted.
e Please do not submit your solutions as multiple separate files (pictures of individual pages). Such submis-
sions are difficult to grade and will not be accepted.

e Justification of solutions is required.
e Each problem is worth 10 points unless noted otherwise.

Problem 1. Let X be a random variable that takes values {1, 2, 3, 4} with probabilities {0.1,0.3,0.4,0.2}.
Define a random variable Y = 5 — X.

1. Find the PMF of Y.
2. Compute the expectation E(X + Y).
3. Are X and Y independent? Justification required.
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Problem 2. A factory produces microchips of 2 types, 70% of type A and 30% of type B. Chips of type A
last a random number X 4 of years with pmf px, (k) = 1(3)* 1,k =1,2,..., and chips of type B last Xp
years with pmf px , (k) = %(%)k_l, k=1,2,....

1. Verify that px , (k) and px, (k) are valid pmf’s. Justification required.

A chip is chosen at random, se—rt—;s-@f—t—ype—A—er—B—w*&—pfeb&lﬁh-t-yé-eaeh Let X denote its random

lifetime.
2. Find the pmf of X.
3. Compute the expectation E(X).
4. Compute P(X > 4).
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Problem 3. There are 7 levels in a video game. You start at level 1 and have probability p; of advancing to
level 2 (so with probability 1 — p; your game ends at level 1, without ever advancing). If you reach level 7,
your probability of advancing to level j + 11is p;, forall 7 = 1,2,...,6. Denote by X the number of the
highest level that you reach.

1. Find the pmf of X in terms of the numbers p;.
2. Letting p; = 0.8 -0.15,5 = 1,2,...,6, find X, the expected level to which you advance.
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Problem 4. In a lottery, the probability for each ticket to be winning is p. You hope that buying 3 tickets
will triple your chances of having at least one winning ticket.

1. What is the distribution of the number of winning tickets out of the three tickets you bought ? (find the
pmf of the number X of winning tickets)

2. Find the probability that at least one of the three tickets is winning. Obtain the answer in two different
ways:
2a. Use the inclusion-exclusion formula.
2b. Start with computing the probability of the complementary event.

3. By now you are convinced that your hope is not going to materialize. For which values of p your belief
of tripling your chances is validated with no more than 1% margin of error? (hint: for small p).
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Problem 5. (a) Let X be a random month of the year, numbered from 1 to 12, and let Y be the month after
that, also represented as a number. Do X and Y have the same distribution? What is P(X < Y")?

(b) Suppose that two discrete RVs X and Y have the same distribution, but P(X < Y) > p. Is it possible
that

e p=10.99?
e p =0.999?
e p=17

In each case give an example of random variables X, Y with P(X < Y') > p or show that it is impossible.
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Problem 6. In the home assignments for some imagined class there were different 100 problems. 10 prob-
lems out of this list, randomly selected, will appear on the exam. You pass if you solve correctly 7 problems
out of the 10 included in the exam paper. You decide to boost your chances by memorizing solutions of s
problems out of the entire set of 100, where 0 < s < 100.

(a) Let X be the number of problems appearing in the midterm paper that you have memorized. What is
the distribution of X ? Identify it as one of the named distributions studied in class and give the pmf px (k)
in terms of s.

(b) Find the smallest number s such that your chance of success is at least 50%.
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