ENEE324, Home assignment 6. Date due November 11, 2025, 11:59pm EST.

Instructor: Alexander Barg

Please upload your work as a single PDF file to ELMS (under the ”Assignments” tab)

e Submissions on paper or by email will not be accepted.
e Please do not submit your solutions as multiple separate files (pictures of individual pages). Such submis-
sions are difficult to grade and will not be accepted.

e Justification of solutions is required.
e Each problem is worth 10 points unless noted otherwise.

Problem 1. The number of particles hitting a sensing screen per second is a Poisson RV with A = 3.2.
1. What is the probability that within a second, no particles have been registered?
2. What is the probability that there was at least one particle within a second?
3. Find the probability that there were > 2 and < 5 particles within a second?
4. What is the variance of the number of particles arriving at the screen?
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Problem 2. You have a well-shuffled standard deck of 52 cards. You turn the cards face up one by one,
without replacement. Recall that the deck contains 4 aces.

1. Let X be the random number of cards opened before the first ace is opened. Find E Xj.
2. Let X be the random number of cards between the first ace and the second ace. Find F X;.
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Problem 3. Use the Poisson approximation to answer the following questions related to the birthday prob-
lem.

(a) How many people are needed to have a 50% chance that at least one of them has their birthday on
March 1st?

(b) How many people are needed to have a 50% chance that at least one pair of them were not only born
on the same day of the year, but also were born within the same hour (out of 24 hours)? As always with
birthday problems, we assume that all the days are equiprobable, and all the hours within the same day are
equiprobable.

(c) With 100 people, there is a 64% chance that there is at least one set of 3 people with the same birthday.
Provide a Poisson approximation for this value by considering an indicator random variable for each triplet
of people (thus, 161,700 random variables). Provide another Poisson approximation by considering an
indicator random variable for each of the 365 days of the year.
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Problem 4. A point is chosen uniformly on the segment of the real line [0, 3]. Denote its position by X.

1. Find E(X) and Var(X).
2. What is the probability that X is closer to the right end of the segment than to the left end?

3. Define the random variable Y = X 2. Find the pdf of Y and verify that it integrates to 1.

4. Compute EY.
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Problem 5. Let X ~ N(5,4).
1. Find P(X > 7).
2.Find P3< X < 7).
3. Which value of x satisfies P(X < z) = 0.975?
4. For Z ~ N(0,1) define Y = 3Z + 2. Find the distribution law of Y: name the law and give its mean

and variance.
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Problem 6. The 66-95-99% rule gives approximate probabilities of a normal random variable being within
1, 2, and 3 standard deviations of its mean. Derive analogous rules for the following distributions.

(a) Unif(0, 1).

(b) Exp(1).
(c) Exp(1/2). Is there a single rule of this kind that applies to all exponential distributions irrespective of
the parameter A just as the 66-95-99% applies to all normal distributions irrespective of their mean p and

(@) Let U~Uni-(o,1)

B0=4 \lov),(OB o U:D\\—an.zﬁ

P ( | U - Ji\ < o’u> = P (ik—o,m << —)Ero.zg%) =0.572%
P-4 ) €avy) = P(L-0.5%U k~0.5%8)
This Govers the eatite 2ange f U, So Prof =

seme §o P( U~ |230,) =

(b) we bawe AvByp(); BX=U; Vo=l = o) =)

PloeXer) =% = 0.865

P Coex 43) _e? = pas0
P loexey) - ~e7' = pasa

(0) For K~ Exp(n), el Nar(X)=5, ox= -

P (1% Exvm) P(-maXe M) -
metgo? 0 S all m o5 Bat X o
= plopeXe ™ )
( 2 (@)7\ —(Mt
= CDF, (rn_«_-l>: — e ? = [~
A ’:e;?tl

S, Foe any %,bnc_ludir\é[ 7\::%) the rwle 5 a3 in Rat (h)



