ENEE324, Home assignment 8. Date due December 10, 2025, 11:59pm EST.

Instructor: Alexander Barg

Please upload your work as a single PDF file to ELMS (under the ”Assignments” tab)

e Submissions on paper or by email will not be accepted.
e Please do not submit your solutions as multiple separate files (pictures of individual pages). Such submis-

sions are difficult to grade and will not be accepted.

e Justification of solutions is required.
e 5 problems, Each problem is worth 10 points unless noted otherwise.

Problem 1. Let X be a continuous random variable with pdf
Suppose a coin is tossed once, where the probability of heads depends on X: given X = z, the probability

of heads is
P(Heads| X = z) = x.

(1) Compute the unconditional probability of heads using the continuous law of total probability:
1
P(Heads) = / P(Heads| X = z) fx(x) dx.
0

(2) Compute the conditional pdf of X given that the coin shows heads, fx |Heads (x), using the continuous

Bayes formula:
fx(z)P(Heads| X = x)

fX|HeadS(x) = P(Heads)

(3) Using the conditional pdf, compute F[X |Heads].

(4) Suppose instead the coin shows tails. Compute fx|ris(z) and E[X|Tails].
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Problem 2. Two independent machines, A and B, each require a random time to complete a task. Let X
and Y denote these times, both exponentially distributed with rate A > 0.

Define the total completion time and the relative share of A in the total time by

X
Z=X+Y, R= .
o X+Y
(1) Determine the range of possible values of the pair (Z, R) as a region on the plane (see textbook,

Sec.8.1).

(2) Derive the joint pdf f7 r(z, ) using the transformation from (X, Y) to (Z, R).

(3) Find the marginal pdfs f(z) and fr(r), and identify the distributions of Z and R.

(4) Show that Z and R are independent, and explain intuitively why this makes sense in the context of
the problem. .

(5) Compute E[Z], Var(Z), and E[R]. A
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Problem 3. A well-shuffled standard deck of 52 cards contains 4 aces. You draw 3 cards at random without
replacement and let X be the number of aces among the three cards.

(1) Compute the unconditional expectation E[X].

(2) Let A be the event “at least one ace is drawn” (i.e. A = {X > 1}). Compute the conditional
expectation E[X |A].

(3) Let B be the event “the first card drawn is an ace”. Compute E[X |B].

(4) Compare E[X|A] and E[X|B]. Which is larger and why? Give a short intuitive explanation (you
may also support your answer with the numerical values).
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Problem 4. Let X and Y be continuous random variables with joint pdf
ey, 0<z<1,0<y<l,
fxy(@,y) =

0, otherwise.

(1) Verify that fx y (z,y) is a valid joint pdf.
(2) Let g(X,Y) = X2Y + Y2. Compute the expectation

1 1
E[g(X,Y)]Z/O /0 g(z,y) fxy(z,y) dz dy.

(3) Let h(X,Y) = X + Y. Compute E[h(X,Y)?].
(4) Compute Cov(X,Y’) and Var(X + Y') using your results from above.
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Problem 5. Two fair dice are rolled. Let X be the outcome of the first die and Y the outcome of the second
die.

(1) Let g(X,Y) = X - Y + X. Compute the expectation

(2) Let h(X,Y) = X + Y. Compute E[h(X,Y)?].

(3) Compute Cov(X,Y) and Var(X +Y).

(4) Let I = 1(X = Y) be the indicator that both dice show the same number. Compute E[I] and
Elg(X,Y)|I = 1].
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