

ENEE324, Home assignment 8. Date due December 10, 2025, 11:59pm EST.

Instructor: Alexander Barg

Please upload your work as a **single PDF file** to ELMS (under the "Assignments" tab)

- Submissions on paper or by email will not be accepted.
- Please do not submit your solutions as multiple separate files (pictures of individual pages). Such submissions are difficult to grade and will not be accepted.
- Justification of solutions is required.
- 5 problems, Each problem is worth 10 points unless noted otherwise.

**Problem 1.** Let  $X$  be a continuous random variable with pdf

$$f_X(x) = 2x, \quad 0 \leq x \leq 1.$$

Suppose a coin is tossed once, where the probability of heads depends on  $X$ : given  $X = x$ , the probability of heads is

$$P(\text{Heads}|X = x) = x.$$

(1) Compute the unconditional probability of heads using the continuous law of total probability:

$$P(\text{Heads}) = \int_0^1 P(\text{Heads}|X = x) f_X(x) dx.$$

(2) Compute the conditional pdf of  $X$  given that the coin shows heads,  $f_{X|\text{Heads}}(x)$ , using the continuous Bayes formula:

$$f_{X|\text{Heads}}(x) = \frac{f_X(x)P(\text{Heads}|X = x)}{P(\text{Heads})}.$$

(3) Using the conditional pdf, compute  $E[X|\text{Heads}]$ .

(4) Suppose instead the coin shows tails. Compute  $f_{X|\text{Tails}}(x)$  and  $E[X|\text{Tails}]$ .

$$(1) \quad P(\text{H}) \stackrel{\text{LOTp}}{=} \int_0^1 P(\text{H}|X = x) f_X(x) dx = 2 \int_0^1 x^2 dx = \frac{2}{3}$$

$$(2) \quad f_{X|\text{H}}(x) = \frac{3}{2} \cdot 2x \cdot x = 3x^2, \quad 0 \leq x \leq 1 \quad \text{and} \quad 0 \text{ o/w}$$

$$(3) \quad E[X|\text{H}] = \int_0^1 3x^3 dx = \frac{3}{4}$$

$$(4) \quad P(\text{T}|X = x) = 1-x; \quad P(\text{T}) = 1 - P(\text{H}) = \frac{1}{3}$$

$$f_{X|\text{T}}(x) = \frac{f_X(x) P(\text{T}|X = x)}{P(\text{T})} = \frac{2x \cdot (1-x)}{\frac{1}{3}} = 6x(1-x), \quad 0 \leq x \leq 1$$

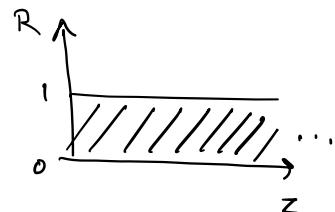
$$E[X|\text{T}] = \int_0^1 6x^2(1-x) dx = 6 \left( \frac{x^3}{3} - \frac{x^4}{4} \right) \Big|_0^1 = 6 \cdot \frac{1}{12} = \frac{1}{2}.$$

**Problem 2.** Two independent machines, A and B, each require a random time to complete a task. Let  $X$  and  $Y$  denote these times, both exponentially distributed with rate  $\lambda > 0$ .

Define the total completion time and the relative share of A in the total time by

$$Z = X + Y, \quad R = \frac{X}{X+Y}.$$

- (1) Determine the range of possible values of the pair  $(Z, R)$  as a region on the plane (see textbook, Sec.8.1).
- (2) Derive the joint pdf  $f_{Z,R}(z, r)$  using the transformation from  $(X, Y)$  to  $(Z, R)$ .
- (3) Find the marginal pdfs  $f_Z(z)$  and  $f_R(r)$ , and identify the distributions of  $Z$  and  $R$ .
- (4) Show that  $Z$  and  $R$  are independent, and explain intuitively why this makes sense in the context of the problem.
- (5) Compute  $E[Z]$ ,  $\text{Var}(Z)$ , and  $E[R]$ .



(1) Clearly,  $0 < z < \infty$ , and  $0 < r < 1$ , so the region is

$$(2) \text{ We have } \begin{cases} z = x + y \\ rx + ry = x \end{cases} \quad \begin{cases} x = z - y \\ r(z - y) + ry = rz = z - y \end{cases} \quad \begin{cases} y = z(1-r) \\ x = z - z(1-r) = zr \end{cases}$$

$$|\det J| = \begin{vmatrix} r & z \\ 1-r & -z \end{vmatrix} = | -rz - (1-r)z | = z$$

$$f_{Z,R}(z, r) = f_{XY}(x, y) \left| \frac{\partial(x, y)}{\partial(z, r)} \right| = \lambda e^{-\lambda x} \cdot \lambda e^{-\lambda y} z = \lambda e^{z - \lambda(rz + z(1-r))} \cdot z$$

$$= \lambda^2 z e^{-\lambda z}$$

(3)  $f_Z(z) = \lambda^2 z e^{-\lambda z} = \text{Gamma}(2, z) = \text{sum of 2 independent exponentials}$

$f_R(r) = 1 - \text{Unif}[0, 1]$ ;  $Z$  and  $R$  are independent.

This makes sense b/c  $X$  and  $Y$  are independent, and  $X$  is equally likely to take any share of the  $\lambda + \lambda$  value by the memoryless property.

$$(4) EZ = \lambda^2 \int_0^\infty z^2 e^{-\lambda z} dz = -\lambda z^2 e^{-\lambda z} \Big|_0^\infty + 2\lambda \int_0^\infty z e^{-\lambda z} dz = \frac{2}{\lambda}$$

$$EZ^2 = \int_0^\infty z^2 e^{-\lambda z} dz \stackrel{\text{by parts}}{=} -\lambda z^3 e^{-\lambda z} \Big|_0^\infty + 3\lambda \int_0^\infty z^2 e^{-\lambda z} dz = \frac{6}{\lambda^2} \quad (\text{the last integral found above})$$

$$\text{Var}(Z) = EZ^2 - (EZ)^2 = \frac{6}{\lambda^2} - \frac{4}{\lambda^2} = \frac{2}{\lambda^2}; \quad ER = \frac{1}{2}$$

**Problem 3.** A well-shuffled standard deck of 52 cards contains 4 aces. You draw 3 cards at random without replacement and let  $X$  be the number of aces among the three cards.

- (1) Compute the unconditional expectation  $E[X]$ .
- (2) Let  $A$  be the event “at least one ace is drawn” (i.e.  $A = \{X \geq 1\}$ ). Compute the conditional expectation  $E[X|A]$ .
- (3) Let  $B$  be the event “the first card drawn is an ace”. Compute  $E[X|B]$ .
- (4) Compare  $E[X|A]$  and  $E[X|B]$ . Which is larger and why? Give a short intuitive explanation (you may also support your answer with the numerical values).

$$(1) \quad X \sim \text{HGeom}(3, 4, 48)$$

$$EX = \frac{n w b}{n+w+b} = \frac{3 \cdot 4}{52} = \frac{3}{13} \quad \text{as found in L.9.}$$

Or, we can find the PMF of  $X$ :

$$P(X=2) = \frac{\binom{4}{2} \binom{48}{1}}{\binom{52}{3}} \approx \frac{6 \cdot 48 \cdot 6}{52 \cdot 51 \cdot 50} = \frac{48 \cdot 6}{52 \cdot 17 \cdot 25} = \frac{72}{5525}$$

$$P(X=1) = \frac{\binom{4}{1} \binom{48}{2}}{\binom{52}{3}} = \frac{1128}{5525}$$

$$P(X=3) = \frac{\binom{4}{3}}{\binom{52}{3}} = \frac{4 \cdot 6}{52 \cdot 51 \cdot 50} = \frac{1}{5525}$$

$$\text{and compute } EX = \frac{1}{5525} (1128 + 2 \cdot 72 + 3) = \frac{1275}{5525} = \frac{7}{13}$$

$$(2) \quad A = \{X \geq 1\} \quad P(X \geq 1) = 1 - P(X=0) = 1 - \frac{48}{52} \cdot \frac{47}{51} \cdot \frac{46}{50} = \frac{1201}{5525}$$

$$P(X=1|X \geq 1) = \frac{P(X=1 \cap X \geq 1)}{P(X \geq 1)} = \frac{P(X=1)}{P(X \geq 1)} = \frac{1128}{1201} \approx 0.938$$

$$P(X=2|X \geq 1) = \frac{72}{1201} \approx 0.059$$

$$P(X=3|X \geq 1) = \frac{1}{1201} \approx 0.0008$$

$$E(X|A) = \frac{1}{1201} (1128 + 2 \cdot 72 + 3) = \frac{1275}{1201} \approx 1.0616$$

$$(3) B = \{1^{\text{st}} \text{ card ace}\}$$

Once one ace is removed, we are left with 51 cards of which three are aces.

# aces in the remaining 2 draws  $\sim \text{HGeom}(2, 3, 48)$

$$\text{Expected # of aces in these 2 draws} = \frac{2 \cdot 3}{51} = \frac{2}{17}$$

$$E(X|B) = 1 + \frac{2}{17} = \frac{19}{17} \approx 1.118$$

$$(4) \text{ We see that } E(X|B) > E(X|A)$$

To explain why, let us compute the conditional PMF. The 1<sup>st</sup> draw is an ace; we are left with 2 draws  $\sim \text{HGeom}(2, 3, 48)$

If they produce 0, 1 or 2 aces, then  $X=1, 2, 3$  resp.

$$P(X=1|B) = \frac{\binom{48}{2}}{\binom{51}{2}} = \frac{48 \cdot 47}{51 \cdot 50} = \frac{8 \cdot 47}{17 \cdot 25} = \frac{376}{425} \approx 0.885$$

$$P(X=2|B) = \frac{\binom{3}{1} \binom{48}{1}}{\binom{51}{2}} = \frac{6 \cdot 48}{51 \cdot 50} = \frac{6 \cdot 8}{17 \cdot 25} = \frac{48}{425} = \frac{144}{1275} \approx 0.113$$

$$P(X=3|B) = \frac{1}{\binom{51}{2}} = \frac{1}{51 \cdot 25} = \frac{1}{1250 + 25} = \frac{1}{1275} \approx 0.0007$$

We see that chances to get 2 aces are twice as high under B than under A, and this shifts the expectation.

**Problem 4.** Let  $X$  and  $Y$  be continuous random variables with joint pdf

$$f_{X,Y}(x, y) = \begin{cases} 4xy, & 0 \leq x \leq 1, 0 \leq y \leq 1, \\ 0, & \text{otherwise.} \end{cases}$$

(1) Verify that  $f_{X,Y}(x, y)$  is a valid joint pdf.  
(2) Let  $g(X, Y) = X^2Y + Y^2$ . Compute the expectation

$$E[g(X, Y)] = \int_0^1 \int_0^1 g(x, y) f_{X,Y}(x, y) dx dy.$$

(3) Let  $h(X, Y) = X + Y$ . Compute  $E[h(X, Y)^2]$ .  
(4) Compute  $\text{Cov}(X, Y)$  and  $\text{Var}(X + Y)$  using your results from above.

$$(1) \iint_0^1 4xy \, dx \, dy = 4 \cdot \frac{x^2}{2} \Big|_0^1 \Big|_0^1 \frac{y^2}{2} \Big|_0^1 = 1$$

$$(2) E[g(X, Y)] = \iint_0^1 (x^2y + y^2) 4xy \, dx \, dy = \iint_0^1 (4x^3y^2 + 4xy^3) \, dx \, dy \\ = \int_0^1 (x^4y^2 + 2x^2y^3) \Big|_0^1 \, dy = \int_0^1 (y^2 + 2y^3) \, dy = \frac{1}{3} + \frac{2}{4} = \frac{5}{6}$$

$$(3) E(h(X, Y))^2 = \iint (x+y)^2 \cdot 4xy \, dx \, dy = \iint (4x^3y + 8x^2y^2 + 4xy^3) \, dx \, dy \\ = \int_0^1 (x^4y + \frac{8}{3}x^3y^2 + \frac{4}{2}x^2y^3) \Big|_0^1 \, dy = \int_0^1 (y + \frac{8}{3}y^2 + 2y^3) \, dy = \frac{1}{2} + \frac{8}{9} + \frac{1}{2} = \frac{17}{9}$$

$$(4) f_X(x) = \int_0^1 4xy \, dy = 2x; \quad f_Y(y) = 2y$$

$$E[X] = \int_0^1 2x^2 \, dx = \frac{2}{3} = E[Y]$$

$$E(XY) = \iint xy \cdot 4xy \, dx \, dy = 4 \iint x^2y^2 \, dx \, dy = \frac{4}{3} \int_0^1 y^2 \, dy = \frac{4}{9}$$

$$\text{Cov}(X, Y) = E(XY) - E[X]E[Y] = 0$$

$$(E(X+Y))^2 = \left(\frac{2}{3} + \frac{2}{3}\right)^2 = \frac{16}{9} \quad E(X+Y)^2 = \frac{68}{36} \quad \text{by pt. (3)}$$

$$\text{Var}(X+Y) = (E(X+Y))^2 - E((X+Y)^2) = \frac{4}{36} = \frac{1}{9}$$

**Problem 5.** Two fair dice are rolled. Let  $X$  be the outcome of the first die and  $Y$  the outcome of the second die.

- (1) Let  $g(X, Y) = X \cdot Y + X$ . Compute the expectation
- (2) Let  $h(X, Y) = X + Y$ . Compute  $E[h(X, Y)^2]$ .
- (3) Compute  $\text{Cov}(X, Y)$  and  $\text{Var}(X + Y)$ .
- (4) Let  $I = \mathbf{1}(X = Y)$  be the indicator that both dice show the same number. Compute  $E[I]$  and  $E[g(X, Y)|I = 1]$ .

$$(1) \quad E[X] = E[Y] = 3.5 \quad \left( \text{In full, } \frac{1}{6}(1+2+3+4+5+6) = \frac{1}{6} \frac{6 \cdot 7}{2} = \frac{21}{6} = \frac{7}{2} \right)$$

$$1 \leq X \leq 6$$

$$1 \leq Y \leq 6$$

$$P(XY = k) = \begin{cases} \frac{1}{36} & \text{if } k = 1, 9, 16, 25, 36 \\ \frac{2}{36} & \text{if } k = 2, 3, 5, 8, 10, 15, 18, 20, 24, 30 \\ \frac{3}{36} & \text{if } k = 4 \\ \frac{4}{36} & \text{if } k = 6 \text{ or } 12 \end{cases}$$

|        |    |
|--------|----|
| 5 · 1  | 5  |
| 10 · 2 | 20 |
| 1 · 3  | 3  |
| 2 · 4  | 8  |

$$E[XY] = \frac{1}{36} (1+9+16+25+36 + 2(2+3+5+8+10+15+18+20+24+30) + 3 \cdot 4 + 4(6+12))$$

$$= \frac{1}{36} (87 + 2 \cdot 135 + 12 + 72) = \frac{441}{36} = \frac{49}{4}$$

$$E(XY + X) = \frac{49}{4} + \frac{7}{2} = \frac{63}{4}$$

|   |   |    |    |    |    |    |
|---|---|----|----|----|----|----|
|   | 1 | 2  | 3  | 4  | 5  | 6  |
| 1 | 1 | 2  | 3  | 4  | 5  | 6  |
| 2 | 2 | 4  | 6  | 8  | 10 | 12 |
| 3 | 3 | 6  | 9  | 12 | 15 | 18 |
| 4 | 4 | 8  | 12 | 16 | 20 | 24 |
| 5 | 5 | 10 | 15 | 20 | 25 | 30 |
| 6 | 6 | 12 | 18 | 24 | 30 | 36 |

$$(2) \quad E((X+Y))^2 = E[X^2] + 2E[XY] + E[Y^2] = \frac{91}{3} + \frac{98}{4} = \frac{364 + 294}{12} = \frac{658}{12} = \frac{329}{6}$$

$$E[X^2] = \frac{1}{6} (1+4+9+16+25+36) = \frac{91}{6} = E[Y^2]$$

$$(3) \quad \text{Cov}(X, Y) = 0 \quad \text{since } X \text{ and } Y \text{ are independent}$$

$$\text{Var}(X) = \text{Var}(Y) = \frac{91}{6} - \frac{49}{4} = \frac{364 - 294}{24} = \frac{70}{24} = \frac{35}{12}$$

$$\text{Var}(X+Y) = 2 \text{Var}(X) = \frac{35}{6}$$

$$(4) \quad E[I] = P(X = Y) = \frac{6}{36} = \frac{1}{6} \quad P(X \cdot Y = k^2 | X = Y) = \frac{1}{6}, \quad k = 1, 2, 3, 4, 5, 6$$

$$E(XY + X | X = Y) = \frac{1}{6} (2+6+12+20+30+42) = \frac{112}{6} = \frac{56}{3}.$$