
ENEE324. Midterm examination 1, 10/20/2025. Instructor: A. Barg
• The paper contains 5 problems. Each problem is 10 points. Max score=50 points
• Your answers should be justified.
• Please pay attention to the writing. You may lose points if your paper is difficult to read.
• DO NOT copy the problem statement into your paper
• Simplify your calculations as much as you can. Perform divisions, multiplications, cancellations etc.
• SIGN YOUR NAME!

Problem 1. A website requires a 6-character password made of uppercase letters A,B,C and digits 0 and 1.
(a) If an attacker guesses passwords at random, what is the probability that he succeeds at least once after

making 100 tries?
(b) What is the minimum number of guesses the attacker must make for the expected number of successes

to exceed 0.5?
(c) Choose a random password. What is the probability that it is formed only of the letters A,B,C and

does not include digits?

Solution: (a) The probability p of success in a single try is p = 1
56

= 1
15625 . Let X ∼ Binom(100, p).

The probability in question is P (X ≥ 1) = 1− P (X = 0) = 1− (1− p)100 ≈ 0.00638.
(b) The expected number of successes is np. Taking np = 0.5, we have n = ⌈156252 ⌉ = 7813.
(c) 36

56
= 729

15625 = 0.0467

Problem 2. A company manufactures two kinds of batteries, Type I and Type II.
• 25% of the batteries produced are Type I, and 75% are Type II.
• Type I batteries last a random number YI of months, with pmf

pYI
(k) =

1

3

(
2

3

)k−1

, k = 1, 2, . . .

• Type II batteries last a random number YII of months, with pmf

pYII
(k) =

1

2

(
1

2

)k−1

, k = 1, 2, . . .

A single battery is selected at random from the production line. Let Y denote its lifetime.
(1) Validity check: Show that pYI

and pYII
are valid pmfs.

(2) Mixture distribution: Find the pmf of Y (justification required).
(3) Expected lifetime: Compute E[Y ].
(4) Reliability after 6 months: Compute Pr(Y ≥ 6).
(5) Conditional classification: Suppose a randomly chosen battery is still working after 6 months (at the

end of the 6th month). Compute the probability that it is of Type I conditional on this information.

Solution: Random variables YI and YII are FIRST SUCCESS random variables.
(1)

∑∞
k=1 p(1− p)k−1 = p

∑∞
k=0(1− p)k = p 1

1−(1−p) = 1 for any p ∈ (0, 1).
(2) First, note that P (FS(p) ≥ n) =

∑∞
k=n pq

k−1 = p
q

∑∞
k=n q

k = qn−1. Then, using LOTP, for any
k ≥ 1,

P (Y = k) = P (Y = k|I)P (I) + P (Y = k|II)P (II) = 0.25pYI
(k) + 0.75pYII

(k)

=
1

12

(2
3

)k−1
+

3

8

(1
2

)k−1

(3) The expectation of FS(p) equals 1
p for all 0 < p < 1. By linearity of expectation, we obtain E(Y ) =

0.25EYI + 0.75EYII = 3
4 + 3

2 = 9
4 .



(4) P (Y ≥ 6) = P (Y ≥ 6|I)P (I) + P (Y ≥ 6|II)P (II). As in HW4,

P (Y ≥ 6) =
1

4

(2
3

)5
+

3

4

(1
2

)5
=

1753

128 · 243
≈ 0.0563.

(5) The Bayes formula gives P (I|Y ≥ 6) = P (Y≥6|I)P (I)
P (Y≥6) =

( 2
3
)5·0.25

0.0563 ≈ 0.584.

Problem 3. A company buys sensors from three suppliers: A, B, and C.
• 40% of the sensors come from supplier A,
• 35% from supplier B,
• 25% from supplier C.

The probability that a sensor is defective depends on the supplier:

P (defective | A) = 0.02, P (defective | B) = 0.05, P (defective | C) = 0.10.

A sensor is selected at random from the warehouse.
(1) Compute P (defective).
(2) Suppose the sensor is found to be defective. Compute the posterior probabilities

P (A | defective), P (B | defective), P (C | defective).

(3) Suppose the sensor is not defective. Compute P (C | not defective).
(4) Inspecting one sensor costs $1, and repairing a defective sensor found during inspection saves the

company $40 (for type A), $50 (for type B), and $60 (for type C) in expected future costs. The
company will inspect only sensors from one supplier chosen in advance. Which supplier should the
company inspect to maximize expected net benefit per inspected sensor? (Compute expected benefit
per inspected sensor for each supplier and state the best choice.)

Solution: We are given that P (A) = 0.4, P (B) = 0.35, P (C) = 0.25. Below we write d for defective.
1.

P (d) = P (d,A) + P (d,B) + P (d,C)

= P (d|A)P (A) + P (d|B)P (B) + P (d|C)P (C)

= 0.02 · 0.4 + 0.05 · 0.35 + 0.1 · 0.25
= 0.008 + 0.0175 + 0.025 = 0.0505.

2. Using the Bayes formula,

P (A|d) = P (d|A)P (A)

P (d)
=

0.008

0.0505
≈ 0.158.

P (B|d) = 0.0175

0.0505
≈ 0.347, P (C|d) = 0.025

0.0505
≈ 0.495

As a sanity check, these three numbers add to 1 (up to the rounding errors).
3.

P (C|d̄) = P (d̄|C)P (C)

P (d̄)
=

0.9 · 0.25
0.9495

=
0.225

0.9495
≈ 0.237.

4. If we check, we always pay $1. If the sensor is defective, which happens with probability P (d|S),
we save $ 40 or 50 or 60. Thus, the expected gain/loss from inspecting a sensor from supplier S is −1 +
(savings) · P (d|S). Denote GS to be the gain from inspecting sensors of type S. We compute

GA = −1 + 40P (d|A) = −0.2, GB = −1 + 50P (d|B) = 1.5, GC = −1 + 60P (d|C) = 5.

Thus, the best choice is supplier C.

Problem 4. A particle starts at position 0 on the integer line. At each step it moves
• one unit to the right with probability p = 2

3 ,



• one unit to the left with probability 1− p = 1
3 .

Let Sn denote the position of the particle after n steps.
(1) Find P (S3 = 1).
(2) Compute P (S4 = 0).
(3) Compute E [Sn].
(4) Compute P (S10 ≥ 0)

Hint: Introduce a random variable Xn equal to the number of steps to the right after n steps of the process,
and express Sn in terms of Xn.

Solution: 1. We note that Xn = Binom(n, 2/3) and Sn = 2Xn − n. Thus,

P (S3 = 1) = P (2X3 = 4) = P (X3 = 2) =

(
3

2

)
p2(1− p) = 3 · 4

9
· 1
3
=

4

9
.

2. To end up at 0 after an even number n of steps, we must make n/2 steps in each of the two directions.

P (S4 = 0) =

(
4

2

)
p2(1− p)2 = 6 · 4

9
· 1
9
=

8

27

3.
ESn = E(2Xn − n) = 2EXn − n = 2np− n =

n

3
,

which makes sense because p− (1− p) = 1
3 , i.e., the walk is 1

3 more likely to drift right than left.
4.

P (S10 ≥ 0) = P (2X10 ≥ 10) = P (X10 ≥ 5) =
10∑
k=5

(
10

k

)
(2/3)k(1/3)10−k ≈ 0.923.

Problem 5. A machine produces components whose lifetime (in years) is modeled by the pmf

pX(k) = c · 1

k(k + 1)
, k = 1, 2, 3, . . .

where c is a normalizing constant.
(1) Find c (rewrite the summation term as a difference of two fractions)
(2) Compute P (X ≥ 3).
(3) What is the expectation E[X]?

Solution: (1) The answer is suggested by writing
∞∑
k=1

1

k(k + 1)
=

∞∑
i=1

(1
k
− 1

k + 1

)
.

This looks like 1 because all the terms except the first one cancel. This isn’t a formal argument because if
it was, then the sum 1 − 1 + 1 − 1 + 1 − . . . would have a finite value, which it does not. To show this
formally, we recall that by definition,

∑∞
k=1 ak = limn→∞

∑n
k=1 ak, and write

n∑
k=1

(1
k
− 1

k + 1

)
= 1− 1

n+ 1
.

As n → ∞, the sequence of these sums converges to 1. This shows that c = 1 by the normalization property
of probability.

(2)

P (X ≥ 3) = 1− P (X ≤ 2) = 1− 1

2
− 1

6
=

1

3



(3)

EX =
∞∑
k=1

kpX(k) =
∞∑
k=1

1

k + 1
= ∞

Thus, X has infinite expectation.


