
ENEE324. Midterm examination 2, 11/19/2025. Instructor: A. Barg
• The paper contains 5 problems. Each problem is 10 points. Max score=50 points
• Your answers should be justified.
• Please pay attention to the writing. You may lose points if your paper is difficult to read.
• DO NOT copy the problem statement into your paper
• Simplify your calculations as much as you can. Perform divisions, multiplications, cancellations etc.
• SIGN YOUR NAME!

Problem 1. Customers arrive at a coffee shop according to a Poisson process with rate λ = 3 customers per
hour.

(1) Suppose the time count starts at some fixed hour, call it hour 0. What is the probability that exactly
5 customers arrive in the first 2 hours?

(2) Let T1 be the time until the first customer arrives.
(a) Find the pdf of T1. For this, use the fact that P (T1 ≤ t) = 1− P (T1 ≥ t), where the event in

the last P (·) means that there were no arrivals in [1, t].
(b) Compute P (T1 > 20 minutes).

(3) Suppose that exactly 4 customers arrive in the first hour.
(a) Given this information, what is the probability that exactly 2 of them arrived in the first 30

minutes?
(b) Given this information, what is the expected number of customers in the second half-hour?

What is the expected number of customers in the second half-hour not conditioned on any
other information?

Solution. (1) For a Poisson process N(t) with rate λ and any k = 0, 1, . . . ,

P (N(t) = k) = e−λt (λt)
k

k!
.

Here λt = 3 · 2 = 6 and k = 5. Thus

P (N(2) = 5) = e−6 6
5

5!
≈ 0.16.

(2) (a) For a Poisson process with rate λ, the time to the first event is exponential with rate λ. This is easy
to compute as described in the hint for (2a): P (T1 ≥ t) = P (N(T1) = 0) = e−λt, so P (T1 ≤ t) = 1−e−λt,
which is the CDF of Exp(λ). Then fT1(t) = λe−λt, t ≥ 0. In our case, λ = 3, so fT1(t) = 3e−3t.

(b) Twenty minutes is 1/3 hour. As above, P (T1 > t) = e−λt, so

P
(
T1 >

1
3

)
= e−3·(1/3) = e−1 ≈ 0.368.

(3) (a) The number of customers that fall in the first half-hour (length 0.5) is Bin(4, 0.5). Therefore

P{exactly 2 in first 0.5 h | N(1) = 4} =

(
4

2

)
(0.5)2(0.5)2 =

(
4

2

)
(0.5)4 = 6 · 1

16
=

3

8
.

(b) Conditioned on N(1) = 4, the count in [0.5, 1] has distribution Bin(4, 0.5). Its mean is 4 · 0.5 = 2.
Without the conditioning, the number of arrivals within t = 1/2 hour is Poisson(λt), and its expectation is
λt = 3/2.

Problem 2. Two points X1, X2 are chosen independently and uniformly on the line segment [0, a], where
a > 0.

(1) Find the pdf of the random variables Y = min(X1, X2) and Z = max(X1, X2). Make sure to give
the answer for all values of the argument of the pdf.
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(2) Compute P
(
X1 ≤ a/2, X2 ≤ a/2

)
.

(3) Compute P
(
X1 ≤ a/4, X2 ≥ 3a/4

)
and then the probability that one of the two points, no matter

which, lies in [0, a/4] and the remaining point lies in [3a/4, a].
(4) Let I be the indicator of the event “the two points lie in the same half of the segment”, i.e. both in

[0, a/2] or both in (a/2, a]. Compute E[I]. Justification required.

Solution: (1) Using independence,

(1)P (Y ≤ y) = P (min(X1, X2) ≤ y) = 1− P (X1 ≥ y,X2 ≥ y) = 1− P (X1 ≥ y)P (X2 ≥ y)

= 1− (
a− y

a
)2 if 0 ≤ y ≤ a.

The complete answer is

FY (y) =


0 y ≤ 0

1− (a−y
a )2 0 ≤ y ≤ a

1 y ≥ a

and thus,

fY (y) =

{
0 y ≤ 0 or y ≥ a
2
a2
(a− y) 0 ≤ y ≤ a

Similarly, P (Z ≤ z) = P (X1 ≤ z)2 = ( za)
2 and fZ(z) =

2z
a2

for 0 ≤ z ≤ a and 0 otherwise.
(2) As above, this probability is (12)

2 = 1
4 .

(3) The first probability is 1
42

and the second is twice that, namely 1/8.
(4) P (I = 0) = 2P (X1 ≤ a/2)P (X2 ≥ a/2) = 1

2 , so EI = P (I = 1) = 1
2

Problem 3. (The “Aces in the deck” problem, rephrased) A bag contains 10 balls numbered 1, 2, . . . , 10.
The balls are drawn one by one uniformly at random without replacement. For each of the following ques-
tions, you must justify your answer.

(1) Let Y0 be the number of balls drawn before ball number 1 appears. Find E[Y0].
(2) Let Y1 be the number of balls drawn between the times when balls 1 and 2 are drawn (note that ball

1 can be drawn before or after ball 2). Find E[Y1].
(3) Let Y2 be the number of balls drawn after both balls 1 and 2 have been drawn. Find E[Y2].
(4) Find the probability that ball number 1 is drawn before ball number 2.
(5) Let T be the total number of draws made until both balls 1 and 2 have been drawn, so the T th draw

is ball 1 or ball 2 depending on which of those two balls appears after the other one. Find E[T ].

Solution: We have 2 “labelled” balls in a random permutation of 10 balls.
(1) P (B1 = i) = 0.1 for all i = 1, . . . , 10, so EY0 = 0.1(1 + 2 + · · ·+ 9) = 0.1 · 45 = 4.5.
(2)-(3) As with aces in the HW6,P.2, there are 3 gaps “between” the 2 balls, each of which has the same

average length equal to 8/3.
(4) The number of permutations in which B1 is before B2 is the same as the number when it is after B2,

and each of these permutations has the same probability 1/(10!). Thus, the answer is 1/2.
(5) ET = EY0 + 1 + EY1 + 1 = 22/3, or ET = 10− EY2 = 10− 8/3 = 22/3.

Problem 4. Let X be an exponential random variable with parameter λ > 0, i.e.

fX(x) = λe−λx, x ≥ 0.

(1) Define Y =
√
X . Find the probability density function (pdf) of Y . Make sure to give the answer

for all y ∈ (−∞,∞).
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(2) Compute E[Y ] in terms of λ (integration by parts and the Gaussian integral may help).
(3) Define Z = e−λX . Find the pdf of Z and its expectation (no computations are needed; just recall

universality of the uniform).

Solution: (1) The range of Y is from 0 to ∞. For y ∈ (0,∞),

P (Y ≤ y) = P (X ≤ y2) =

∫ y2

0
λe−λxdx = −e−λx

∣∣∣y2
0

= 1− e−λy2 .

The RHS is simply FX(y2), the CDF of X , computed in class.

fY (y) =

{
0 −∞ < y < 0

2yλe−λy2 , 0 ≤ y < ∞.

Note: this is the change-of-variable formula for the integral
∫ t
0 f(x)dx: we write x = y2, dx = 2ydy and

obtain
∫ √

t
0 f(y2)2ydy, so the new pdf is 2yf(y2). We will discuss this later in class.

(2) Integrate EY = 2λ
∫∞
0 y2e−λy2dy by parts: let u = y, dv = ye−λy2dy, so du = dy, v =

1
2λ

∫
e−λy2d(λy2) = − 1

2λe
−λy2 , and (multiplying through by 2λ)

EY = uv
∣∣∣∞
0

−
∫ ∞

0
vdu = −ye−λy2

∣∣∣∞
0

+

∫ ∞

0
e−λy2dy

The first term evaluates to 0, and the second, upon the variable change y = z/
√
2λ, becomes a Gaussian,

and we obtain

EY =
1√
2λ

∫ ∞

0
e−z2/2dz =

1

2

√
π

λ
.

(3) We know that, for any RV X with CDF F (x), the random variable F (X) ∼ Unif(0, 1). The CDF of
X is 1 − e−λx, and thus W = 1 − e−λX is uniform, but then so is Z = 1 −W = e−λX . The pdf of Z is
1(0,1) and EZ = 1/2.

Problem 5. Let X be a First Success random variable with parameter p, that is, P (X = k) = p(1− p)k−1

for k = 1, 2, . . ..
(1) Define Y = X − 1. Find the probability mass function (pmf) of Y and compute E[Y ].
(2) Define Z = min(X, 3). Find the pmf of Z.
(3) Compute E[Z]. What happens to E[Z] as p → 0, and why (give an explanation)?

Solution: (1) Y ∼ Geom(p) and thus, PY (k) = p(1− p)k, k ≥ 0 and EY = (1− p)/p.
(2) Z = min(X, 3). The pmf is

P (Z = 1) = P (X = 1) = p,

P (Z = 2) = P (X = 2) = p(1− p),

P (Z = 3) = P (X ≥ 3) = 1− P (X = 1)− P (X = 2) = (1− p)2.

(3) The expectation is

E[Z] = 1 · p+ 2 · p(1− p) + 3 · (1− p)2 = 3− 3p+ p2.

Intuition: as p → 0, the geometric is very likely to be large, so min(X, 3) → 3, which matches the formula:
limp→0E[Z] = 3.


