

ENEE324: Engineering Probability

Final Examination

May 19, 2015

Max total 60 pts.

Instructor: A. Barg

- Please be precise and rigorous in your statements, and show all your calculations. Be sure to
Print Your Name

Problem 1 (10pts) Consider a Markov chain with the transition matrix

$$P = \begin{pmatrix} 1-2p & 2p & 0 \\ p & 1-2p & p \\ 0 & 2p & 1-2p \end{pmatrix}, \quad 0 \leq p \leq 1/2.$$

- (a) Classify the states into absorbing, recurrent, transient and identify recurrent classes. Make sure to consider the boundary cases $p = 0, p = 1/2$.
- (b) Compute the steady-state distribution of the chain. Pay attention to the boundary cases.
- (c) Compute the probabilities $r_{ij}(2)$ of transitioning from i to j in 2 steps for all $i, j = 1, 2, 3$.

Solution: (a) If $p = 0$ then all the states are absorbing, and the chain has 3 "recurrent classes" formed by the states. If $0 < p \leq 1/2$, then all the states are recurrent, and the chain has a single non-periodic recurrent class.

(b) If $p = 0$, the chain has 3 steady-state distributions depending on the state X_0 , which are $(1, 0, 0), (0, 1, 0), (0, 0, 1)$. If $0 < p \leq 1/2$, then $\pi = \pi P$ gives the equations

$$\begin{aligned} \pi_1 &= \pi_1(1-2p) + \pi_2 p \\ \pi_2 &= \pi_1 \cdot 2p + \pi_2(1-2p) + \pi_3 \cdot 2p \\ \pi_3 &= \pi_2 p + \pi_3(1-2p) \end{aligned}$$

which yield $\pi_1 = \pi_3 = 1/4, \pi_2 = 1/2$.

(c) Computing P^2 , we obtain

$$R(2) = \begin{pmatrix} (1-2p)^2 + 2p^2 & 4p(1-2p) & 2p^2 \\ 2p(1-2p) & 4p^2 + (1-2p)^2 & 2p(1-2p) \\ 2p^2 & 4p(1-2p) & 2p^2 + (1-2p)^2 \end{pmatrix}.$$

Problem 2 (10pts) The joint density of RVs X and Y is as follows:

$$f(x, y) = \begin{cases} e^{-(x+y)} & 0 \leq x < \infty, 0 \leq y < \infty \\ 0 & \text{otherwise} \end{cases}$$

Find the PDF of the random variable X/Y .

Solution:

Compute the CDF of $Z = X/Y$. For $z > 0$,

$$\begin{aligned}
F_Z(z) &= P\left(\frac{X}{Y} \leq z\right) = \iint_{X/Y \leq z} e^{-(x+y)} dx dy = \\
&= \int_{y=0}^{\infty} \int_{x=0}^{zy} e^{-(x+y)} dx dy \\
&= \int_{y=0}^{\infty} (1 - e^{-zy}) e^{-y} dy \\
&= \int_{y=0}^{\infty} (1 - e^{-zy}) e^{-y} dy \\
&= \left\{ \left(-e^{-y} + \frac{e^{-y(z+1)}}{z+1} \right) \right\}_{0}^{\infty} = 1 - \frac{1}{z+1}
\end{aligned}$$

Now find

$$f_{X/Y}(z) = \frac{d}{dz} F_Z(z) = \frac{1}{(z+1)^2}, \quad 0 < z < \infty.$$

Problem 3 (10 pts) In the tropical forest of Luamo island, thunderstorms occur all year round. They happen at a Poisson rate of 5 per month.

(a) What is the probability that in a given calendar year there are a total of two thunderstorms in January and August combined?

(b) What is the probability that in a given calendar year there are exactly two (not necessarily consecutive) months out of the twelve months that see no thunderstorms at all?

Solution: For the Poisson process, let $P(k, t)$ be the (Poisson) probability of k arrivals in time t . Then

$$p_0 \triangleq P(0, 1) = e^{-5}, p_1 \triangleq P(1, 1) = 5e^{-5}, p_2 \triangleq P(2, 1) = \frac{25}{2}e^{-5}.$$

(a) The probability of the event of interest is

$$2p_0 p_2 + p_1^2 = 50e^{-10} \quad \text{OR: } P(2, 2) = e^{-2 \times 5} \frac{(2 \times 5)^2}{2!} = 50e^{-10}.$$

$$(b) P(\text{two dry months}) = \binom{12}{2} e^{-10} (1 - e^{-5})^{10}.$$

Problem 4 (10pts)

Two students are to meet in the Student Union. If each of them independently arrives at a time uniformly distributed between 12 noon and 1 pm, find the probability that the first to arrive has to wait longer than 10 minutes.

Solution:

Place the origin at 12 noon, and let $X \sim \text{Unif}[0, 1]$, $Y \sim \text{Unif}[0, 1]$. The event of interest is that $\{|X - Y| > 1/6\} = \{Y < X - 1/6\} \cup \{Y > X + 1/6\}$. Since $P(\{Y < X - 1/6\})$ is the area of the isosceles right triangle with legs $5/6$, i.e., $25/72$, the answer is $2 \times 25/72 = 25/36$.

Or, if you missed the geometric view, compute the integrals:

$$2P[X + 10 < Y] = 2 \iint_{x+10 < y} f(x, y) dx dy$$

$$\begin{aligned}
&= 2 \iint_{x+10 < y} f_X(x) f_Y(y) dx dy \\
&= \int_{y=10}^{60} \int_{x=0}^{y-10} \left(\frac{1}{60}\right)^2 dx dy \\
&= \frac{2}{(60)^2} \int_{y=10}^{60} (y-10) dy = \frac{25}{36}.
\end{aligned}$$

Problem 5 (10pts) The distance between the towns T1 and T2 is 11 miles, and there are 10 mile markers on the road from T1 to T2, with readings 1,2,...,10. A marker is chosen randomly with a uniform distribution. Let D_1 be the distance from T1 to the chosen marker, and let D_2 be the distance from T2 to that same marker.

- (a) Are D_1 and D_2 positively or negatively correlated? Justify your answer.
- (b) Compute the expected value of $D_1 \times D_2$.

Solution: (a) If D_1 increases, then D_2 decreases, so they are negatively correlated. To justify this formally, write

$$\rho_{D_1 D_2} = \frac{E[(D_1 - ED_1)(D_2 - ED_2)]}{\sigma_{D_1} \sigma_{D_2}}$$

and notice that if $ED_1 = ED_2 = 5.5$, and the quantities $(D_1 - ED_1)$ and $(D_2 - ED_2)$ always have opposite signs. Therefore, $\rho_{D_1 D_2} < 0$.

(b) Let X be a uniform RV with pmf $p_X(k) = 0.1, k = 1, \dots, 10$ and let $Z = X(11 - X)$. The pmf of Z is

$$p_Z(k) = 0.2, k = 10, 18, 24, 28, 30.$$

Then $EZ = 0.2 \times 110 = 22$.

Problem 6 (10pts) Suppose that n cars passed through a certain intersection within an hour, and k out of them were passenger cars. The probability that any given car is a passenger car is p and the type of each car is independent of the other cars. Let i be a number between 1 and n . What is the probability that the i th car was a passenger car?

Solution: Let B be the event that the i th car is a passenger car and let A be the event that k out of n cars are passenger. Then

$$P(B|A) = \frac{P(AB)}{P(A)} = \frac{p \binom{n-1}{k-1} p^{k-1} (1-p)^{n-k}}{\binom{n}{k} p^k (1-p)^{n-k}} = \frac{\binom{n-1}{k-1}}{\binom{n}{k}} = \frac{k}{n}.$$

The answer does not depend on p .