

ENEE324-03 Spring 2019. Problem set 3

Date due February 26, 2019

Please justify your answers

Problem 1: Out of 9 mathematicians and 12 engineers, a committee consisting of 4 mathematicians and 5 engineers is to be formed. In how many ways can this be done if

- (a) any mathematician and any engineer can be included?
- (b) one particular engineer must be in the committee?
- (c) two particular mathematicians cannot be in the committee?

Problem 2: There are n vehicles of which m are passenger cars and $n-m$ trucks, lined in a single lane in front of a traffic light. Your task is to find the number of different orderings of the vehicles. The passenger cars are indistinguishable, which means that car 1 before car 2 or car 2 before car 1 (possibly with some other vehicles separating them) count for just one configuration. The trucks are also indistinguishable. (compare with problem 23, p. 116 in the Textbook)

Problem 3: Show that $\binom{n}{k} = \sum_{i=k}^n \binom{i-1}{k-1}$, $n \geq k$. (Hint: consider k -subsets of the set of numbers $\{1, \dots, n\}$. How many subsets have i as their largest entry?)

Problem 4: We are testing a statistical hypothesis about an experiment that can have 3 possible outcomes. Suppose that α_i is the probability of not detecting outcome i , $i = 1, 2, 3$ when this outcome has in fact occurred. Find the conditional probabilities p_i of each of the possible outcomes $i = 1, 2, 3$ conditional on the fact that our test *has not* detected outcome 1.

Problem 5: I buy a package of cereal every week. Each package contains a coupon for a company's product. There are n types of coupons in total, and coupon i appears with probability p_i , $i = 1, \dots, n$ independently of everything else. After k weeks I have as many coupons. Let A_i be the event that I have in my possession at least one coupon of type i .

For $i \neq j$ find (a) $P(A_i)$, (b) $P(A_i \cup A_j)$, (c) $P(A_i | A_j)$.

Problem 6: A person contracts a particular (not too serious) disease at a Poisson rate $\lambda = 4/\text{yr}$. A vaccination, given to a large population group, is known to reduce the rate to $\lambda = 3$ in 60% cases and to have no effect in the remaining 40% of them. My friend has submitted himself to vaccination for 2 years and has had 3 onsets of the disease during that time. What is the probability that the drug has a positive effect for him?

Problem 7: A DC-bound metro train arrives at the College Park station every 10 minutes starting at the whole hour. A passenger enters the station at a time uniformly distributed between 9:10 and 9:30. What is the probability that he waits (a) less than 5 minutes, (b) more than 7 minutes?